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Our previous study reported that Saccharomyces cerevisiae could induce calcium
carbonate (CaCO3) precipitation, but the associated mechanism was unclear. In
the present study, Saccharomyces cerevisiae was cultured under various
conditions, including the presence of different organic acids and initial pH, and
the yields of CaCO3 formation induced by the different organic acids were
compared. The metabolism of organic acid by the metabolites of S. cerevisiae
was also assessed in vitro. The SEM-EDS and XRD results showed that only acetate
acid, pyruvic acid, and α-ketoglutaric acid could induce CaCO3 formation, and the
weight order of the produced CaCO3 was pyruvic acid, acetate acid, α-
ketoglutaric acid. In addition, the presence of only yeast metabolites and the
initial neutral or alkaline environment also limited the CaCO3 formation. These
results illustrated that organic acid oxidation intracellularly, especially the
tricarboxylic acid cycle, was the major mechanism, and the CaCO3 yield was
related to the amount of CO2 produced by themetabolism of organic acids. These
findings will deepen the knowledge of the mineralization capacity of S. cerevisiae
and provide a theoretical basis for the future application of yeast as an alternative
microorganism in MICP.
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Introduction

Microbially induced calcium carbonate precipitation (MICP) is a common phenomenon
in nature, and the formed calcium carbonate (CaCO3) has become a new green material used
in numerous applications, including soil amelioration, building material rehabilitation, and
the conservation of stone monuments (Dhami et al., 2013; 2014; Lin et al., 2021; Ortega-
Morales and Gaylarde, 2021; Ortega-Villamagua, E., Gudiño-Gomezjurado, M. and Palma-
Cando, 2020; Reeksting et al., 2020; Zhang et al., 2023). Urea hydrolysis is the major pathway
for the application of MICP because of the higher and faster precipitation rate of CaCO3

(Reeksting et al., 2020; Justo-Reinoso et al., 2021; Lin et al., 2021). However, the associated
byproducts, such as ammonia and nitrogen oxide, are environmentally toxic and have a
negative impact on the substrate (Reeksting et al., 2020; Justo-Reinoso et al., 2021; Lin et al.,
2021; Sidhu et al., 2022). To reduce the environmental impact of ureolytic strains,
microorganisms with other pathways of CaCO3 production are also being tested in
MICP applications. Oxidation of organic acids is also a pathway of MICP, and the final
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products are carbon dioxide and water, which are not harmful to the
environment (Dhami et al., 2014). In addition, the precipitation of
CaCO3 induced by the oxidation of organic acids takes place at a
slower rate in comparison with the hydrolysis of urea, increasing the
depth and efficacy of the restoration (Reeksting et al., 2020; Justo-
Reinoso et al., 2021). Our previous study showed that Saccharomyces
cerevisiae could induce CaCO3 precipitation through the oxidation
of organic acids (Li and Li, 2022). This suggests that Saccharomyces
cerevisiae can be an alternative microorganism for MICP
applications.

As shown in Equations 1-3 (Dhami et al., 2014), when organic
acids are the main carbon and energy source, their consumption will
produce CO2 and increase the surrounding pH, and the presence of
Ca2+ favors calcium precipitation as CaCO3. This process can occur
both intracellularly and extracellularly and is influenced by several
factors. For intracellular process, the type of organic acids and
nutrients, pH and some metal ions can influence CaCO3

formation by affecting cell growth, organic acid uptake and
inorganic carbon production (Wolf et al., 2003; Peña et al., 2015;
Li and Li, 2022). In the extracellular process, proteins secreted by
microorganisms consume the organic acids extracellularly to raise
the pH and produce inorganic carbon for CaCO3 formation (Yafeng
and Chunxiang, 2022). However, some organic matters from
metabolites can inhibit the CaCO3 precipitation by competitive
adsorption of calcium ions (Rui et al., 2021; Robles-Fernández
et al., 2022). Our previous study has confirmed that the type of
organic acids can influence the process of calcium carbonate
precipitation induced by Saccharomyces cerevisiae, but the further
mechanism of this process is not yet clear.

