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The growing global prevalence of heart failure (HF) necessitates innovative
methods for early diagnosis and classification of myocardial dysfunction. In
recent decades, non-invasive sensor-based technologies have significantly
advanced cardiac care. These technologies ease research, aid in early
detection, confirm hemodynamic parameters, and support clinical decision-
making for assessing myocardial performance. This discussion explores
validated enhancements, challenges, and future trends in heart failure and
dysfunction modeling, all grounded in the use of non-invasive sensing
technologies. This synthesis of methodologies addresses real-world
complexities and predicts transformative shifts in cardiac assessment. A
comprehensive search was performed across five databases, including
PubMed, Web of Science, Scopus, IEEE Xplore, and Google Scholar, to find
articles published between 2009 and March 2023. The aim was to identify
research projects displaying excellence in quality assessment of their proposed
methodologies, achieved through a comparative criteria-based rating approach.
The intention was to pinpoint distinctive features that differentiate these projects
from others with comparable objectives. The techniques identified for the
diagnosis, classification, and characterization of heart failure, systolic and
diastolic dysfunction encompass two primary categories. The first involves
indirect interaction with the patient, such as ballistocardiogram (BCG),
impedance cardiography (ICG), photoplethysmography (PPG), and
electrocardiogram (ECG). These methods translate or convey the effects of
myocardial activity. The second category comprises non-contact sensing
setups like cardiac simulators based on imaging tools, where the
manifestations of myocardial performance propagate through a medium.
Contemporary non-invasive sensor-based methodologies are primarily tailored
for home, remote, and continuous monitoring of myocardial performance. These
techniques leverage machine learning approaches, proving encouraging
outcomes. Evaluation of algorithms is centered on how clinical endpoints are
selected, showing promising progress in assessing these approaches’ efficacy.
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1 Introduction

The most recent findings from the Global Burden of Disease
(GBD) study show that heart failure (HF) affects more than
64 million people globally on a spectrum of severity (Lippi and
Sanchis-Gomar, 2020). Around half of all admissions for the
condition are heart failure with maintained ejection fraction cases
(HFpEF) (Kovács, 2015). Particularly among the elderly and those
living in low-to-medium socio-demographic index (SDI) regions,
HF is a developing global threat that prevalence and health loss
burden continually rise. Accurate non-invasive characterization of
myocardial performance is crucial to avoid sudden death.

Early recognition of heart failure is essential for underlying
diseases or causes to be successfully treated and, in certain
individuals, to stop further myocardial dysfunction and clinical
decline. According to the Canadian cardiovascular society,
suspected HF patients should firstly have a detailed clinical
history as well as a physical examination to affirm or exclude
myocardial dysfunction (Ezekowitz et al., 2017). Vital signs,
weight, volume status, heart/lung evaluation, abdomen, and
peripheral vascular assessing are crucial in evaluating the risk of
heart failure. Further initial investigations are recommended (e.g.,
chest radiograph, ECG analysis, and lab tests). Measurements of
plasma natriuretic peptides should be made if any component is
abnormal. Then it is recommended to measure chamber sizes,
systolic and diastolic ventricular function, valve functionality,
pericardial pathology and wall thickness using two-dimensional
and doppler transthoracic echocardiography. Further diagnostic
investigations could be useful (e.g., cardiac catheterization,
hemodynamic measurements, computed tomography (CT),
cardiac magnetic resonance (CMR) imaging) when outcomes
from noninvasive tests are inconclusive.

To improve the potential of heart failure, systolic and diastolic
dysfunction diagnosis, classification, and characterization, the
currently used non-invasive sensor-based technologies can be
broadly classified into two distinct primary categories. The first
group focuses on techniques that allow for a subtle investigation of
cardiac dynamics through indirect patient contact (Piccini and
Patrick, 2007). The ballistocardiogram (BCG), electrocardiogram
(ECG), photoplethysmography (PPG), impedance cardiography
(ICG), and other crucial techniques in this field (Aydemir et al.,
2019; KAVAS and BOZKURT, 2022; Wang et al., 2022). These
methods capture physiological signals coming from the
cardiovascular system using a variety of non-invasive
technologies. Notably, each of these methods acts as a channel
for understanding and communicating the complex consequences
caused by cardiac activity. For example, the ballistocardiogram
measures the minute fluctuations in bodily motion brought on
by the heartbeat, and impedance cardiography measures the
changes in thoracic impedance brought on by the heartbeat. Like
how the ECG detects electrical activity, photoplethysmography
records changes in blood volume.

