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This study proposes a novel gait rehabilitation method that uses a hybrid system
comprising a powered ankle–foot orthosis (PAFO) and FES, and presents its
coordination control. The developed systemprovides assistance to the ankle joint
in accordance with the degree of volitional participation of patients with post-
stroke hemiplegia. The PAFO adopts the desired joint angle and impedance
profile obtained from biomechanical simulation. The FES patterns of the tibialis
anterior and soleus muscles are derived from predetermined electromyogram
patterns of healthy individuals during gait and personalized stimulation
parameters. The CNN-based estimation model predicts the volitional joint
torque from the electromyogram of the patient, which is used to coordinate
the contributions of the PAFO and FES. The effectiveness of the developed hybrid
system was tested on healthy individuals during treadmill walking with and
without considering the volitional muscle activity of the individual. The results
showed that consideration of the volitional muscle activity significantly lowers the
energy consumption by the PAFO and FES while providing adaptively assisted
ankle motion depending on the volitional muscle activities of the individual. The
proposed system has potential use as an assist-as-needed rehabilitation system,
where it can improve the outcome of gait rehabilitation by inducing active patient
participation depending on the stage of rehabilitation.
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1 Introduction

Stroke is a common geriatric disease caused by an
interruption in the blood supply to the brain. It is usually
accompanied by physical, neurological, and emotional
dysfunctions, which greatly degrade the patient’s quality of
life. The most common symptom of stroke is foot drop. It is a
secondary hemiplegic and foot-dragging condition attributed to
the abnormal dorsiflexion of the ankle. Rehabilitation of stroke
patients should include treatment for foot drop to improve their
gait ability in daily life (Fernandes et al., 2006; Kottink et al.,
2010). Traditional treatments for foot drop are characterized by
passive joint movements assisted by multiple therapists.
Treatment efficiency is heavily dependent on the skill and
experience of the therapist. As there is a critical time window
for the rehabilitation of post-stroke patients, the shortage of
experienced therapists with traditional rehabilitation treatments
makes it difficult for them to receive proper and timely treatment
(Leach et al., 2010; Song et al., 2016).

Functional electrical stimulation (FES) generates active joint
movements by stimulating the nerves or muscles through a series of
low-energy electrical impulses. FES has been used in the
rehabilitation of the upper (Chadwick et al., 2011; Cooman and
Kirsch, 2012) and lower limbs (Downey et al., 2013; Chen et al.,
2014; Aksöz et al., 2016), where it can be easily applied to produce
movement. However, its therapeutic effects remain controversial
(Hardin et al., 2007). Liberson (1961) first applied FES to assist the
gait of patients with hemiplegia. Subsequent studies investigated the
possibility of producing natural gait patterns using FES (O’Keeffe
et al., 2003; Sabut et al., 2010). O’Keeffe et al. demonstrated that the
dorsiflexion angle could be increased with less energy consumption
by applying FES patterns that resemble normal electromyography
(EMG) patterns during gait (O’Keeffe et al., 2003). In their study, the
FES patterns were simply mapped from the EMG profile during
normal gait, without considering the underlying mechanism that
relates FES to EMG.

Although a few attempts have been made to determine the direct
relationship between FES and EMG, it can be modeled indirectly
based on the results of other studies. Several studies have
investigated the relationship between EMG and joint torque
using musculoskeletal models and machine-learning techniques
(Shin et al., 2009; Gui et al., 2019; Kim et al., 2020). Ito et al.
(2007) proposed a linear model for FES and joint torques. In a
previous study, we developed a model associating EMG and FES by
combining the relationships between EMG and joint torque and
between joint torque and FES (Jung et al., 2021).

Recently, machine-learning techniques have been used in
various fields to make predictions and decisions based on
training data. Among these, deep neural networks (DNNs) have
demonstrated their effectiveness in handling highly nonlinear
problems. Several studies have applied DNN to develop
nonlinear models for estimating and predicting EMG signals
(Hahn, 2007; Kordjazi and Rahati, 2012; Li et al., 2016). Among
the various types of DNN structures, a one-dimensional
convolutional neural network (1D CNN) is known to exhibit
superior performance in capturing the features of dynamic time-
series data, such as EMG (Ordóñez and Roggen, 2016; Yang et al.,
2019; Jung et al., 2021).

Exoskeleton-type assistive devices have been widely used in gait
rehabilitation of post-stroke patients (Gordon and Ferris, 2007;
Shorter et al., 2011; Lv et al., 2016; Gil et al., 2018; Koller et al.,
2018). A powered ankle–foot orthosis (PAFO) is a wearable
exoskeleton that assists in the dorsiflexion and plantar flexion of
the ankle joint (Gordon and Ferris, 2007; Lv et al., 2016; Koller et al.,
2018). To ensure safety and backdrivability, many PAFO systems
use impedance control to modulate the joint stiffness while tracking
the desired joint motion (Emmens et al., 2018; Moltedo et al., 2018).
Impedance control allows the actuator to react adaptively to the
patient motion. The EMG signal of the patient can be used as an
input to the impedance controller to detect the motion intention and
state of the patient (Karavas et al., 2015; Huo et al., 2016; Alouane
et al., 2019).

Recent studies have begun to investigate combined systems of
FES and exoskeleton, which have both advantages and
disadvantages as actuation systems. FES devices are lightweight
and operate with a low power supply. However, the muscle force
generated by FES is highly variable and difficult to control because it
depends on the muscle condition. Although joint torque and motion
can be precisely controlled with actuators equipped in an exoskeletal
system, the heavy weight of the system makes it difficult for patients
to wear and operate it for a long time. Researchers have investigated
various control methods for hybrid systems of FES and exoskeletons
to track the desired joint movements (Durfee, 2006; Quintero et al.,
2010; Farris et al., 2011; Sharma et al., 2013; Ha et al., 2015; Chang
et al., 2017). Ha et al. (2015) proposed to control the profile for
muscle stimulation based on the difference between motor torque
andmuscle torque estimation tominimize the contribution of motor
in joint trajectory tracking. Chang et al. (2017) developed a hybrid
system for paraplegic patients utilizing a sensor-driven finite state
machine to determine gait phases for stepping. Sharma et al. (2013)
developed a gait simulation model of a hybrid system of FES and
knee-ankle foot orthosis (KAFO), and by using the simulation
model they proposed control parameters to optimize the gait
rehabilitation system.

A challenging issue in controlling hybrid systems is the
redundancy of actuation. Hybrid systems of the FES and
exoskeleton inevitably have more actuators (biological muscles
and artificial motors) than the degrees of freedom of the system.
Studies have attempted to resolve the redundancy problem by using
optimization methods to minimize the energy consumption of the
actuators (Alibeji et al., 2017; Kirsch et al., 2017). Other approaches
have utilized muscle synergy to reduce the dimensionality of
actuation control (Alibeji et al., 2015; Li et al., 2019). However,
these studies did not consider the volitional muscle activity of the
patient, which adds complexity to the actuation control.