CH3COO
− + 2O2 → 2CO2 +H2O + OH− (1)

2CO2 + OH− → CO2 +HCO−
3 (2)

2HCO−
3 + Ca2+ → CaCO3 + CO2 +H2O (3)

In the present study, we explored the factors influencing
yeast-induced CaCO3 precipitation by adjusting different types
of organic acid and the initial pH of the medium. In addition,
yeast metabolites were used to degrade acetic acid in vitro to
determine whether the metabolic process of organic acids

occurs intracellularly or extracellularly. Finally, we compared
the yield of CaCO3 produced by yeast under different factors.
This study further elucidated the mechanism of yeast-induced
CaCO3 precipitation and provided a theoretical basis for the
application of yeast in MICP.

Materials and methods

Cultivation of Saccharomyces cerevisiae
under various conditions

Instant active dry yeast, which is identified as S. cerevisiae,
was purchased from Angel Yeast Co., Ltd (China). This strain is
a common commercial product on the market, which has the
advantages of easy availability and low cost, and it was activated
and purified with B4 medium (3.52 g/L calcium acetate
monohydrate, 4 g/L yeast extract, 10 g/L glucose). Seven
organic acids or their calcium salts were used to culture
yeast. The detailed composition of the modified B4 media is
presented in Table 1 (a–g). The concentrations of Ca2+ and yeast
in each media were 0.67 g/L and 1 × 105 CFU/mL, respectively,
and the initial pH was adjusted to 6. In addition, two media,
with initial pH of 7 (Table 1) h and 8 (Table 1) i, were also used
to culture yeast.

Three parallel experiments were performed for each medium,
and yeast was incubated at 30 C for 7 days. The final pH of the media
was measured using an S210-K pH meter (Mettler Toledo,
Switzerland). The biomasses were filtered with filter paper,
washed with deionized water and absolute alcohol, and dried at
60 C to constant weight.

Comparison of CaCO3 yields from cultures
with different organic acids

Three acids, acetate acid, pyruvic acid, and α-ketoglutaric
acid, related to CaCO3 formation, were selected to culture yeast,
and the biomass weight was used as an indicator of the yield of
CaCO3 (Li and Li, 2022). Yeast was incubated as described 2.1,
and the dry weight of the biomass and the final pH of the media
were recorded.

The role of S. cerevisiae metabolites in
organic acid oxidation

Yeast was cultured with the media (Table 1) a for 2 days, and
then the media were filtered through 0.22 μm membranes.
Afterward, 10 mL of a sterile solution of calcium acetate or
calcium chloride (the concentration of Ca2+ was 0.2 mol/L) was
mixed with the medium without yeast. These solutions
continued to be cultured at the same condition for 5 days.
Centrifugation (5,000 rpm and 10 min) was then carried out and
the deposition that might be present were washed with
deionized water and absolute alcohol, and dried at 60 °C to
constant weight.

TABLE 1 The composition of media under different conditions.

Group Yeast extract Calcium source Other additives

a + calcium acetate -

b + calcium pyruvate -

c + Ca (OH)2 succinic acid

d + Ca (OH)2 α-ketoglutaric acid

e + Ca (OH)2 malic acid

f + Ca (OH)2 formic acid

g + Ca (OH)2 propanoic acid

ha + calcium acetate NaOH

ib + calcium acetate NaOH

a, pH = 7.
b, pH = 8.
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Characterization of S. cerevisiae-induced
crystals

The biomasses obtained from the above experiments were
analyzed with scanning electron microscope and energy-
dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction
(XRD) and Fourier-transform infrared spectroscopy (FTIR). After
grinding, the morphological characteristics were observed via SEM

(Quattro S, Thermo Fisher, United States), and the elemental
composition of the minerals was analyzed via EDX (XFlash
6,160, Bruker, Germany). Both SEM and EDX were conducted
under an accelerating voltage of 15 kV. The crystal of the formed
minerals was characterized via XRD (D8 Advance, Bruker,
Germany), and the samples were analyzed over the 2θ range of
10°–70° at a scan rate of 1°/min in 0.02° increments. Additionally, the
biomass was analyzed via FTIR (Nicolet iN 10, Thermo Fisher,

FIGURE 1
XRD of minerals synthesized by S.cerevisiae with different culturing conditions. (A) showed the results of the organic acids (a) acetate (b) pyruvate
and (d) α-ketopentate in the medium, (B) showed the results of the organic acids (c) succinate (e)malate (f) formate (g) propionate in the medium. *, the
base peak of vaterite, +, the base peak of calcite, o, the base peak of calcium phosphate.