The second category includes methodologies operating under a
non-contact paradigm, thus avoiding direct physical interaction
with the patient. This compilation of techniques encompasses an
array of advanced approaches, each contributing to a refined
understanding of cardiac dynamics (Tavakoli et al., 2012; Ursani
et al., 2015; Vannelli et al., 2015). Alongside magnetic resonance

imaging (MRI), other pivotal cardiac imaging modalities, such as
echocardiography, computed tomography, and nuclear imaging,
augment this repertoire. This assortment stands as a testament to
the profound innovation fueled by contemporary medical
technology. Within these intricate contexts, the expressions of
myocardial performance traverse intermediary mediums,
facilitating insightful examinations. For example, in the realm of
magnetic resonance imaging, the heart’s intricate spatial and
temporal dynamics are meticulously captured and artfully
reconstructed through adroit manipulation of magnetic fields and
radiofrequency pulses. Similarly, echocardiography employs sound
waves to visualize cardiac structures and movements. Additionally,
cardiac simulators are designed to replicate the intricate anatomical
and physiological attributes of the heart. These phantoms are often
endowed with sensors that emulate the behavior of authentic cardiac
sensors, encompassing entities like ECG and pressure sensors for
hemodynamic evaluations. Through the integration of these sensors
into the phantoms, researchers are empowered to rigorously validate
and scrutinize the precision, sensitivity, and dependability of sensors
within an environment characterized by meticulous control and
replicability. Heart phantoms, designed to simulate cardiac
dysfunction with the aid of imaging tools, are regarded as an
innovative category of noninvasive sensing technologies,
contributing significantly to the domain of heart failure
modeling. By integrating sensors that mimic authentic cardiac
sensors, these phantoms facilitate the evaluation and refinement
of sensor-based technologies. Through the intricate interaction of
imaging modalities and simulated cardiac dynamics, they afford
researchers the ability to observe and analyze the complexities of
heart failure without necessitating invasive interventions (Tavakoli
et al., 2012; Zhu et al., 2014). This convergence of imaging
techniques and sensor integration underscores the pivotal role of
Heart phantoms as effective noninvasive tools for understanding
and modeling heart failure scenarios, thereby advancing diagnostic
precision and treatment strategies.

These simulated manifestations enable the intricate exploration
of cardiac performance without needing direct interaction with a
living subject by simulating real-world conditions with a controlled
platform. Moreover, increasing the capacity to generate synthesized
data mirroring cardiac activities under assorted conditions. This
synthetic data can be harnessed to cultivate and train machine
learning algorithms earmarked for the analysis of sensor data. Such
endeavors notably contribute to the advancement of non-invasive
methodologies pertaining to cardiac monitoring through the lens of
contemporary artificial intelligence tools.

Diverse levels of models replicating the systolic and diastolic
heart failure have been introduced so far. Many researchers built up
heart models to analyze the hemodynamic variations in the systolic
and diastolic dysfunction including ejection fraction, stroke volume,
blood volume, peripheral resistance, and cardiac output. The tissue
level models study muscular contractility, left ventricle twisting/
torsion, and myocardial strain (Mannhardt et al., 2016; Lind et al.,
2017). Whereas in the cellular level, researchers used multi-
biomarker strategies, such as the endothelin, neuregulin, and
TGF-β (Tian et al., 2023).

The clinical efficacy of myocardial and other cardiovascular
biomarkers in the context of heart failure (HF) has been linked.
However, due to their limited cardiac and HF specificity, many of

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Al Younis et al. 10.3389/fbioe.2023.1261022

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1261022


these biomarkers do not meet the established criteria for
prescription, as stipulated by relevant standards (Sarhene et al.,
2019). Moreover, small animals were employed by many studies to
examine the pathogenesis of HF and create new treatments that may
halt the development of this common and deadly condition, such as
using rats (Smits et al., 1992; Sakai et al., 1996) and mice (Culjat
et al., 2010; Anderson, 2016). These models are highly dependent on
the established heart failure and innovative molecular techniques
and limited by ethical laws. As such, mathematical methodologies
have supplied substantial aid in the analysis of heart failure (Bucelli
et al., 2023). Notably, contemporary advancements in artificial
intelligence have proven considerable potential in the realms of
detection and categorization of this prevailing cardiac ailment.
Concurrently, these developments have prompted prominent
researchers to create mechanical simulators tailored to replicate
the intricacies of cardiac chambers and vasculature. These
simulators, meticulously designed to align with established
imaging techniques, serve as invaluable aids in enhancing the
diagnostic capabilities for heart failure. These phantoms are
intended for a variety of cardiac imaging development and
validation experiments, researching the variables that affect the
mechanical contraction and electrical activation in the normal
and pathological heart situations, and therapeutically applicable
functional predictions and understanding of disease causes
(Niederer et al., 2009). For the treatment of patients and for
research purposes, medical imaging techniques can be extremely
insightful in non-invasively quantifying the heart functionality
(Gabrani-Juma et al., 2017), dynamic models for the heart were
previously introduced using the SPECT (single photon emission
computed tomography) algorithm for reconstruction, that estimated
the dynamic nature of activity inside an object as determined by
projection data obtained with a standard SPECT camera’s single
slow rotation (Celler et al., 2000; Farncombe et al., 2000).

Various non-invasive sensing technologies used to characterize
myocardial performance; we conducted a review of the field to
outline the non-invasive sensor technologies and minimally invasive
techniques employed for heart failure diagnosis, compare current
practices, explain model limitations, and pinpoint knowledge needs
for future study. The research inquiries pertain to the exploration of
whether non-invasive sensor-based technologies exhibit adequacy in
detecting heart failure, and systolic/diastolic dysfunction.
Furthermore, the study seeks to elucidate the potential role of
heart phantoms in enhancing the laboratory’s ability to detect
heart failure.