EMG is conventionally used to measure the muscle activity.
Many studies have employed EMG to trigger and control the motion
of exoskeletons (Frigo et al., 2000; Del-Ama et al., 2014; Bong et al.,
2020; Yin et al., 2020). Del-Ama et al. (2014) proposed an EMG-
based control system that is capable of maintaining motion-tracking
performance by compensating for muscle fatigue. Yin et al. (2020)
proposed to control the gait speed of the exoskeleton based on gait
cycle duration extracted from surface EMG. When FES is applied in
conjunction with EMG measurements, its electrical signals induce
artifacts in the EMG signal. To extract the motion intention of the
patient, the volitional EMG signal must be acquired from the raw
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EMG data by using artifact removal filters (Frigo et al., 2000; Bong
et al., 2020). Recently, machine-learning techniques have been
introduced to estimate the volitional EMG and predict the
volitional joint torques generated by patients (Langzam et al.,
2006; Zhou et al., 2020). Because volitional EMG signals indicate
the patient’s involvement in joint motions, they can be used to
coordinate the amplitude of the FES without excessive electrical
stimulation of the muscles.

In this study, we developed a novel hybrid system of PAFO and
FES along with its coordination control for gait rehabilitation
according to the degree of volitional participation and stage of
motor recovery of patients with post-stroke hemiplegia. The
reference inputs supplied to the PAFO and FES were
predetermined based on the gait data of healthy individuals. The
PAFO was controlled to follow the reference joint angle and
impedance trajectories, which were determined from
biomechanical simulations. The reference input to the FES was
derived from the EMG data of multiple individuals walking on
a treadmill.

The CNN-based controller developed in this study coordinates
the contributions of the PAFO and FES to generate the joint torque,
which complements the torque generated by the volitional muscle
activity of the patient. The effectiveness of the system was evaluated
by using the data collected from individuals walking on a treadmill.
The results showed that the system has the potential to improve the
outcome of the rehabilitation program by inducing the active
participation of the individual and providing assist-as-needed
rehabilitation. By using the proposed system, the patient can be
actively involved in the rehabilitation exercises, which can be
conducted in an effective and timely manner depending on the
recovery phase.

The remainder of this paper is organized as follows. Section
2 introduces the PAFO and FES of the hybrid system and its control
methods. Section 3 presents a method for coordinating the
contributions of the PAFO and FES based on the volitional EMG
of the patient. Section 4 describes the experimental setup and results,

followed by a discussion of the results. Finally, Section 5 presents the
concluding remarks.

2 Hybrid system of PAFO and FES

FES and electrical motors provide effective assistance and
rehabilitation for stroke survivors. Recent studies have attempted
to integrate FES and motor-based orthoses to improve walking
owing to the synergy of the two systems. In this study, we developed
a hybrid PAFO and FES system for patients with hemiplegia, along
with its control algorithm. Figure 1 presents an overview of the
hybrid system. The developed system is composed of a PAFO
equipped with a motor and foot switches in addition to
electrodes for EMG and FES. An onboard controller was
implemented in the PAFO to coordinate the contributions of the
PAFO and FES in generating the joint torque.

2.1 PAFO control system based on
impedance control

Figure 2 illustrates the PAFO developed in this study. As shown
in the figure, it is composed of four parts: Part 1 is the upper part of
the system, which is fastened tightly to the shank and equipped with
a load cell. Part 2, the lower part of the system, has a rigid structure
that transmits the motor torque to the ankle. Part 3 contains a
brushless direct current (BLDC) motor (EC-max 40, Maxon Motor,
Switzerland) and is connected to Part 2. Part 4 has a ball nut and is
connected to Part 1. Parts 3 and 4 are connected with a ball screw.
The PAFO has three revolute joints (R1-3) and one prismatic joint
(P1), which allow ankle motion with one degree of freedom (DOF).
To actuate the ankle joint, the BLDCmotor generates a translational
force through the ball screw with a diameter of 10 mm and lead of
2 mm. This mechanism enables the maximum torque of 0.4 Nm/kg,
which can complement the joint torque generated by the muscles. A

FIGURE 1
System overview of the hybrid gait rehabilitation system. The intensity of FES and desired trajectories of PAFO are determined based on the real-time
estimation of the gait status and volitional torque.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Jung et al. 10.3389/fbioe.2023.1272693

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1272693


rotary encoder (AMT102-V, CUI Devices, United States) is placed
on the shaft of the motor to measure the prismatic displacement of
the ball screw. The interaction force between the shank and PAFO
was measured using a load cell (CBFS-30, BONGSHIN LOADCELL
Co., Ltd., Korea) embedded in Part 1. Four force-sensitive resistors
(FSRs) were placed on the shoe soles to detect the contact between
the heel, toe, and ground. The gait phase was estimated using
threshold-based detection of the contact information from the
FSRs. We modified an off-the-shelf ankle orthosis (Pacific
Supply, Japan) for use as the frame of the PAFO.

The 1-DOF joint motion of the PAFO was controlled based on
the kinematics and dynamics models illustrated in Figures 2C,D.
The angle θ at the ankle joint (R1) can be expressed as the following
kinematic equation using the parameters shown in Figure 2C.

θ � cos−1
l1
2 + l2

2 − l3
2

2l1l2
( ) + θP1

� cos−1
l1
2 + l2

2 − lscrew
2 − lR3

2

2l1l2
( ) + θP1 (1)

Here, l1, l2, and l3 denote the distances between joints R1-R2,
R1-R3, and R2-R3, respectively. l3 can be calculated from the
moment arm of the joint R3 (lR3) and the distance between the
ball nut and joint R2 (lscrew). θP1 is a fixed angle determined by the
structure of Part 1.

The dynamics model of the PAFO is described as follows:

I€θ � τA + τext + τg. (2)

Here, I denotes the moment of inertia of the PAFO, and τA, τext,
and τg denote the torques generated by the actuator, external force,
and gravity, respectively. The external torque τext is calculated by
using the interaction force between the shank and PAFO that is
measured by the load cell as follows:

τext � Fsensor · l1
· sin cos−1

l2
2 + l3

2 − l1
2

2l2l3
( ) + tan−1

lScrew
lR3

( ) − θP1( )
· cos cos−1

l1
2 + l3

2 − l2
2

2l1l3
( ) + tan−1

lR3
lScrew

( ) − π

2
( ) (3)

where Fsensor is the force measured by the load cell.

The control law to generate the actuator torque is as follows:

τA: � τc − τ̂g. (4)

where τc and τ̂g denote the torque generated by impedance control
and the torque compensation for gravity, respectively.

Figure 2D shows the desired stiffness kd and damping cd of the
impedance control to ensure soft contact of the PAFO with the rigid
ground. An impedance controller was implemented to generate the
torque as follows:

τc � − kde + cd _e( ) (5)
where e denotes the error between the measured joint angle θ and
reference joint angle θRef (e � θ − θRef). The reference joint
trajectory (θref(t)) and desired impedance (kd and cd) were
predetermined using the methods described in Sections 3.1 and
3.3, respectively.

2.2 FES control system based on 1D CNN
estimation model

The FES was controlled using an algorithm developed in our
previous study (Jung et al., 2021). A two-channel FES system
stimulates the tibialis anterior (TA) and soleus muscles for ankle
dorsiflexion and plantar flexion during walking. Figure 3 shows the
configuration of the control system. The control algorithm
computes the FES stimulation patterns corresponding to various
gait speeds. The gait phase and speed were derived from the contact
information of the FSRs attached to the heels and toes of the shoe
soles to determine the parameters for one gait cycle.

