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Objective: To build a three-dimensional (3D) deep learning-based computer-
aided diagnosis (CAD) system and investigate its applicability for automatic
detection of anterior cruciate ligament (ACL) of the knee joint in magnetic
resonance imaging (MRI).

Methods: In this study, we develop a 3Dweightedmulti-view convolutional neural
network by fusing different views of MRI to detect ACL. The network is evaluated
on two MRI datasets, the in-house MRI-ACL dataset and the publicly available
MRNet-v1.0 dataset. In the MRI-ACL dataset, the retrospective study collects
100 cases, and four views per patient are included. There are 50 ACL patients and
50 normal patients, respectively. The MRNet-v1.0 dataset contains 1,250 cases
with three views, of which 208 are ACL patients, and the rest are normal or other
abnormal patients.

Results: The area under the receiver operating characteristic curve (AUC) of the
ACL diagnosis system is 97.00% and 92.86% at the optimal threshold for the MRI-
ACL dataset and the MRNet-v1.0 dataset, respectively, indicating a high overall
diagnostic accuracy. In comparison, the best AUC of the single-view diagnosis
methods are 96.00% (MRI-ACL dataset) and 91.78% (MRNet-v1.0 dataset), and our
method improves by about 1.00% and 1.08%. Furthermore, our method also
improves by about 1.00% (MRI-ACL dataset) and 0.28% (MRNet-v1.0 dataset)
compared with the multi-view network (i.e., MRNet).

Conclusion: The presented 3D weighted multi-view network achieves superior
AUC in diagnosing ACL, not only in the in-house MRI-ACL dataset but also in the
publicly available MRNet-v1.0 dataset, which demonstrates its clinical applicability
for the automatic detection of ACL.
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1 Introduction

The anterior cruciate ligament (ACL) is an autologous tissue
structure with a large number of nerves and blood vessels that
maintain the function of the knee (Gianotti et al., 2009; Bram et al.,
2021). ACL tears are often caused by inappropriate exercise habits
(Bourne et al., 2019; Montalvo et al., 2019; Grassi et al., 2020). ACL
tears lead to decreased meniscus motility and degeneration and may
increase the risk of an inflammatory response (Musahl and Karlsson,
2019; Fleming et al., 2022). Patients with severe ACL tears are even
unable to walk and require replacement surgery to repair the knee
joint (Ariel de Lima et al., 2021). Therefore, building an effective
ACL computer-aided diagnosis (CAD) system and achieving timely
and accurate clinical examination and diagnosis play an important
role in the follow-up treatment and rehabilitation of patients.

Magnetic resonance imaging (MRI) has the advantages of high soft
tissue resolution, multi-directional imaging, no radiation, and no pain
(Zhao et al., 2020). MRI can clearly show the injury in various parts of
the knee joint, thus helping clinicians to make diagnoses and
treatments. Therefore, MRI is a widely accepted and used imaging
technique for diagnosing ACL tears. However, radiologists need to
spend a lot of time readingMRI scan slice by slice during the diagnostic
process, which is prone to missed and false detections. Meanwhile, it
may still be challenging for inexperienced radiologists to make an
accurate diagnosis. Therefore, it is crucial to build a diagnostic system
to assist physicians in achieving good pre-clinical prediction. The
purpose of this study is to demonstrate the applicability of a fully
automated diagnostic system to detect ACL tears.

In recent years, deep learning techniques have been well
explored in medical image analysis, such as reading chest
radiographs (Rajpurkar et al., 2018), chest CT (Xu et al., 2023)
and brain MRI (Çinar and Yildirim, 2020). The advantage of deep
learning lies in its ability to automatically learn sufficient semantic
information from a large of samples to achieve classification,
detection, and other tasks (Fourcade and Khonsari, 2019; Budd
et al., 2021). Given the potential of deep learning, there is growing
interest in applying it to the field of knee joint ACL diagnosis (Liu
et al., 2019; Astuto et al., 2021; Jeon et al., 2021). However, there are
some unique challenges with deep learning for MRI detection. First,
it may be difficult to assess abnormalities on two-dimensional (2D)
slices because the three-dimensional (3D) orientation of the
ligament fibers is an important consideration when making a
diagnosis. Second, single-view images may not fully reveal the
overall morphology and features of the ACL. Finally, slight ACL
tears may only occur in a small fraction of the entire 3D MRI
volume. In response to these challenges, we build a 3D multi-view
convolutional neural network-based diagnosis system and
investigate its applicability for the automatic detection of ACL in
the knee joint at MRI.