2 Overview of the systolic and diastolic
heart failure

The pathological state of heart failure results in less effective
blood pumping. As the metabolizing tissues require it to, or only
possible with elevated filling pressure. Heart failure diagnosis usually
consists of the following: echocardiogram (EKG) or transthoracic
echocardiogram (TTE), radionuclide ventriculography or
radionuclide angiography (MUGA scan), cardiac computed
tomography (CCT) scan, blood tests, such as natriuretic peptide
tests, electrolyte panel and cardiac catheterization (Chatterjee and
Massie, 2007; Fukuta and Little, 2008a).

In systolic heart failure ejection fraction is decreased (HFrEF)
since the heart cannot contract normally. Conversely, with absence
of a decreased EF, diastolic heart failure pathological situation is
detected when the heart cannot fill adequately. The anatomical
characteristics of the left ventricle (LV) are identical for systolic
and diastolic dysfunction, increasing mass of left ventricle and LV
end-diastolic pressure are two examples. Although symptoms,
prognosis, and signs are very similar; the most obvious
distinction between both types of heart failure is left ventricle
function and geometry; systolic heart failure is defined by
dilatation of left ventricle, eccentric hypertrophy of LV, and
unusual systolic and diastolic functioning, However, semi-circular
LV hypertrophy, a normal EF, and variable diastolic performance
are the hallmarks of diastolic dysfunction (Fukuta and Little, 2008b;
De Keulenaer and Brutsaert, 2011).

The paradigm of using ejection fraction (EF) to categorize HF
evolved when studies in the early 2000s revealed a bimodal pattern
of EF throughout HF patients (Fonarow et al., 2007). The European
Society of Cardiology (ESC) of HF advocated ternary classification
of heart failure: heart failure with preserved, mid-range, and reduced
ejection fraction (HFpEF) (HFmEF) and (HFrEF) respectively,
characterized by EF ≥ 50% (Kiranyaz et al., 2016; Sudarshan
et al., 2017; Attia et al., 2019; Acharya et al., 2019; Baldoumas
et al., 2019; Cheng et al., 2020; Lih et al., 2020; Thakkar and
Talwekar, 2022; Kavas et al., 2023; Koh et al., 2017), %,
and ≤40% respectively. From signs and symptoms of ejection
fraction and heart failure, the elevated natriuretic peptides (NPs)
are needed in the diagnosis of HFpEF and HFmrEF. In addition to
some functional cardiac diseases, such as left atrial enlargement, LV
hypertrophy and dilation dysfunction. However, characterizing the
HF classification depends on the sex, age, detecting of some diseases,
such as hypertension, diabetes, obesity, ischemic heart dysfunction
and atrial fibrillation (Anker et al., 2018; Sarhene et al., 2019).

3 Non-invasive sensing technologies
used for heart failure, systolic and
diastolic dysfunction modeling

Non-invasive sensing technology used in modeling cardiac
abnormalities can consist of distinct types of heterogeneous
sensors. The various sensor configurations depend on the sort of
sensing technology used (Corazza et al., 2022). These methods
(Table 1) could be set up with either indirect contact with the
patient (e.g., ballistocardiogram (BCG), impedance cardiography
(ICG), photoplethysmography (PPG), and electrocardiogram
(ECG), that can translate or transfer the impact of myocardial
activity. Or set up with no-contact to the patient (e.g., heart
phantoms based on imaging tools) in which the impact of
myocardial performance can be propagated through a medium.

3.1 Ballistocardiogram (BCG)

Noninvasive and unobtrusive vital sign sensing is made possible
by technological developments in hardware and software. BCG is a
technique of acquiring the reaction of the pushed-out blood when
the heart beats, these vibration signals are indirectly detected using
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TABLE 1 The various sensor configurations depend on the sort of sensing technology utilized. Setup with either indirect contact with the patient (e.g.,
ballistocardiogram (BCG), impedance cardiography (ICG), Photoplethysmography (PPG), and electrocardiogram (ECG)). Or setup with no-contact to the patient
(e.g., heart phantoms based on imaging tools). Comparing Non-Invasive Sensing Technologies.

Non-invasive
methodology

Measured
parameters

Applications Advantages Disadvantages and limitations

Ballistocardiogram (BCG) - Acquiring the
reaction of the
pushed-out blood
when the heart beats
using load sensors

- Assess the clinical status of HF patients
Aydemir et al. (2019)

- can be used in home monitoring - Motion artifact signal

- Illustrate the differences between a typical
HF subject and a typical healthy subject
Conn et al., 2019); Chang et al. (2020);
Herkert et al. (2021)

- Designed to be wearable or with no
contact with the patients

- Sensors modality mismatch

- Early detection of HF Despins et al.
(2020); Zhang et al. (2021)

- demonstrated the contribution between
the respiratory and the cardiac system’s
performance in healthy and HF populations
Semiz et al. (2019)

Impedance
Cardiography (ICG)