In this study, we followed four steps to reconstruct the EMG
profiles of the TA and soleus muscles adaptive to the walking speed:
1) acquisition of EMG data on the treadmill at walking speed
ranging from 1 to 5 km/h with six healthy individuals, 2)
construction of normalized profiles for five representative
walking speeds (1,2,3,4 and 5 km/h) during one gait cycle, 3)
formulation of equations via curve fitting of the five profiles
composed of trigonometric functions, 4) modulation of the
parameters (phase shift, period, and amplitude) of the
trigonometric function depending on the walking speed. Based

FIGURE 2
Schematic of 1-DOF PAFO. (A) 3D CAD model; (B) A person wearing the PAFO; (C) Kinematic diagram; (D) Dynamic modeling of ankle joint.
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on the gait speed, the resulting function produces reference EMG
patterns for the TA and soleus of one gait cycle in real-time.

A regression model based on a one-dimensional convolution
neural network (1D CNN) is used to obtain the reference ankle
torque from the two-channel reference EMG patterns as shown in
Figure 3. The architecture of the suggested model includes three
convolution layers, each followed by a pooling layer. The
convolution layers had a filter size of 128, while the pooling
layers had sizes of 6, 4, and 2. Each kernel in the CNN layer has
sizes of 13, 9, and 6, and processes the data with a stride of 1 using
rectified linear unit (ReLU) as the activation function. The output
data from the CNN layers is then resized by a flattened layer, and
transmitted to the MLP. A series of five MLPs is connected with
layer sizes of 129, 128, 128, 64, and 1. For the activation functions for
the first four MLPs, rectified linear unit (ReLU) are used, and for the
last MLP, hyperbolic tangent function (Tanh) is to reflect the data’s
nonlinearity. The regression model was trained using the Adam
optimizer, and the loss was calculated through mean squared error
(MSE). By monitoring the validation loss, the training was finished
after reaching a certain level of accuracy to avoid overfitting of
the model.

The neural network model was trained by using experimental
data acquired from isometric contraction tests of the ankle. From
six healthy subjects, EMG data from the TA and soleus along with
the ankle joint torque was measured, when external force was
applied in the plantar flexion (positive torque) and isometric
dorsiflexion (negative torque) directions. The collected data was
converted into time series data with two channels of EMG data
and one channel of joint torque data. The data was divided into
training, evaluation, and test datasets with a ratio of 6:2:2. The
trained 1D CNN model showed the root mean square error
(RMSE) of 4.97 and the peak accuracy of 91.17% by using the
test dataset. By giving the reference patterns as the input to the
1D CNN model, the corresponding ankle joint torque is
estimated to generate the gait motion in accordance with the
speed and phase of the gait. The intensity and duration of the FES
are then modulated based on the estimated joint torque and

personalized parameters of the patient, as described
in Section 3.3.

3 Coordination control of PAFO
and FES

This section presents a control method for coordinating the
contributions of the PAFO and FES to produce the ankle joint
torque. Figure 4 illustrates the control scheme for the PAFO and FES
hybrid system. Based on the gait phase and speed estimated from the
ground contact events, reference inputs acquired from
biomechanical model simulations were supplied to the PAFO and
FES controllers. The reference inputs to the FES control were
obtained from the EMG data recorded from healthy individuals
walking on a treadmill. To coordinate the contributions of the PAFO
and FES, the torque generated by the volitional muscle activity needs
to be considered. The volitional joint torque is estimated from the
volitional component of the EMG using a 1D CNN model (Jung
et al., 2021). The joint torque produced by the PAFO and FES
complements the torque generated by the volitional muscle activity.
Feedback control is used to correct the position error between the
actual joint angle and desired joint angle estimated from the
dynamics model of the PAFO described in Eq. 2.

3.1 Preparation of reference inputs to PAFO
and FES

A biomechanical simulation was performed to obtain the
reference inputs for the PAFO. The ankle movement during gait
was analyzed using a musculoskeletal model in the OpenSim
software (SimTK, Stanford, CA) (Delp et al., 2007). This software
was used to simulate the gait motion of a human model reflecting
increased weight and inertia by a PAFO (Jung et al., 2021). The
human musculoskeletal model was based on the 23-DOF Gait
2,354 model composed of the lower extremities and torso. To

FIGURE 3
Schematic view of FES control algorithm.
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account for the coupled dynamics with the human musculoskeletal
model, a multi-body dynamics model of the PAFO was added. By
kinematic and dynamic simulations, the reference joint angle and
torque were obtained to be used as control inputs to PAFO.

Figure 5 shows the simulation results for the human model
wearing the PAFO. Figures 5A,B show the reference angles (θref)
and torque at the R1 joint of the PAFO, respectively. The reference
joint stiffness kref is estimated by determining the slope of the
moment-angle curve constructed from Figures 5A,B (Kern et al.,
2019). As shown in Figure 5C, the stiffness curve exhibited two peaks

during the gait cycle. The peak at around 30% gait cycle indicates the
strong support of the ankle joint in the loading response, whereas the
other at around 50% gait cycle indicates the powerful propulsion of
the ankle joint.

The reference input to the FES was created based on the EMG
data collected from healthy individuals walking on a treadmill.
After averaging and normalizing the EMG data from the TA and
soleus, the envelopes of the EMG patterns were functionalized
using the parameters for various gait speeds. Figures 6A,B show
the reference inputs used to stimulate the TA and soleus,
respectively. Figure 6A shows the muscle activity in the soleus
for generating propulsion in the stance phase (20%–60% gait

FIGURE 4
Control scheme of hybrid system of PAFO and FES. Themain loop initializes the reference inputs using the gait phase and speed calculated from the
ground contact event. The FES, PAFO, and volitional torque generated by each sub-system are used to calculate the ratio of each sub-system. Finally, a
reduced output of PAFO and FES is generated depending on the volitional torque value.

FIGURE 5
Control inputs for PAFO. (A)Reference ankle angle; (B)Reference
joint torque; (C) Reference joint stiffness.

FIGURE 6
Control inputs to FES. (A) FES amplitude for TA; (B) FES amplitude
for soleus.
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cycle). Figure 6B shows the required muscle activities in the TA
from the swing phase (60%–100% gait cycle) to the heel strike
(0%–20% gait cycle).

3.2 Consideration of volitional
muscle activity

In FES control, the volitional muscle activity of the patient
should be considered to apply the correct amount of stimulation to
the muscle to generate the desired movement. The rehabilitation of
post-stroke hemiplegic lower limbs aims to improve the volitional
ability to activate the leg muscles. However, the active participation
of the patient in the rehabilitation is essential. Depending on the
patient’s stage of motor recovery, the amount of FES should be
controlled to complement the volitional muscle activity in
generating the desired movement. This prevents excessive muscle
stimulation and fatigue.

Volitional muscle activity can be measured using EMG by
filtering out artifacts that appear when FES and EMG are applied
to the same muscle. Several studies have suggested the use of
calculation-based filters to remove artifacts (Langzam et al., 2006;
Erez et al., 2010; Bong et al., 2020). These studies investigated
methods for suppressing large artifacts induced by FES. After
filtering out large FES artifacts, the M-waves are filtered to obtain
a pure volitional EMG.