FIGURE 2
SEM-EDS of CaCO3 synthesized by S.cerevisiae with different culturing conditions. (A)acetate (B) pyruvate (D) α-ketopentate in the media. The red
bar was 2 μm. The atomic percent contents refer to the elemental composition and proportion of minerals contained in the circled area.
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United States) with potassium bromide pellets to determine whether
it contained the unmetabolized organic calcium.

Results and discussion

Factors influencing S. cerevisiae-induced
CaCO3 precipitation

S. cerevisiae was cultured using seven organic acids, and
minerals were widely present around the yeast cells cultured with
all organic acids (Supplementary Figure S1). Most of the minerals
were identified as calcium phosphate (Supplementary Figure S1,
Figure 1B). The findings demonstrated that yeast had a high
phosphatase activity and could secrete a large amount of
phosphate outside the cell (Krumov et al., 2009; Krumov and
Posten, 2011; Durán and Favaro, 2018; Qin et al., 2020; Geetha
et al., 2021). CaCO3 was only found in the biomass cultured with
acetate, pyruvate, and α-ketoglutarate (Figures 1A, 2). In addition,
the pH results showed that the metabolism of acetate, pyruvate, α-
ketoglutarate, and propionate increased the media from acidic to
alkaline. Particularly, the pH of the media containing acetate or
pyruvate was above 8. The alkaline environment and amount of
dissolved inorganic carbon (DIC) are key factors affecting the
process of CaCO3 formation by microorganisms (Li et al., 2018).
It indicated that the consumption of acetate, pyruvate and α-

ketoglutarate by yeast also provided sufficient CO2, the main
source of DIC according to Equations 1–3, for CaCO3 formation.
However, no CaCO3 was found in the biomass cultured with
propionate, similar to our previous study with lactate (Li and Li,
2022). The failure of the metabolism of these organic acids to
produce sufficient CO2 may be the main reason. The above
results suggested that the type of organic acids was one of the
key factors influencing yeast-induced CaCO3 mineralization.

S. cerevisiae was also cultured at different initial pH values,
including 6, 7 and 8. However, the pH of the initial neutral and
alkaline media decreased to 6.76 and 7.59, respectively, after 7 days
of incubation, and no CaCO3 was found in the biomasses
(Supplementary Figure S2). Peña et al. (2015) reported that the
yeast growth rate remarkably decreased at pH 8.0. High pH also
inhibits the uptake of acetate by yeast, but would not affect its
metabolism (Mills, 1972; Pera et al., 1972; Peña et al., 2015). In
addition, yeast has a high acidification capacity (Conway and
Downey, 1950; Peña et al., 2015), and the medium was mainly
acidified by CO2 produced by glucose metabolism (Peña et al., 2015).
In the present study, neutral and alkaline environments inhibited
yeast growth rate and acetate uptake, resulting in a reduction of OH−

from acetate metabolism. In contrast, CO2 and organic acids
produced by metabolic activities resulted in a small decrease in
the pH of the medium. CO2 was mainly in the form of bicarbonate
because the pH was less than 8.0, resulting in the nonexistence of
CaCO3 in the biomasses. These suggested that acidic initial

FIGURE 3
Mechanism of S.cerevisiae induced calcium carbonate precipitation.
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environment was one of the necessary conditions for CaCO3

precipitation induced by yeast.
Overall, yeast-induced CaCO3 precipitation was influenced by

several factors. First, the presence of yeast extract is necessary for
carbonate precipitation (Li and Li, 2022). Second, the initial media
should be acidic. Lastly, organic acid is also required. When organic
acid was used as the main carbon source, only acetate, pyruvate, and
α-ketoglutarate contributed to CaCO3 biomineralization, and when
glucose was used as the substrate, other organic acids such as lactate
and pyruvate also contributed to the process.