- Assessing the
electrical
characteristics in the
thorax biological
tissues using two
inner and two outer
electrodes

- Continuous monitoring of systemic
vascular resistance, stroke volume, cardiac
output, and systolic time intervals Lopes
et al. (2019); Avci et al. (2020); Kurpaska
et al. (2022); Wang et al. (2022)

- Provide cardiovascular variables on a
beat-by-beat basis

- The patient movement or postural change

- Electrode placement

- Blood composition

- Skin moisture

- Environmental radiofrequency, and even
body composition

Photoplethysmography
(PPG)

- Measuring the
volumetric
fluctuations in blood
circulation by using a
light source and a
photodetector at the
skin’s surface

- Evaluation of several cardiovascular-
related disorders, including atherosclerosis
and arterial stiffness

- Do no’t require special training or
guidance

- Designed to be wearable; not ideal for long-
term monitoring

- Can help with the early detection and
classification of heart failure patients
Baldoumas et al. (2019); Cheng et al. (2020);
Shah et al. (2020); KAVAS and BOZKURT,
(2022); Thakkar and Talwekar, (2022);
Kavas et al. (2023)

- Motion artifact signal

Electrocardiogram (ECG) - Recording the
electrical activity of
the heart using
electrodes fixed on
the patient’s skin

- Diagnosis and evaluation of many
cardiovascular disorders, including atrial
fibrillation, myocardial infarction,
premature contractions of the ventricles or
atria, and congestive heart failure Kiranyaz
et al. (2016); Acharya et al. (2017);
Andreotti et al. (2017); Ghiasi et al. (2017);
Sudarshan et al. (2017); Liu et al. (2018);
Attia et al. (2019); Acharya et al. (2019); Al
Rahhal et al. (2019); Attia et al. (2019); Lih
et al. (2020); Wang and Li, (2020);
Alkhodari et al. (2021)

- Do no’t need lengthy settling times,
allowing for the quick acquisition of
significant readings following startup

- Designed to be wearable; not ideal for long-
term monitoring

- Motion artifact signal

Heart phantoms based on
imaging tools

- Imaging tools
within heart
phantoms can
replicate tissue
properties, blood
vessel properties,
mechanical strain
and deformation,
valve area,
regurgitation, and
stenosis severity

- Investigation and validation of cardiac
motion approaches linked to medical image
processing, reconstructing programs, and
interventional guidance/tracking apps

- Realistic replication - May oversimplify the intricate and dynamic
nature of real cardiac physiology

- Pulsatile flow simulation to validate the
hemodynamic force data

- Noninvasive exploration - Provide static representations of cardiac
conditions

- Create a dynamic physical heart phantom
with an accurate coronary plaque to test the
accuracy of stenosis assessment

- Repeatable and customizable
experiments

- Cost and complexity: Developing,
maintaining, and operating heart phantoms
with advanced imaging capabilities can be
resource-intensive, making them less
accessible for smaller research institutions

- Sensors integration, allowing for
various parameters measurement

- Enable the validation of imaging
modalities’ accuracy and reliability in
capturing cardiac structures and
dynamics

Ballistocardiogram (BCG): is a technique of acquiring the reaction of the pushed-out blood when the heart beats. Impedance cardiography (ICG): assessing the electrical characteristics in the

thorax biological tissues. Photoplethysmography (PPG): a wearable optical tool that is used non-invasively in blood circulation to measure volumetric fluctuations. Electrocardiogram (ECG):

records the electrical activity of the heart over a period of time. Heart phantoms based on imaging tools: physical or virtual models designed to replicate the anatomical and functional features of

the human heart, particularly in the context of cardiovascular imaging and diagnostic techniques.
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load sensors fastened to a chair or bed. The primary challenge is how
to improve the use of BCG technology, with a focus on varies devices
used for measurement, and signal processing approaches. Diastolic
and systolic blood pressure monitoring based on BCG was adapted,
showing good opportunities for cuff-less pressure measurements
(Kim et al., 2018). BCG signals of good quality were detected at
home setting after discharge and analyzed to assess the clinical status
of HF patients (Aydemir et al., 2019). This work reported 0.78 of
area under the curve (AUC) score for the classification task. Another
in home HF monitoring technology were introduced by researchers
in (Conn et al., 2019), they used toilet seat–based BCG model to
illustrate the differences in the averaged waveforms collected from
heart failure and healthy subjects, while they were at rest and post-
stressed. BCG is used with the ECG to estimate the stroke volume
and measure blood pressure by finding the beginning of the transit
pulse time.