In this study, we selected a series of filters to rectify the raw EMG
data because of its simplicity and effectiveness in real-time applications.
Figure 7 shows the three steps used to obtain the volitional EMG. First,
the blanking window removes the artifacts in each pulse of the FES,
which may overwhelm the M-wave. By eliminating the FES artifacts
using a blanking window, a mixture of volitional EMG and M-wave
EMG can be observed. Second, the comb filter computes the volitional
EMG using the following equation:

y ti( ) � (x ti( ) − x ti−1( ))/ �
2

√
, (6)

where x(ti) and x(ti−1) denote the M-waves from the current and
one-step previous FES pulses, respectively, and y(ti) denotes the
current volitional EMG. The final step yields the reconstructed
volitional EMG using a low-pass filter with a cut-off frequency of
2Hz to compensate for the discontinuity caused by the blanking
window used in the first step.

The extracted volitional EMG is then converted into volitional
joint torque using the EMG torque estimation model described
in Section 2.2.

Figure 8 shows the volitional EMG and volitional joint torque
estimated from the voluntary contraction of the TA and soleus
during dorsiflexion and plantarflexion. The ratio of the

FIGURE7
Filtering process to obtain volitional EMG.

FIGURE 8
Volitional EMG and torque obtained from the filtering process. (A)
Extracted volitional EMG; (B) Estimated volitional torque from
the EMG.
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contributions of the PAFO and FES is determined based on the
volitional joint torque.

3.3 Coordination of PAFO and FES

Figure 9 illustrates the control scheme used to coordinate the
contributions of the PAFO and FES in generating the joint torque. As
described in Section 3.1, the reference inputs to the PAFO and FESwere
the reference joint angle, stiffness, damping (θref, kref, cref), and
reference EMG pattern (EMGref). With the reference EMG input
EMGref, the reference joint torque τref was computed using the EMG
torque estimation model described in Section 2.2.

The relationship between the FES intensity and the
corresponding torque was assumed to be linear, as in the study
by Ito et al. (2007). Personalized parameters for the linear
relationships were determined using a simple FES sensitivity test
to determine the onset point and pain threshold of the TA and soleus
in each participant (Jung et al., 2021). The TA and soleus were
assumed to be activated without co-contraction during gait, and the
amplitudes of the FES supplied to the TA and soleus were
proportional to the negative and positive reference joint torques,
respectively (Ito et al., 2007).

After estimating the volitional torque τv from the extracted
volitional EMG, as described in Section 3.2, the FES intensities for
the TA and soleus (ATA, ASol) were determined as follows:

ATA � ATA,max − ATA,min( ) · τref − τv
τref,max

( )
−
+ ATA,min, (7)

ASol � ASol, max − Asol,min( ) · τref − τv
τref,max

( )
+
+ Asol, min, (8)

where the FES intensities ATA and ASol were controlled within the
personalized range betweenATA,max andATA,min and betweenASol,max

and Asol, min for the TA and soleus, respectively, to prevent excessive
application of stimulation. The term (τref − τv)/τref,max reflects the
ratio between the joint torques produced by the FES-induced and
volitional muscle activities. If the volitional torque exceeds the reference
torque (τv > τref), the FES controller generates the minimum required
amplitudes to generate the torque (ATA,min,ASol, min). If no volitional
torque is estimated (τv � 0), the FES controller generates amplitudes

that follow the same profile as the reference torque (τref). The negative
and positive signs in Eqs 7, 8 indicate that the torques generated by the
TA and soleus contribute to dorsiflexion (negative torque) and plantar
flexion (positive torque), respectively.

Using the reference torque τref and volitional torque τv, the
activation ratio rv between the volitional muscle activity and
reference muscle activation is determined as follows:

rv � max τref, τv( )
τv, max

, (9)

where τv,max is the maximum torque generated by the volitional muscle
activation. The ratio rv has a value between 0 and 1, where rv � 0
indicates that the PAFO solely contributes to the joint torque, and rv �
1 indicates the maximum contribution of the volitional muscle activity
to the joint torque. Equation 9 indicates the contribution of volitional
muscle activities for most healthy individuals and chronic patients for
whom volitional torque τv is greater than reference torque τref. For the
patient who is unable to produce muscle contraction on their own (τref
is greater than τv), however, rv is set to 0 so that the gait can be fully
assisted by PAFO and FES.

Using the activation ratio rv, the desired joint stiffness kd of the
PAFO is determined as follows:

kd � kmax · kref − rv × kref,max( )/kref,max + kmin . (10)

Here, kref,max denotes the maximum value of the reference
stiffness. The reference stiffness kref was predetermined as described
in Section 3.1. The minimum andmaximum stiffness values were set
between kmax and kmin to avoid excessive movement of the PAFO.
The desired damping cd is set by using the following equation:

cd � 2ζ
��
kd

√
, (11)

where ζ is the damping ratio.
As can be seen in Figure 4, the desired joint angle θd of the PAFO is

determined by using dynamics model described in Eqs 1––5, and its
parameters described in Eqs 10 and 11.

I€θd � − kde + cd _e( ) − τ̂g + τext + τg ≈ − kde + cd _e( ) + τext (12)

To follow the desired joint angle θd, a proportional derivative
controller is used as follows:

FIGURE 9
Sub-system for coordination control of ratio between torques generated by PAFO and FES.
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u � KPed +KD _ed, (13)
where ed denotes the error between the measured and desired angles
(ed � θ − θd), and u, KP, and KD represent the control signal,
proportional gain, and derivative gains, respectively. The
controller gains were empirically determined.

4 Experimental setups and results

4.1 Experimental devices and protocol

Experiments were conducted with healthy participants
walking on a treadmill to test the performance of the
developed system. Figure 10A shows the experimental setup
used to validate the developed hybrid system. Three healthy
males in their twenties and thirties participated in this study.
Prior to starting the experiment, the participants were fully
informed about the experimental procedure and informed
consent was obtained. All the experimental equipment and
procedures were approved by the Deliberation Committee
(KUIRB-2020-0277-01). The participants performed treadmill
gait in two experimental modes: the PF mode (PAFO and FES
without considering the volitional muscle activity of the patient)
and PFV mode (PAFO and FES considering the volitional muscle
activity of the patient). The participants were notified that they
could terminate the stimulation at any time through an
emergency switch if they experienced discomfort or any other
abnormality. The experiment was limited to 1 hour, and the three
participants began the experiments after they had sufficiently
adapted to treadmill walking at a speed of 1.8 km/h.

Before the experiments, the FES pain threshold and maximum
ankle torque of each participant were measured using simple
isometric contraction tests. Based on these personalized
parameters, the intensity of the FES and stiffness of the PAFO
were tuned according to the gait phase. Figure 10B shows the
placement of the EMG sensors and FES electrodes on a
participant. Two wireless EMG sensors and two FES electrodes
were attached to the shank skin. The EMG sensor for the TA was
placed on the belly of the muscle and the sensor for the soleus was
placed at the center of the muscle length located below the medial
gastrocnemius to avoid unwanted involvement of the calcaneal
tendon. After placement of the EMG and FES electrodes, the
participant wore the PAFO, which was set to the neutral position
of the ankle, and then put on the experimental shoes. For safety and
guidance for gait motion, the participant was secured with a harness
installed on the treadmill (Figure 10A). Considering safety during
the experiment, the participants were instructed to hold the
emergency stop switch to stop the test if needed.