Compared to other ureolytic and non-ureolytic microorganisms
(Ortega-Villamagua, E., Gudiño-Gomezjurado, M. and Palma-
Cando, 2020; Justo-Reinoso et al., 2021; Reeksting et al., 2020),
the conditions for yeast-induced calcium carbonate deposition are
somewhat limited, which consequently limits its potential
application within MICP. However, yeast also has advantages in
inducing CaCO3 precipitation. As one of the most widely used
microorganisms in brewing and the production of food (Ma et al.,
2011), yeast is inexpensive and readily available from the market. In
addition, as a widely used model organism, gene modification
techniques are well developed in yeast. For example, Barbero
et al. (2013) have successfully edited the genes encoding carbonic
anhydrase and mineralization peptides into yeast, significantly
enhancing the ability to induce CaCO3 precipitation. From these
perspectives, yeast can be considered as a potential candidate
microorganism for MICP applications.

Metabolic pathway of S. cerevisiae-related
MICP

The metabolites of yeast after 2-day cultivation were incubated
with calcium acetate and calcium chloride, respectively for 5 days,
but no precipitation occurred. This indicated that the consumption
of organic acids by yeast only occurred intracellularly.

Transcriptome analysis in our previous study showed that the
addition of organic acids could upregulate the genes in many
pathways, including the tricarboxylic acid (TCA) cycle (Li and Li,
2022). All three acids capable of inducing calcium carbonate
precipitation are associated with the TCA cycle. Acetic acid and
pyruvic acid can be transferred to acetyl-CoA, the substrate of the
TCA cycle. α-ketoglutaric acid is also an intermediate product in the
TCA cycle. According to the pathway, one molecule of pyruvic acid
generates three molecules of CO2, while one molecule of acetic acid
produces two molecules of CO2, and one molecule of α-ketoglutaric
acid only generates one molecules of CO2. We compared the CaCO3

production induced by the three organic acids. The yields of CaCO3

produced using the three organic acids increased in the following
order: α-ketoglutarate < acetate < pyruvate (Supplementary Figure
S3), similar to the case of CO2 yields.

Citric acid metabolism based on the TCA cycle can also produce
CO2, but the low solubility of calcium citrate allows only a few
citrates to enter the yeast cells. Our previous study showed that a
large amount of calcium citrate occurred in the biomass after
cultivation (Li and Li, 2022). The low utilization rate of citrate
could not increase the pH of themedium and produce sufficient CO2

for CaCO3 precipitation. Succinic acid and malic acid are also
intermediate products in the TCA cycle, and their calcium salts

could be absorbed by yeast (Barnett and Kornberg, 1960). Fourier-
transform infrared spectroscopy results showed that no calcium
succinate and calcium malate occurred in the final biomass (results
not shown). However, these acids neither increased the pH nor
promoted CaCO3 formation. In the TCA cycle, the metabolism of
these acids did not produce CO2. However, they can also produce
CO2 via the glycolytic/glycogenic pathway, but this process does not
involve the degradation of organic acids and does not produce OH−.
These factors contributed to the inability of succinic acid and malic
acid to contribute to yeast-induced CaCO3 precipitation.

The above results suggest that the TCA cycle is the main
pathway related to yeast-induced CaCO3 precipitation and that
organic acids oxidized to produce CO2 and OH− in this pathway
are involved in the process (Figure 3, drawn by Figdraw).

Conclusion

The study suggested that organic acids such as acetic acid, pyruvic
acid and α-ketoglutarate, as well as the initial acidic pH were the factors
driving CaCO3 precipitation by yeast. The TCA cycle was the main
pathway for yeast-included CaCO3 precipitation. Oxidation of organic
acids was occurred intracellularly and the amount of CO2 produced in
the process was related to the amount of calcium carbonate precipitated.
This study further explored the mechanisms of S. cerevisiae in MICP
and suggested that S. cerevisiae could be an alternative microorganism
for MICP applications.
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