Early HF changes were shown in a female older adult using BCG
sensors embedded under a bed mattress (Despins et al., 2020), the
analyzed waveforms indicated cardiac output reduction as the diastolic
performanceworsened. For the resting state, BCGwaveforms of healthy
and HF patients were compared (Chang et al., 2020). In this study, the
waveform fluctuation metric at rest (WFMR) were calculated for both
cohorts, acquired from an instrumented chair with four load cells. By
using algorithms, there may be more errors, since the results revealed
that the heart failure set had more fluctuations compared to the healthy
subjects with at least 82.2% separation. Furthermore, tele-monitoring
changes in hemodynamic load of fifteen patients with HFrEF were
investigated in this study (Herkert et al., 2021). They used a devicemade
up of BCG sensor implemented in lower back configuration, that
acquires the body micro movements, as blood inflow, and chest
sensor, which collects local thoracic fluctuations resulted from
cardiac contraction and blood ejection through great vessels
[seismocardiography (SCG)]. Those collected kinocardiographs
(KCG) are converted to cardiac maximum power (Pmax) integral,
cardiac kinetic energy (iK), and change in cardiac kinetic energy (ΔiK),
making it encouraging for future remote monitoring of heart failure.
Significant increases in the BCG iK and BCG Pmax over the cardiac
cycle (CC) were found, while SCG iK and Pmax were revealed in a non-
significant elevation. Another work confirmed that KCG have potential
to detect HF patients (De Keyzer et al., 2023), As SCG ΔiK diastolic,
BCG ΔiK diastolic, and BCG iK systolic found to be significantly
different between HF patients (EF < 50) and normal patients (EF ≥ 50).

Feng et al. used a non-contact piezoelectric sensing device and
the echocardiography to detect HF patients with LVEF ≤49 (Feng
et al., 2023). Through the extracted linear and nonlinear BCG
features, cardiopulmonary, and respiratory features, they
demonstrated the contribution between the respiratory and the
cardiac systems performance in healthy and HF populations. The
detection of HF patients was finally done through XGBoost classifier
with an accuracy of 94.97%. In another work (Semiz et al., 2019),
they demonstrated the BCG signals’ potential for monitoring
hemodynamic reactions to dose adjustments of diuretics in
HFrEF patients. In this study, 12 BCG features were recorded
using a modified-weighing scale in addition to 6 extracted
features from ECG signals. Elevated left atrial pressure (LAP) is
considered as a HF indicator in this work (Zhang et al., 2021), they
collected thoracic vibration signals through the optical BCG device
that is fixed on each patient’s back, then verified the left atrial

pressure index with a 0.81 overall agreement rate as a derived
parameter for heart failure detection.

3.2 Impedance cardiography (ICG)

It is recognized as a diagnostic method for assessing the electrical
characteristics in the thorax biological tissues. In this technique, two
outer electrodes are used to provide a small, alternating, constant
current that has an amplitude between 1 and 5 mA and a frequency
between 20 and 100 kHz. Two inner electrodes are then used to
measure the electrical voltage difference (Woltjer et al., 1997). ICG
limitations include the patient movement or postural change,
electrode placement, blood composition, skin moisture,
environmental radiofrequency, and even body composition.
Nevertheless, it is considered a reliable technology used to
noninvasively estimate the cardiovascular hemodynamic pattern.
ICG has the potential to provide a beat-by-beat variables in the
cardiovascular system. Some of its potential clinical applications
include continuous monitoring of systemic vascular resistance,
cardiac output, stroke volume, and time intervals of the systolic
activity. Authors in (Facchini et al., 2016) suggested a multi-
parametric noninvasive hemodynamic approach to identify the
pulmonary congestion in chronic HF patients. They observed
significant relation between B-line number, levels of brain
natriuretic peptides (BNP) and ICG. In this work, the inverse of
impedance (thoracic conductance) was measured using four sensor
pairs made of silver-silver chloride: two in the mid-axillary line on
each side of the chest at the level of the xyphoid, and two under each
ear at the neck base.

In another study (Lopes et al., 2019), researchers used impedance
cardiography to compare the hemodynamic parameters of
hypertensive patients in a population sample with and without
heart failure. Four pairs of ICG electrodes were fixed on the lower
chest and on the subject’s neck. After analyzing the recorded indices, it
is found that the mean values of the inotropic state index (ISI),
ejection phase contractility index (EPCI) and left stroke work index
(LSWI) are reduced in heart failure patients. Furthermore, ICG
technology were used to measure hemodynamic parameters to
investigate the phase I cardiac rehabilitation (CR) effect on
subjects with acute heart failure (AHF) and coronary heart disease
(CHD) (Wang et al., 2022). Results in this work showed ameliorating
in preload, systolic and diastolic functionality improvements,
elevating cardiac output, and afterload relieving.

However, researchers in (Kurpaska et al., 2022) targeted the
coronary artery disease (CAD) patients to study the correlation
between the ICG hemodynamics and the cardiopulmonary exercise
testing (CPET) parameters. Where a clinically meaningful increase
in cardiac output (CO) following exercise was caused, to varying
degrees, by changes in stroke volume (SV) and heart rate (HR).

Thoracic fluid content (TFC) is obtained using the ICG device
from heart failure patients with dyspnea and are suspected of
pulmonary oedema (PO) (Avci et al., 2020). They captured TFC
by attaching electrodes in the lower and longitudinal thorax. Voltage
is produced when the body is exposed to a 400 µA steady current at
40 kHz between the electrodes. Thoracic voltage variations are
detected using inside electrodes. The impedance change is
computed using these voltage changes. This work revealed that
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TFC could be used significantly in the diagnosis of PO, with
sensitivity/specificity of 64.3/31.4%.