After finishing the experiment, the participants were asked to
respond to 3-item Likert questions regarding naturalness of gait
motion, comfortableness of FES, and ease of muscle fatigue with the
PF and PFV modes (Q1) The gait motion felt natural. (Q2) The
electrical stimulation of FES felt comfortable without causing much
pain (Q3) The gait experiment did not cause much muscle fatigue. A
5-point Likert scale was used in the questionnaire: (1) strongly
disagree, (2) disagree, (3) neither agree or disagree, (4) agree, and (5)
strongly agree.

4.2 Experimental results

During the gait cycle, the ankle angle was measured to compare the
performances of the PF and PFVmodes of the hybrid system. The ankle
angle was calculated from the motor encoder data using the PAFO
kinematics. Figure 11 shows the angle trajectories of the three
participants during one gait cycle along with the error graphs. The
range ofmotion (ROM) varied between−10° and 15° for all participants,
with distinct patterns for the two modes. At approximately 15% gait
cycle, the negative peaks in the direction of the plantar flexion were
limited for both modes by providing sufficient dorsiflexion torque to
avoid foot-slap caused by premature contact of the sole of the foot with
the ground. For all participants, the maximum dorsiflexion at
approximately 45% gait cycle during the midstance was smaller in
the PFVmode than in the PFmode. In the PFVmode, dorsiflexion due
to excessive FES was avoided during midstance. At toe-off (65% gait
cycle), the PFV mode showed larger peaks in the direction of plantar
flexion, generating more powerful propulsion than the PF mode.
During the swing phase (80%–90% gait cycle), the PFV mode
showed larger dorsiflexion than the PF mode. Increased dorsiflexion
is advantageous in preventing foot drop and securing toe clearance
during the swing phase.

Figure 12 compares the four featured peaks of the ankle angle
trajectories at 15%, 45%, 65%, and 90% gait cycles, where the positive
and negative values indicate dorsiflexion and plantar flexion of the
ankle, respectively. As can be seen in the figure, there were statistically
significant differences between the two modes at 45% and 65% gait
cycles for all participants. However, at 15% and 90% gait cycles, the two
modes appeared to show no distinct differences.

To evaluate the effectiveness of gait assistance in the two modes,
the ankle joint power generated by the PAFO and FES was computed
by multiplying the torque and angular velocity at the ankle joint. The

FIGURE 10
Experimental setup for treadmill walking. (A) Participant in
position on the treadmill; (B) Placement of EMG sensors and FES
electrodes.
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joint torque generated by the PAFO was computed based on its
kinematics and control output, as described in Section 2.1, and the
volitional and FES-induced joint torques were estimated using the
1D CNN model described in Section 2.2. Figures 13A–E depict the
joint torque and power generated by the hybrid system, plotted
using the ensemble averages of the gait cycles. By considering
volitional muscle activities, the torque generated by motor and
FES (shown as (A), (B) in Figure 13), is lower with the PFV
mode than with the PF mode. In the PFV mode, the amplitude

of FES is significantly suppressed to its minimum during the stance
phase as the volitional muscle contraction becomes
dominant (Figure 13B).

In the PF mode, the total power is the sum of the powers
generated by the PAFO and FES. In the PFVmode, the total power is
the sum of the power generated by the PAFO, FES, and voluntary
muscle activities. The ankle joint powers in the PF and PFV modes
are plotted as dashed and solid lines, respectively. As shown in
Figure 13C, the total power generated in the PFV mode was higher

FIGURE 11
Ankle angle during treadmill gait. Black line and red line denote the PF and PFV modes, respectively.

FIGURE 12
Four featured peaks of the ankle angle trajectories (* denotes p-value under 0.05).
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than that in the PF mode for all participants. This is because the
power generated by the volitional muscle activity is included in the
total power generation in the PFV mode. However, the difference
between the PF and PFV modes was small. Figure 13D shows that
the PAFO generated less power in the PFV mode than in the PF
mode for all participants. Figure 13E shows that the FES generates

significantly lower power in the PFV mode than in the PF mode.
Figures 13D,E show that the differences between the two modes are
remarkable, particularly in the midstance phase (30%–60%
gait cycle).

Figure 14 shows a comparison of the ankle joint energy per gait
cycle for the two modes. The ankle joint energy was computed using

FIGURE 13
Ankle joint power of PF and PFV modes. (A) Torque generated by the PAFO; (B) Torque generated by the FES; (C) Total power generated by the
hybrid system; (D) Power generated by PAFO; (E) Power generated by FES (solid line: PFV mode, dash-dotted line: PF mode).
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the time integral of the ankle joint power during one gait cycle. As
shown in the figure, the total joint energy is higher in the PFV mode
than in the PF mode, whereas the difference between the two modes
is not statistically significant. The joint energies generated by the
PAFO and FES were significantly higher in the PF mode than in the
PFV mode. These results demonstrate that power consumption can
be greatly reduced using the PFV mode when compared with the PF
mode by taking advantage of the power generation by volitional
muscle activities.

Figure 15 compares the Likert responses of the participants
between the PF and PFV modes. The figure shows that there is no
difference between the PF and PFVmodes in terms of naturalness of
gait motion (Q1), with the exception of Participant 3. In terms of
comfortableness (Q2) and ease of muscle fatigue (Q3), however, the

score with the PFVmode is higher than that with the PFmode for all
the participants.

5 Concluding remarks

To validate the effectiveness of the developed system, we
compared the joint angles and power generation at the ankle
joint in two modes: PF mode (PAFO and FES without
considering the volitional muscle activity of the patient) and PFV
mode (PAFO and FES considering the volitional muscle activity of
the patient). Figure 11 and Figure 12 demonstrate the effectiveness
of the PFV mode in generating the ankle joint motion. Compared
with the PF mode, the PFV mode is capable of generating a more

FIGURE 14
Ankle joint energy of PF and PFV modes. (* denotes p-value under 0.05).

FIGURE 15
Comparison of Likert Scale Responses. (Q1) The gait motion felt natural. (Q2) The electrical stimulation of FES felt comfortable without causing
much pain. (Q3) The gait experiment did not cause much muscle fatigue.
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powerful thrust at toe-off and ensures better foot-to-ground
clearance during the swing phase. With the PFV mode, the range
of motion (ROM) in plantar flexion is improved to allow post-stroke
hemiplegic patients to stably control the walking speed by providing
sufficient forward propulsion at the final stage of stance phase. Also,
the PFV mode provides higher dorsiflexion during swing phase to
help avoid foot drop that is very common after stroke.

Figure 13 and Figure 14 show the advantages of the PFVmode in
generating torque and power at the ankle joint. The results
demonstrate that, in the PFV mode, the power generated by the
PAFO and FES can be significantly reduced while maintaining a
sufficient level of total power generation. The experimental results
show that in the PFV mode, the energy consumption by the PAFO
and FES can be significantly reduced while adaptively assisting ankle
motion depending on the volitional muscle activities of the patient.
The developed system has the potential to improve the outcome of
gait rehabilitation by inducing active patient participation
depending on the stage of rehabilitation.

The results of subjective evaluation between the PF and PFV
modes are demonstrated in Figure 15. While there is no significant
difference in terms of naturalness of gait motion, the PFV mode
received better rating than the PF mode in terms of comfortableness
and ease of muscle fatigue.