2 Materials and methods

2.1 Datasets

To demonstrate the applicability of our presented system for
ACL diagnosis, we evaluate the system on two MRI datasets, one is
the in-houseMRI-ACL dataset and the other is the publicly available

MRNet-v1.0 dataset1 (Bien et al., 2018). The type, the total number,
the number of views and ACL patients, and the division of training
and test sets for each dataset are summarized in Table 1. The details
of the two datasets are as follows:

2.1.1 MRI-ACL
Knee joint MRI cases are collected from a general hospital in

Ningbo, China, from January 2021 to December 2021. The study is
approved by the Ethics Committee of Ningbo No. 2 Hospital. All
protected patient health information in the DICOM header is
eliminated by data masking approaches, including patient name,
institution ID, and referring physician name. We collect four MRI
views for each case, namely, T1-sagittal, T2-sagittal, T2-coronal, and
T2-transverse. The size of each slice is 512 × 512 and the number of
slices ranges from 15 − 20. We divide all patients into ACL tears and
normal according to the actual requirements of the hospital and
MRNet-v1.0 (Bien et al., 2018). The distinguishing criterion is
whether the patient has an ACL tear in the knee joint. To
annotate the lesion as accurately as possible, a radiologist first
annotates the MRI based on the annotation criterion and his
experience. Then, the above annotations must be calibrated by a
chief physician. We collect a total of 100 cases without patient overlap
and four views per patient. We randomly select 70 cases for training,
10 cases for validation, and the remaining 20 cases as the test set.

2.1.2 MRNet-v1.0
The dataset contains 1,370 knee MRI examinations that are

released by Stanford University between January 2001 and
December 2012, of which 120 samples are not available. The
MRNet-v1.0 dataset is the largest publicly available annotated knee
MRI dataset. All samples in the dataset contain three MRI views,
sagittal plane T2-weighted series, coronal plane T1-weighted series,
and axial plane PD-weighted series (Bien et al., 2018). The size of each
image is 256 × 256 and the number of slices ranges between 17 − 61.
Each case is labeled according to whether the patient has suffered an
ACL tear, meniscal tear, or other knee joint abnormality. It should be
noted that each examinationmay containmultiple labels, for example,
if a case is labeled as positive for abnormality andACL tear, it indicates
that there are other forms of abnormality besides ACL tear. More
details on the data can be found in the original paper. In our study,
only ACL tears are considered as positive samples and other abnormal
or normal patients are considered as negative samples. We train and
test our presented model using the publicly available training set
(1,130 scans) and test set (120 scans) with no patient overlaps, and the
split refers to previous work (Unnikrishnan et al., 2021; Azcona et al.,
2020). Meanwhile, of the 1,130 scans available for training, we
randomly sample 20% as the validation set.

2.2 Method overview

As shown in Figure 1, our system is based on a multi-view CNN to
achieve ACL diagnosis by fusing features from differentMRI views. The
detailed architecture of the 3D CNN consists of residual-connected

1 https://stanfordmlgroup.github.io/competitions/mrnet/
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convolutional layers, pooling layers, activation function, and fully
connected layer, as shown in Figure 2. Overall, our system consists
of a feature extraction module, a feature weighted fusion module, and a
lesion diagnosis module. The feature extraction module automatically
maps the original knee joint MRI scans into features containing
semantic information. The feature weighted fusion module weights
and fuses all features according to the proportion of information
provided by each view. The lesion diagnosis module maps the fused
features to a final diagnostic score by a supervised classifier. We provide
details of these modules in the following sections.

2.3 Feature extraction

The feature extraction module is a 3D CNN without fully
connected layers for extracting MRI representations, as shown in
Figure 1A. In our framework, all views share the weights of the
model, and the advantages of shared weights are as follows: 1)
Improving the training speed and efficiency, especially for 3D

networks with more parameters and memory; 2) Improving the
generalization ability of the model; 3) Improving interpretability,
as it can learn complementary information from different views;
4) Reducing heterogeneity among different views.