3.3 Photoplethysmography (PPG)

PPG is a wearable optical tool that is used non-invasively in
blood circulation to measure volumetric fluctuations. This is
achieved by a light source and a photodetector at the surface
of the skin. Important health-related information is contained in
PPG wave (e.g., vascular dynamics, oxygenation, heart rate, and
rhythm). To evaluate several cardiovascular-related disorders
(e.g., arterial stiffness and atherosclerosis), can thus, be
achieved by the examination of this waveform for doctors and
researchers. Also, analyzing the PPG second derivative signal can
be helpful in early diagnosis and detection of different
cardiovascular diseases that could potentially manifest in life
(Castaneda et al., 2018). While resting in a chair, reflective PPG
and 3-axis accelerometry signals were captured from patients for
5 min to evaluate the pressure-related mechanisms and
baroreflex of the heart (Shah et al., 2020). PPG signals were
then used to calculate the standard metrics of heart rate
variability (HRV). Furthermore, from the calculated data, they
classified individuals with HF using linear support vector
machines (SVMs) at an accuracy of 74%.

In another work, by using only heart rate variability (HRV)
collected from photoplethysmography, machine learning model
was enhanced to detect HFrEF and HFpEF (KAVAS and
BOZKURT, 2022). Volunteers provided PPG data for 10s,
which were then preprocessed using digital filters and analyzed
to evaluate thirty-seven HRV characteristics. Classification was
done with 3 crucial features retrieved from applying 10-fold cross
validation of %98.33 accuracy. In addition, another group of
researchers used PPG to estimate 58 significant HRV features
based on Mann Whitney-U Test (Kavas et al., 2023). Then using
these features, triple classification model (healthy, HFpEF, and
HFrEF) was evaluated using 10-fold cross validation at accuracy of
%87.78.

Blood pressure estimation (BPE) is another significant
evaluation from the recorded PPG signal (Thakkar and Talwekar,
2022). Researchers proposed a deep network model based on the
BPE to classify patients into four groups: stroke, heart failure,
aneurysm, and heart attack. They used an improved differential
algorithm (IDA) to calculate three categories of BPE from PPG
signal as prehypertension, hypertension, and normotension. Then
significant features were fed to a deep network classifier that
performed maximum accuracy of 97.80%.

In another work, using data augmentation 10s PPG signals were
converted into a 128 × 1,024×3 time-frequency chromatograph
(Cheng et al., 2020), then they used it to train and validate a
framework of hybrid combination of convolutional neural
network (CNN) and long short-term memory (LSTM) for
classifying patients to be with or without atrial fibrillation (AF)
at accuracy of 98.21%. Baldoumas et al. (Baldoumas et al., 2019),
proposed a portable model of PPG device to detect individuals with
cognitive heart failure from the healthy, they used natural time
analysis (NTA) method to analyze and classify the series of
sequential events collected from the PPG device.

3.4 ECG data and AI-derived HF models

One of the most popular non-invasive diagnostic techniques for
monitoring the heart’s physiological processes throughout time is
the electrocardiogram (ECG). Many cardiovascular disorders,
including atrial fibrillation, myocardial infarction, premature
contractions of the ventricles or atria, and congestive heart
failure, can be diagnosed with the help of ECG data. Wearable
technology in the healthcare industry, including the Apple Watch
and portable ECG monitors like the Holter monitor, have both
developed quickly in recent years. As a result, human cardiologists
are struggling to keep up with the growing volume of ECG data that
needs to be analyzed. Consequently, automatic and accurate ECG
data analysis has become a popular study area, especially using AI
tools. The diagnostic golden rules have been used for automatic ECG
analysis. This process consists of two steps, that involve human
specialists to create meaningful features from raw ECG data, known
as “expert features,” and then to come at inferences, using prediction
model or other machine learning approaches. These features could
be categorized into coefficients of variation and density histograms,
statistical features (e.g., heart rate variability), frequency-domain
features, time-domain features and sample entropy.

However, due to the limitations imposed by human expert
knowledge and data quality, they are still insufficient.
Alternatively, deep learning models use their robust data learn to
automatically and implicitly conduct feature extraction, and model
heart failure. Most recent AI heart failure models based on ECG data
is summarized in Table 2. Authors in (Sudarshan et al., 2017)
proposed decision tree (DT) and k-nearest neighbor (KNN)
classifiers for the identification of ECG signals showing
congestive heart failure (CHF) from healthy. The one lead ECG
signal of 2 seconds length was converted with the dual tree complex
wavelets transform (DTCWT), then features were retrieved
statistically and ranked using entropy, Bhattacharyya, receiver-
operating characteristics (ROC), t-test, minimum redundancy
maximum relevance (mRMR), random forest (RF), and Wilcoxon
methods. And classification accuracy of 99.86% was reported in this
study. Whereas in (Acharya et al., 2019), CHF diagnosis model-
based on 2 seconds one lead ECG data was proposed. With no
features extracted, the deep convolutional neural network (CNN) of
11 layers achieved detection accuracy of 98.97%. In another study
(Lih et al., 2020), 2-s one lead ECG (2000 sample) window length
data were used to classify ECG signals into myocardial infarction
(MI), coronary artery disease (CAD) and CHF, with overall accuracy
of 98.51% using the CNN-LSTM (16 Layers) tool.