In this study, we developed a novel hybrid system of PAFO and FES
and proposed a coordination control method for the rehabilitation of
patients with chronic hemiplegia. The PAFO assists the ankle joint
motion based on the reference joint angle and impedance obtained
from the biomechanical simulation. Unlike previous studies on motion
optimization based on simulations of dynamic models of an
exoskeleton robot and FES (Sharma et al., 2013; Chen et al., 2014),
this study proposes the reference data obtained from the kinematic and
dynamic simulations of the rectified biomechanicalmodel. In this study,
EMG data from healthy human participants was used to produce a
natural simulation profile of FES. Based on the gait phase-based FSM
algorithms (Quintero et al., 2010; Chang et al., 2017), continuous FES
profiles can be provided for every step of the gait cycle. Also, the
amplitude and duration of the FES profile are adaptively adjusted
depending on the gait speed ranging from 1 to 5 km/h. A CNN-based
estimation model predicts the joint torque and volitional torque for the
coordination of the contributions of the PAFO and FES.

This study demonstrated the feasibility of the assist-as-needed
rehabilitation system. The experimental results show that the
coordination algorithm reduces energy consumption while
maintaining the assistive effects as in previous studies (Del-Ama
et al., 2014; Ha et al., 2015; Karavas et al., 2015). The results of this
study suggest the potential for patient-driven gait rehabilitation of
the developed system by considering the volitional movement and
avoiding inefficient motor and FES activation.

The developed system can be clinically applied depending on
the recovery stages of the post-stroke patient. In case the patient
can barely generate voluntary contractions (before the late
subacute phase, within 3 months of rehabilitation), the ankle
movement is generated only by PAFO and FES as in the PF mode.
In case the patient can generate sufficient volitional joint torque
above a certain threshold level (rehabilitation in late subacute
and chronic phase), the voluntary activity of the patient is
considered in controlling PAFO and FES as in the PFV mode.
This feature can encourage active participation of the patient in

the rehabilitation process, which is essential for stroke
rehabilitation.

Although this study focused on the assistance of anklemotion using
a hybrid rehabilitation system for treadmill gait, further research is
required to assist multi-DOF gait motion under various gait conditions.
We are currently developing a modified version of this hybrid system
using a knee-ankle-foot orthosis. In this study, we computed the
reference gait pattern by using biomechanical simulation-based
kinematic data, and we believe that the performance of the hybrid
system can be further improved by using synchronized kinematic and
EMG data collected from a large number of human subjects. In future
studies, we plan to investigate the long-term therapeutic effects of the
developed system on patients.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by KOREA
UNIVERSITY Institutional Review Board. The studies were
conducted in accordance with the local legislation and
institutional requirements. The participants provided their
written informed consent to participate in this study.

Author contributions

SJ: Conceptualization, Data curation, Funding acquisition,
Methodology, Resources, Software, Validation, Writing–original
draft, Writing–review and editing. SP: Conceptualization, Formal
Analysis, Funding acquisition, Project administration, Supervision,
Validation, Writing–review and editing. JB: Conceptualization,
Investigation, Methodology, Software, Validation, Writing–review
and editing. KK: Project administration, Supervision, Validation,
Visualization, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the National Research Foundation of Korea (NRF)
funded by the Ministry of Education (RS-2023-00208052). SJ
received funding from the Basic Science Research Program
through the National Research Foundation of Korea (NRF) and
the Ministry of Education (2021R1A6A3A0108672112).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Frontiers in Bioengineering and Biotechnology frontiersin.org13

Jung et al. 10.3389/fbioe.2023.1272693

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1272693


Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Aksöz, E. A., Laubacher, M., Binder-Macleod, S., and Hunt, K. J. (2016). Effect of
stochastic modulation of inter-pulse interval during stimulated isokinetic leg extension.
Eur. J. Transl. Myol. 26 (3), 6160. doi:10.4081/ejtm.2016.6160

Alibeji, N., Kirsch, N., and Sharma, N. (2017). An adaptive low-dimensional control
to compensate for actuator redundancy and FES-induced muscle fatigue in a hybrid
neuroprosthesis. Control Eng. Pract. 59, 204–219. doi:10.1016/j.conengprac.2016.07.015

Alibeji, N. A., Kirsch, N. A., and Sharma, N. (2015). A muscle synergy-inspired
adaptive control scheme for a hybrid walking neuroprosthesis. Front. Bioeng.
Biotechnol. 3, 203. doi:10.3389/fbioe.2015.00203

Alouane, M. A., Huo, W., Rifai, H., Amirat, Y., and Mohammed, S. (2019). Hybrid
FES-exoskeleton controller to assist sit-to-stand movement. IFAC-PapersOnLine 51
(34), 296–301. doi:10.1016/j.ifacol.2019.01.032

Bong, J. H., Jung, S., Park, N., Kim, S. J., and Park, S. (2020). Development of a novel
robotic rehabilitation system with muscle-to-muscle interface. Front. Neurorobot. 14, 3.
doi:10.3389/fnbot.2020.00003

Chadwick, E. K., Blana, D., Simeral, J. D., Lambrecht, J., Kim, S.-P., Cornwell, A. S.,
et al. (2011). Continuous neuronal ensemble control of simulated arm reaching by a
human with tetraplegia. J. Neural Eng. 8 (3), 034003. doi:10.1088/1741-2560/8/3/
034003

Chang, S. R., Nandor, M. J., Li, L., Kobetic, R., Foglyano, K. M., Schnellenberger, J. R.,
et al. (2017). A muscle-driven approach to restore stepping with an exoskeleton for
individuals with paraplegia. J. neuroengineering rehabilitation 14 (1), 48–12. doi:10.
1186/s12984-017-0258-6

Chen, Y., Hu, J., Peng, L., and Hou, Z. G. (2014). The FES-assisted control for a lower
limb rehabilitation robot: simulation and experiment. Robotics Biomimetics 1 (1), 2–20.
doi:10.1186/s40638-014-0002-7

Cooman, P., and Kirsch, R. F. (2012). “Control of a time-delayed 5 degrees of freedom
arm model for use in upper extremity functional electrical stimulation,” in Proceeding
of the 2012 Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, San Diego, CA, USA, 28 August 2012 - 01 September 2012 (IEEE),
322–324.

Del-Ama, A. J., Gil-Agudo, Á., Pons, J. L., andMoreno, J. C. (2014). Hybrid FES-robot
cooperative control of ambulatory gait rehabilitation exoskeleton. J. Neuroeng. Rehabil.
11 (1), 27–15. doi:10.1186/1743-0003-11-27

Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., et al. (2007).
OpenSim: open-source software to create and analyze dynamic simulations of
movement. IEEE Trans. Biomed. Eng. 54 (11), 1940–1950. doi:10.1109/tbme.2007.
901024

Downey, R. J., Cheng, T. H., and Dixon, W. E. (2013). “Tracking control of a human
limb during asynchronous neuromuscular electrical stimulation,” in Proceeding of the
52nd IEEE Conference on Decision and Control, Firenze, Italy, 10-13 December 2013
(IEEE), 139–144.

Durfee, W. K. (2006). “Gait restoration by functional electrical stimulation.” In
Climbing and walking robots (Heidelberg, Berlin: Springer) 19–26.