Given a 3D MRI view v ∈ RD×H××W, where D, H, W represent
the depth (number of slices), height, and width. We extract features
by using residual blocks in the module, which is mathematically
formulated as follows:

z � F v, Wi{ }( ) + v, (1)
where v and z are the input and output vectors of a residual block.
The function F(x, {Wi}) represents the residual mapping. If the
residual block has two layers, F � W2σ(W1x), where σ denotes
ReLU activation function (Nair and Hinton, 2010). Finally, we can
formulate the feature extraction process after all residual blocks as

h � f x( ), (2)
where f and h represent the feature extraction network (the stacked
of all residual blocks) and learned view feature, respectively.

TABLE 1 Statistics of the in-house MRI-ACL dataset and the publicly available MRNet-v1.0 dataset.

Dataset Type Total number View ACL number Number (train, test)

MRI-ACL in-house 100 4 50 (80, 20)

MRNet-v1.0 public 1,250 3 208 (1,130, 120)

FIGURE 1
Overview of the fully automated deep learning-based ACL diagnosis system. The proposed system consists of three independent modules. (A) The
feature extraction module is used to automatically extract features from the input image. (B) The feature weighted fusionmodule is used to combine the
features of different views in a weightedmanner. (C) The lesion classifier module is to identify the ACL from all patients. Green, yellow, and blue represent
the different MRI views, and orange indicates the combined feature or the classifier.
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2.4 Feature weighted fusion

We simultaneously forward all MRI views of the same patient
through a feature extraction encoder with shared weights to obtain
their individual representations. To obtain the overall characteristic
of the knee joint, we further employ a weighting mechanism to fuse
these individual representations and map them into the same
embedding space, as shown in Figure 1B. The purpose of this
step is to embed the representations of all views into the same
embedding space and reduce the gap between views. Suppose there
are three views in an MRI sequence, namely, v = {v1, v2, v3}.
Therefore, we can obtain the individual features h = {h1, h2, h3}
after feature extraction module. To get the weight of each view, we
first feed the features of all views separately into a multi-layer
perceptron (MLP), thus, the MLP will output three weight values.
Next, we apply a softmax function to normalize these weights.
Finally, the representations of each view are weighted and
concatenated to form a unified visual feature.

2.5 ACL diagnosis

We can regard the final lesion diagnosis task as a binary
classification task, i.e., separating ACL patients from all patients.
Therefore, we use a binary classifier to map the fused representations
to the final diagnostic score, as shown in Figure 1C. The classifier is
based on a two-layer MLP. Assuming that there are n views and the

feature dimension of each view obtained by the feature extraction
module is 512, and the dimension of the concatenated feature is
n × 512. The first layer of the MLP maps the feature to the dimension
of 512, and the second layer will output the binary classification result.

During the training process, we use the cross-entropy loss to
measure the training effect of the model. The cross-entropy loss
formula is as in Eq. 3.

Ly,ŷ � − ylogŷ + 1 − y( )log 1 − ŷ( )[ ], (3)
where y is the ground truth, y = 1 if a patient suffers from an ACL
tear, otherwise y = 0. The ŷ represents the prediction of the model.

2.6 Implementation details

In this study, we use 3D CNN (He et al., 2016) as the baselines
for all experiments. We describe the architecture and details of
3D CNN in Figure 2. The method is trained using an Adam
optimizer. Meanwhile, we train the model for 100 epochs with an
initial learning rate of 0.0001 and a batch size of 32. The
momentum and weight decay coefficient are set to 0.9 and
0.0001, respectively. Throughout the training phase, the model
that achieves the best performance on the validation set is used
for the evaluation. We implement our method with PyTorch
using NVIDIA Tesla A100 40 GB GPUs. We use the area under
the receiver operating characteristic curve (AUC) to evaluate all
methods.