Moreover, to identify patients of EF less than or equal to 35%,
researchers in (Attia et al., 2019) trained the CNN framework using
the 10-s 12-leads ECG data. They reported overall accuracy of 86.5%
in this model. For ECG beats classification, 30-min duration of two-
channel ECG signals were used in this work (Kiranyaz et al., 2016).
After band-pass filtration at 0.1–100 Hz and then signal binarization
at 360 Hz, R-peaks were detected, then represented using FFT
(phase and magnitude) for each beat. The used CNN model
reported an accuracy of 98.9%. In another work (Liu et al.,
2018), ECG signal is split to isolate the heartbeats before
performing fuzzy information granulation (FIG) for each
heartbeat to figure out 3 parameters a, c, and m. Those heartbeat
parameters used to detect the myocardial infarction, their
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TABLE 2 Deep learningmodels use their robust data learn to automatically and implicitly conduct feature extraction, andmodel heart failure. Most recent AI heart
failure models based on ECG data is summarized. AI Heart Failure models based on ECG data.

Study Signal processing &
featuring technique

AI classification
method

Sample Size Study Outcome Classification
performance

(Sudarshan
et al., 2017)

1. Dual tree complex wavelets
transform (DTCWT) of 2 s one
lead ECG.

k-nearest neighbor (KNN)
and decision tree (DT)
classifiers

88 Patients Identification of ECG signals
exhibiting CHF from normal

Accuracy 99.86%

2. Using the Bhattacharyya,
entropy, minimum redundancy
maximum relevance (mRMR),
receiver-operating characteristics
(ROC), Wilcoxon, t-test, and
random forest (RF) methods,
statistical features are retrieved
and ranked

Sensitivity 99.78%

Specificity 99.94%

(Acharya
et al., 2019)

1. No denoising required 11-layer deep convolutional
neural network (CNN)

88 Patients Diagnose CHF Accuracy 98.97%

2. No Features extracted Sensitivity 98.87%

3. 2s one lead ECG regularized
with Z score normalization

Specificity 99.01%

(Lih et al.,
2020)

1. 2-s one lead ECG
(2000 sample) window length

CNN-LSTM (16 Layer) Normal: 92 Classification of ECG signals into
CAD (Coronary artery disease),
MI(Myocardial infarction), and
CHF(Congestive heart failure)

Accuracy 98.51%

CAD: 7 Sensitivity 99.30%

MI: 148 Specificity 97.89%

CHF: 15

Attia et al.
(2019)

10-s 12-lead ECG CNN trained using the Keras
framework with a backend
and (Python) Tensorflow
(Google)

3,874 Identification of EF less than or
equal to 35%

Accuracy 86.5%

Sensitivity 82.5%

Specificity 86.8%

Kiranyaz
et al. (2016)

1. 30-min duration of two-
channel ECG signals

CNN layers of 3 × 3 kernels
(Kx = Ky = 3)

44 ECG records ECG beats classification Accuracy 98.9%

2. Band-pass filter at 0.1–100 Hz
and then binaries at 360 Hz

Sensitivity 95.9%

3. R-peak detection then FFT
representation (phase and
magnitude) of each beat

Specificity 99.4%

Liu et al.
(2018)

1. The ECG signal is split to
isolate the heartbeats

Multilead-CNN 549 records
from290 individuals

Myocardial Infarction (MI)
detection

Accuracy 96%

2. Fuzzy Information
Granulation (FIG) is performed
for each heartbeat to determine
3 parameters a, c, and m

Sensitivity 95.4%

Specificity 97.37%

Acharya et al.
(2019)

1. Using Daubechies wavelet
6 filters, denoise and remove the
baseline from each and every
ECG signal

CNN 47 subjects Detect five classes of ECG
heartbeats

Accuracy 93.47%

2. Signals that have been divided
into beats, beats that are centered
around R-peaks, and R-peak
detection using Pan-Tompkins

From ECG signal
Lead II.

Sensitivity 96.01%

3. To address the issue of
amplitude scaling and get rid of
the offset effect, normalized using
Z-score normalization

Specificity 91.64%

Andreotti
et al. (2017)

Feature-based approach Residual Network
architecture

8,528 short single lead
ECG segments

Classify ECG into 4 classes
(normal, AF, other rhythms or
noise)

Final score for two
approaches: F1 = 79%

(Continued on following page)
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multimodal-CNN model reported detection accuracy of 96%.
Moreover, researchers in (Acharya et al., 2017) detected five
classes of ECG heartbeats based on ECG signal Lead II. After
Daubechies filtration, de-noise and remove the baseline from
each ECG, signals have been divided into beats that are centered
around R-peaks, then R-peak detection performed using Pan-
Tompkins. This CNN detection model reported an accuracy of
93.47%. ECG feature-based approach was introduced by (Andreotti

et al., 2017) for ECG classification into 4 classes (AF, normal, other
rhythms or noise). Firstly, they preprocessed the short single lead
ECG segments using Butterworth bandpass filters of 10th order,
with cut-off frequencies of 5Hz–45 Hz (narrow band) and
1Hz–100 Hz (wide band). Then after QRS detection, classical
time domain, non-linear HRV, and frequency domain features
were detected and further fed to residual network architecture.
This classification approach reported a final score F1 of 79%.