Emmens, A. R., Van Asseldonk, E. H., and Van Der Kooij, H. (2018). Effects of a
powered ankle-foot orthosis on perturbed standing balance. J. Neuroeng. Rehabil. 15 (1),
50–13. doi:10.1186/s12984-018-0393-8

Erez, Y., Tischler, H., Moran, A., and Bar-Gad, I. (2010). Generalized framework for
stimulus artifact removal. J. Neurosci. Meth. 191 (1), 45–59. doi:10.1016/j.jneumeth.
2010.06.005

Farris, R. J., Quintero, H. A., and Goldfarb, M. (2011). Preliminary evaluation of a
powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans.
Neural Syst. Rehabil. Eng. 19 (6), 652–659. doi:10.1109/tnsre.2011.2163083

Fernandes, M. R., Carvalho, L. B., and Prado, G. F. (2006). A functional electric
orthesis on the paretic leg improves quality of life of stroke patients. Arq.
Neuropsiquiatr. 64, 20–23. doi:10.1590/s0004-282x2006000100005

Frigo, C., Ferrarin, M., Frasson, W., Pavan, E., and Thorsen, R. (2000). EMG
signals detection and processing for on-line control of functional electrical
stimulation. J. Electromyogr. Kinesiol. 10 (5), 351–360. doi:10.1016/s1050-
6411(00)00026-2

Gil, J., Sánchez-Villamañán, M. C., Gómez, J., Ortiz, A., Pons, J. L., Moreno, J. C., et al.
(2018). “Design and implementation of a novel semi-active hybrid unilateral stance
control knee ankle foot orthosis,” in Proceeding of the 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 01-05 October
2018 (IEEE), 5163–5168.

Gordon, K. E., and Ferris, D. P. (2007). Learning to walk with a robotic ankle
exoskeleton. J. Biomech. 40 (12), 2636–2644. doi:10.1016/j.jbiomech.2006.12.006

Gui, K., Liu, H., and Zhang, D. (2019). A practical and adaptive method to achieve
EMG-based torque estimation for a robotic exoskeleton. IEEE/ASME Trans. Mechatron.
24 (2), 483–494. doi:10.1109/tmech.2019.2893055

Ha, K. H., Murray, S. A., and Goldfarb, M. (2015). An approach for the cooperative
control of FES with a powered exoskeleton during level walking for persons with
paraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 24 (4), 455–466. doi:10.1109/tnsre.
2015.2421052

Hahn, M. E. (2007). Feasibility of estimating isokinetic knee torque using a neural
network model. J. Biomech. 40 (5), 1107–1114. doi:10.1016/j.jbiomech.2006.04.014

Hardin, E., Kobetic, R., Murray, L., Corado-Ahmed, M., Pinault, G., Sakai, J., et al.
(2007). Walking after incomplete spinal cord injury using an implanted FES system: a
case report. J. Rehabil. Res. Dev. 44 (3), 333–346. doi:10.1682/jrrd.2007.03.0333

Huo,W., Mohammed, S., Amirat, Y., and Kong, K. (2016). “Active impedance control
of a lower limb exoskeleton to assist sit-to-stand movement,” in Proceeding of the
2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm,
16-21 May 2016 (IEEE), 3530–3536.

Ito, K., Shioyama, T., and Kondo, T. (2007). “Lower-limb joint torque and position
controls by functional electrical stimulation (FES),” in Complex medical engineering
(Tokyo: Springer), 239–249.

Jung, S. (2021). Hybrid control of FES and PAFO for gait rehabilitation using DNN-
based reconstruction algorithm of natural gait. Doctoral dissertation. Republic of Korea:
Korea University.

Jung, S., Bong, J. H., Kim, S. J., and Park, S. (2021). DNN-based FES control for gait
rehabilitation of hemiplegic patients. Appl. Sci. 11 (7), 3163. doi:10.3390/app11073163

Karavas, N., Ajoudani, A., Tsagarakis, N., Saglia, J., Bicchi, A., and Caldwell, D.
(2015). Tele-impedance based assistive control for a compliant knee exoskeleton. Rob.
Auton. Syst. 73, 78–90. doi:10.1016/j.robot.2014.09.027

Kern, A. M., Papachatzis, N., Patterson, J. M., Bruening, D. A., and Takahashi, K. Z.
(2019). Ankle and midtarsal joint quasi-stiffness during walking with added mass. PeerJ
7, e7487. doi:10.7717/peerj.7487

Kim, H., Park, H., Lee, S., and Kim, D. (2020). Joint torque estimation using sEMG
and deep neural network. J. Electr. Eng. Technol. 15, 2287–2298. doi:10.1007/s42835-
020-00475-w

Kirsch, N., Alibeji, N., and Sharma, N. (2017). Nonlinear model predictive control of
functional electrical stimulation. Control Eng. Pract. 58, 319–331. doi:10.1016/j.
conengprac.2016.03.005

Koller, J. R., Remy, C. D., and Ferris, D. P. (2018). Biomechanics and energetics of
walking in powered ankle exoskeletons using myoelectric control versus mechanically
intrinsic control. J. Neuroeng. Rehabil. 15 (1), 42–14. doi:10.1186/s12984-018-0379-6

Kordjazi, N., and Rahati, S. (2012). “Gait recognition for human identification using
ensemble of LVQ neural networks,” in Proceeding of the 2012 International Conference
on Biomedical Engineering (ICoBE), Penang, Malaysia, 27-28 February 2012 (IEEE),
180–185.

Kottink, A. I., Ijzerman, M. J., Groothuis-Oudshoorn, C. G., and Hermens, H. J.
(2010). Measuring quality of life in stroke subjects receiving an implanted neural
prosthesis for drop foot. Artif. Organs 34 (5), 366–376. doi:10.1111/j.1525-1594.2009.
00879.x

Langzam, E., Isakov, E., and Mizrahi, J. (2006). Evaluation of methods for extraction
of the volitional EMG in dynamic hybrid muscle activation. J. Neuroeng. Rehabil. 3,
27–11. doi:10.1186/1743-0003-3-27

Leach, E., Cornwell, P., Fleming, J., and Haines, T. (2010). Patient centered goal-
setting in a subacute rehabilitation setting. Disabil. Rehabil. 32 (2), 159–172. doi:10.
3109/09638280903036605

Li, Z., Guiraud, D., Andreu, D., Benoussaad, M., Fattal, C., and Hayashibe, M. (2016).
Real-time estimation of FES-induced joint torque with evoked EMG. J. Neuroeng.
Rehabil. 13 (1), 60–11. doi:10.1186/s12984-016-0169-y

Li, Z., Liu, H., Yin, Z., and Chen, K. (2019). Muscle synergy alteration of human
during walking with lower limb exoskeleton. Front. Neurosci. 12, 1050. doi:10.3389/
fnins.2018.01050

Liberson, W. T., Holmquest, H. J., Scot, D., and Dow, M. (1961). Functional
electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase
of the gait of hemiplegic patients. Arch. Phys. Med. Rehabil. 42, 101–105.