FIGURE 2
The CNN is built by using the listed layers from the top to the bottom. Specifically, BN3D, 3D batch normalization; Conv3D, 3D convolution; FC, fully
connected layer; AdaptiveAvgPool3D, 3D adaptive average pooling; MaxPool3D, 3D maximum pooling; ReLU, rectified linear activation.
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3 Results and experiments

3.1 Comparison with existing methods

In this section, we compare the diagnosis performance of our
presented system with several existing methods on the in-house MRI-
ACL dataset and the publicly available MRNet-v1.0 dataset, as shown
in Table 2. We divide the existing methods into two categories, one is
single-viewmethods and the other is multi-viewmethods. The former
uses only one view to train and evaluate the model, represented by the
method of training 3D VGG16 (Simonyan and Zisserman, 2014) and
3D ResNet-10 (He et al., 2016) from scratch, respectively. The latter
achieves ACL diagnosis by fusing different views, including MVCNN
(Su et al., 2015) and MRNet (Bien et al., 2018). To perform a fair
comparison, we use the same initial learning rate and image size as our
model for all the above models. The AUC is used to evaluate the
performance of ACL diagnosis comprehensively. As can be seen from
Table 2, our system outperforms 3D VGG16, 3D ResNet-10,
MVCNN, and MRNet on the MRI-ACL dataset by 3.00%, 1.00%,
2.00%, and 1.00%, respectively. Our system also achieves the best
AUC of 92.86% on the MRNet-v1.0 dataset, which exceeds 3D
VGG16, ResNet-10, MVCNN, and MRNet by 2.61%, 1.08%,

0.92%, and 0.28%, respectively. The results show that our method
outperforms existing single-view and multi-view classification models
and can solve the ACL diagnosis task well.

3.2 Ablation for view number

We further conduct ablation experiments on the MRI-ACL dataset
and MRNet-v1.0 dataset to evaluate the effectiveness of the presented
system with different numbers of views, as shown in Figure 3 and
Figure 4, respectively. If we only use one view, the best AUC is 96.00%,
which is 1.00% lower than the system based on four views on the MRI-
ACL dataset. Meanwhile, the system achieves the best AUC of 91.78%
using a single view, which is 1.08% lower than the system using three
views on the MRNet-v1.0 dataset. From Figures 3, 4, It can be seen that
the AUC improves as the number of views increases. Therefore, we can
observe that multiple views contribute positively to ACL diagnosis.

3.3 Ablation for fusion

To demonstrate the effectiveness of the fusion approach, we
compare two typical fusion approaches, including label fusion
(contains a class average method and a class probability weighting
method) and feature fusion (i.e., feature concatenation and our
presented method), as shown in Figure 5. The label fusion occurs on
the prediction results, which are calculated by averaging or weighted
average over all the results. Feature fusion happens at the representation
generation stage. First, each view generates its own representation
through the backbone. Later, these representations are concatenated
or weighted concatenated into the embedding space. The concatenated
representation is fed into a classifier to obtain the final ACL diagnosis
scores. From Figure 5, We can observe three aspects: 1) Compared with
the two fusionmethods, the result of the feature fusion is better than label

TABLE 2 Comparison with existing methods on MRI-ACL and MRNet-
v1.0 datasets.

Methods MRI-ACL MRNet-v1.0

3D VGG16 Simonyan and Zisserman, (2014) 94.00 90.25

3D ResNet-10 He et al, (2016) 96.00 91.78

MVCNN Su et al, (2015) 95.00 91.94

MRNet Bien et al. (2018) 96.00 92.58

Ours 97.00 92.86

FIGURE 3
Ablation for the number of views on MRI-ACL dataset.
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fusion; 2) The weighted fusion is better than the direct fusionmethod; 3)
Ourmethod achieves the best results with anAUCof 97.00% (MRI-ACL
dataset) and 92.86% (MRNet-v1.0 dataset), respectively.

4 Discussion

In this study, we build a knee joint ACL diagnosis system based
on a 3D multi-view convolutional neural network, which provides a
fully automated model for completing knee joint assessment based
on multiple views of MRI. We also demonstrate the applicability of
ACL automatic detection in the knee joint. The experimental results
show that the high AUC of the presented ACL diagnosis system can
assist radiologists in reading images to improve diagnostic accuracy
and reliability. ACL tears are prevalent worldwide, especially with

increased incidence due to sports injuries or aging. Our system is
able to provide patients with a timely and accurate diagnosis of ACL.
Accurate diagnosis of ACL is the key to treatment and rehabilitation.
Therefore, this study has important clinical significance.