Frontiers in Bioengineering and Biotechnology frontiersin.org14

Jung et al. 10.3389/fbioe.2023.1272693

https://doi.org/10.4081/ejtm.2016.6160
https://doi.org/10.1016/j.conengprac.2016.07.015
https://doi.org/10.3389/fbioe.2015.00203
https://doi.org/10.1016/j.ifacol.2019.01.032
https://doi.org/10.3389/fnbot.2020.00003
https://doi.org/10.1088/1741-2560/8/3/034003
https://doi.org/10.1088/1741-2560/8/3/034003
https://doi.org/10.1186/s12984-017-0258-6
https://doi.org/10.1186/s12984-017-0258-6
https://doi.org/10.1186/s40638-014-0002-7
https://doi.org/10.1186/1743-0003-11-27
https://doi.org/10.1109/tbme.2007.901024
https://doi.org/10.1109/tbme.2007.901024
https://doi.org/10.1186/s12984-018-0393-8
https://doi.org/10.1016/j.jneumeth.2010.06.005
https://doi.org/10.1016/j.jneumeth.2010.06.005
https://doi.org/10.1109/tnsre.2011.2163083
https://doi.org/10.1590/s0004-282x2006000100005
https://doi.org/10.1016/s1050-6411(00)00026-2
https://doi.org/10.1016/s1050-6411(00)00026-2
https://doi.org/10.1016/j.jbiomech.2006.12.006
https://doi.org/10.1109/tmech.2019.2893055
https://doi.org/10.1109/tnsre.2015.2421052
https://doi.org/10.1109/tnsre.2015.2421052
https://doi.org/10.1016/j.jbiomech.2006.04.014
https://doi.org/10.1682/jrrd.2007.03.0333
https://doi.org/10.3390/app11073163
https://doi.org/10.1016/j.robot.2014.09.027
https://doi.org/10.7717/peerj.7487
https://doi.org/10.1007/s42835-020-00475-w
https://doi.org/10.1007/s42835-020-00475-w
https://doi.org/10.1016/j.conengprac.2016.03.005
https://doi.org/10.1016/j.conengprac.2016.03.005
https://doi.org/10.1186/s12984-018-0379-6
https://doi.org/10.1111/j.1525-1594.2009.00879.x
https://doi.org/10.1111/j.1525-1594.2009.00879.x
https://doi.org/10.1186/1743-0003-3-27
https://doi.org/10.3109/09638280903036605
https://doi.org/10.3109/09638280903036605
https://doi.org/10.1186/s12984-016-0169-y
https://doi.org/10.3389/fnins.2018.01050
https://doi.org/10.3389/fnins.2018.01050
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1272693


Lv, G., Zhu, H., Elery, T., Li, L., and Gregg, R. D. (2016). “Experimental
implementation of underactuated potential energy shaping on a powered ankle-
foot orthosis,” in Proceeding of the 2016 IEEE International Conference on
Robotics and Automation (ICRA), Stockholm, Sweden, 16-21 May 2016 (IEEE),
3493–3500.

Moltedo, M., Baček, T., Verstraten, T., Rodriguez-Guerrero, C., Vanderborght, B., and
Lefeber, D. (2018). Powered ankle-foot orthoses: the effects of the assistance on healthy
and impaired users while walking. J. Neuroeng. Rehabil. 15 (1), 86–25. doi:10.1186/
s12984-018-0424-5

O’Keeffe, D. T., Donnelly, A. E., and Lyons, G. M. (2003). The development of a
potential optimized stimulation intensity envelope for drop foot applications. IEEE
Trans. Neural Syst. Rehabil. Eng. 11 (3), 249–256. doi:10.1109/tnsre.2003.817678

Ordóñez, F. J., and Roggen, D. (2016). Deep convolutional and LSTM recurrent
neural networks for multimodal wearable activity recognition. Sensors 16 (1), 115.
doi:10.3390/s16010115

Quintero, H. A., Farris, R. J., Durfee, W. K., and Goldfarb, M. (2010). “Feasibility of a
hybrid-FES system for gait restoration in paraplegics,” in Proceeding of the 2010 Annual
International Conference of the IEEE Engineering in Medicine and Biology (IEEE),
483–486.

Sabut, S. K., Sikdar, C., Mondal, R., Kumar, R., and Mahadevappa, M. (2010).
Restoration of gait and motor recovery by functional electrical stimulation therapy
in persons with stroke. Disabil. Rehabil. 32 (19), 1594–1603. doi:10.3109/
09638281003599596

Sharma, N., Mushahwar, V., and Stein, R. (2013). Dynamic optimization of FES and
orthosis-based walking using simple models. IEEE Trans. Neural Syst. Rehabil. Eng. 22
(1), 114–126. doi:10.1109/tnsre.2013.2280520

Shin, D., Kim, J., and Koike, Y. (2009). A myokinetic arm model for estimating joint
torque and stiffness from EMG signals during maintained posture. J. Neurophysiol. 101
(1), 387–401. doi:10.1152/jn.00584.2007

Shorter, K. A., Xia, J., Hsiao-Wecksler, E. T., Durfee, W. K., and Kogler, G. F. (2011).
Technologies for powered ankle-foot orthotic systems: possibilities and challenges.
IEEE/ASME Trans. Mechatron. 18 (1), 337–347. doi:10.1109/tmech.2011.2174799

Song, A., Wu, C., Ni, D., Li, H., and Qin, H. (2016). One-therapist to three-patient
telerehabilitation robot system for the upper limb after stroke. Int. J. Soc. Robot. 8,
319–329. doi:10.1007/s12369-016-0343-1

Yang, W., Yang, D., Liu, Y., and Liu, H. (2019). Decoding simultaneous multi-DOF
wrist movements from raw EMG signals using a convolutional neural network. IEEE
Trans. Human-Machine Syst. 49 (5), 411–420. doi:10.1109/thms.2019.2925191

Yin, G., Zhang, X., Chen, D., Li, H., Chen, J., Chen, C., et al. (2020). Processing surface
EMG signals for exoskeleton motion control. Front. Neurorobotics 14, 40. doi:10.3389/
fnbot.2020.00040

Zhou, Y., Bi, Z., Ji, M., Chen, S., Wang, W., Wang, K., et al. (2020). A data-driven
volitional EMG extraction algorithm during functional electrical stimulation with time
variant parameters. IEEE Trans. Neural Syst. Rehabil. Eng. 28 (5), 1069–1080. doi:10.
1109/tnsre.2020.2980294

Frontiers in Bioengineering and Biotechnology frontiersin.org15

Jung et al. 10.3389/fbioe.2023.1272693

https://doi.org/10.1186/s12984-018-0424-5
https://doi.org/10.1186/s12984-018-0424-5
https://doi.org/10.1109/tnsre.2003.817678
https://doi.org/10.3390/s16010115
https://doi.org/10.3109/09638281003599596
https://doi.org/10.3109/09638281003599596
https://doi.org/10.1109/tnsre.2013.2280520
https://doi.org/10.1152/jn.00584.2007
https://doi.org/10.1109/tmech.2011.2174799
https://doi.org/10.1007/s12369-016-0343-1
https://doi.org/10.1109/thms.2019.2925191
https://doi.org/10.3389/fnbot.2020.00040
https://doi.org/10.3389/fnbot.2020.00040
https://doi.org/10.1109/tnsre.2020.2980294
https://doi.org/10.1109/tnsre.2020.2980294
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1272693

	Machine-learning-based coordination of powered ankle–foot orthosis and functional electrical stimulation for gait control
	1 Introduction
	2 Hybrid system of PAFO and FES
	2.1 PAFO control system based on impedance control
	2.2 FES control system based on 1D CNN estimation model

	3 Coordination control of PAFO and FES
	3.1 Preparation of reference inputs to PAFO and FES
	3.2 Consideration of volitional muscle activity
	3.3 Coordination of PAFO and FES

	4 Experimental setups and results
	4.1 Experimental devices and protocol
	4.2 Experimental results

	5 Concluding remarks
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