There are several systems based on deep learning to help
radiologists detect and analyze specific tissue lesions with good
performance and applications, such as chest radiograph detection
(Rajpurkar et al., 2018; Zhou et al., 2022) and organ segmentation
(Gibson et al., 2018; Wang et al., 2019). In addition, researchers have
also made some progress in ACL diagnosis. However, existing
automatic assessment systems for knee joint lesions are mostly
based on 2D neural networks or single-view images. To
investigate the feasibility of deep learning for ACL tear detection
on MRI, Liu et al. (Liu et al., 2019) first localizes the ACL by using
two deep CNNs, and then detect tears within the ligament based on a

FIGURE 4
Ablation for the number of views on MRNet-v1.0 dataset.

FIGURE 5
Ablation for fusion on MRI-ACL and MRNet-v1.0 datasets.

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Li et al. 10.3389/fbioe.2023.1268543

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1268543


CNN. The AUC of the method for detecting ACL tears is 98%. Their
method outperforms most existing methods and our presented
method in AUC. However, their method requires a knee joint
localization stage. Therefore, there are three weaknesses: 1)
radiologists need a lot of time and effort to annotate the knee
joint location, 2) ACL diagnosis results depend on localization
results, and 3) training time and model parameters are increased.
We perform ACL diagnosis based on the 3D anatomical structure of
raw MRI with an AUC of 97.00% and do not require joint location
annotations. Bien et al. (Bien et al., 2018) detect ACL tears based on
MRNet in the MRNet-v1.0 dataset with an AUC of 92.58%, which is
a binary classifier based on a 2D multi-view convolutional neural
network. Although MRNet also uses multiple views, it only
implements a simple concatenation of features. Compared with
MRNet, our method is based on a 3D network and feature weighted
fusion, achieving a better AUC of 92.86%. Our approach is more in
line with the reading process of radiologists. Astuto et al. (Astuto
et al., 2021) develop a 3D CNN to detect lesions in MRI, as well as
grade abnormalities in cartilage, bone marrow, menisci, and ACL.
They achieve an AUC of 90.00% in identifying ACL tears. Although
they learn the 3D characteristics of MRI, they only build a single-
view model and could not fully explore the complementary
information between the different views. Overall, our presented
system is not only able to fuse information from different views but
also fully learn the 3D properties of lesions.

Although our presented system achieves excellent results, there are
some limitations. First, although we have validated our method on the
largest available ACL dataset, the dataset we collected and labeled is
relatively small. Small datasetsmay affect the generalization performance
of our model. Therefore, we need to further improve the robustness of
the diagnostic system with larger training datasets, data augmentation
approaches, and transfer learning. Second, we only label knee joint ACL
tears, lacking annotations for other lesions. Although our system has
excellent performance, multi-task learningmay allow the system to learn
more detailed information about the image, which helps to improve the
diagnostic accuracy of different lesions. Finally, there is one limitation of
CNN is that it is still a black-box approach, which makes it difficult to
interpret which features are processed by the network. If we want to
provide better assistance to physicians and patients, we need to further
study and address the problem of interpretability.

In summary, our study demonstrates the applicability of a 3D deep
learning-based approach for the automatic detection of knee joint ACL
tears on MRI. Meanwhile, experimental results on different datasets
demonstrate that fusing multiple views of MRI can greatly improve
diagnostic accuracy. This study is an important exploration of
advancing artificial intelligence methods to assist radiologists in
medical image analysis. It is beneficial to the development and
application of computer-aided diagnosis systems in clinics in the future.

5 Conclusion

In this study, we present a 3D deep learning-based diagnosis
system to automatically detect ACL tears by fusing various MRI
views of the same patient. We evaluate the system on two ACL
datasets, namely, the in-house MRI-ACL dataset and the publicly
available MRNet-v1.0 dataset. Experimental results show that the
method is superior or comparable to existing single-view models

and multi-view models, demonstrating the clinical effectiveness and
applicability of the presented method.
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