TABLE 2 (Continued) Deep learning models use their robust data learn to automatically and implicitly conduct feature extraction, and model heart failure. Most
recent AI heart failure models based on ECG data is summarized. AI Heart Failure models based on ECG data.

Study Signal processing &
featuring technique

AI classification
method

Sample Size Study Outcome Classification
performance

1. Cut-off frequencies for 10th
order bandpass Butterworth
filters are 1Hz–100Hz and
5Hz–45 Hz (narrow band) (wide
band)

2. QRS detectors: pqrs,
PanTompkins (jqrs), maxima
search, and matched filtering.
classical

3. Time domain, frequency
domain, and non-linear HRV,
clustering of beats on Poincare
plots

Wang and Li,
(2020)

1. Bandpass filter denoised the
original signal (3Hz–45 Hz)

CNN and LSTM 8,258 one channel
individual recordings

Classify atrial fibrillation and
normal sinus signals

F1 score of 0.82

2. Dual-slope QRS detection
algorithm for detecting R peaks
and calculating R-R interval

3. Divide into segments
containing at least 4 R-R intervals

Al Rahhal
et al. (2019)

2D image using a generative
neural network

Dense Convolutional
Networks (DCN)

48 of two-channel ECG
recordings

Classification of electrocardiogram
beats

Sensitivity 73%–99%
depending on the used
method

Attia et al.
(2019)

Echocardiogram and ECG of 12-
lead data

CNN using the Tensorflow
(Google) backend Python
and Keras framework

44,959 patients Identify patients with ventricular
dysfunction EF ≤ 35%

Accuracy 86.3%
Sensitivity 85.7%

Specificity 85.7%

Ghiasi et al.
(2017)

1. Baseline wander removal using
Butterworth low and high pass
filter

CNN 8528 ECG recordings Atrial fibrillation detection Featuring Approach
scores 78%

2. T, QRS complex and P are
detected using the classical pan
Tompkins

CNN Approach
scores 71%

3. Z-score normalization

4. [Morphological features
(fractal dimension, correlation
coefficient, and R peaks variance)
and time/frequency domain
features] used for Featuring
Approach

Alkhodari
et al. (2021)

1. HRV pre-processing and
denoised for every hour through
out 24-h cardiac cycle

Jenks natural break
optimization algorithm

24-h Holter ECG
recordings of
92 patients

Classify HF patients depending on
the EF levels (HFpEF, HFrEF and
HFmEF)

Accuracy more
than 70%

2. HRV feature extraction and
HRVEF index estimating
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In another study (Wang and Li, 2020), one channel ECG
individual recordings were used to classify atrial fibrillation and
normal sinus signals. This CNN and LSTM-based model achieved
an F1 score of 0.82. The original signal was filtered with bandpass
filter of 3Hz–45 Hz bandwidth. Then they used dual-slope QRS
detection algorithm for detecting R peaks and calculating R-R
interval, where each segment was divided to contain at least 4 R-
R intervals. Another study (Al Rahhal et al., 2019) proposed an
approach to classify ECG beats based on two-channel ECG
recordings. 2D image using a generative neural network was
generated and fed to the dense convolutional networks (DCN),
that achieved a classification model with maximum sensitivity of
99%. To find patients with ventricular dysfunction EF ≤ 35%,
researchers in (Attia et al., 2019) used both echocardiogram and
ECG of 12-lead data. This CNN-based model reported an accuracy
of 86.3% using the tensorflow (Google) backend Python and Keras
framework.

Furthermore, 8528 ECG recordings were used by researchers in
(Ghiasi et al., 2017) for atrial fibrillation detection. For the featuring
approach they detected morphological features (e.g., fractal
dimension, correlation coefficient, and R peaks variance) and
time/frequency domain features. The reported scores for the
featuring approach and the CNN model were 78% and 71%,
respectively. An approach based on heart rate variability was
proposed by researchers in (Alkhodari et al., 2021), they aimed
to categorize heart failure patients into three groups according to
LVEF levels (HFpEF, HFrEF, and HFmEF) during the 24-h
circadian cycle. Adaptive filtering and signal dependent rank
order mean (SD-ROM) were firstly implemented to 24-h HRV
data, then Jenks natural break optimization algorithm was
performed to generate heart rate variability ejection fraction
index (HRVEF) groups. This approach accurately reported more
than 70% goodness of variance fit (GVF) during the time ranges of
(01:00-08:00) and (17:00-23:00).

3.5 Heart phantoms simulating cardiac
dysfunction based on imaging tools

One of the main categories of heart phantoms is designed to suit
imaging applications specially for studying the cardiac dysfunction.
Imaging simulators play significant role in assessing imaging
systems. By nature, phantoms deliver reliable and repeatable
results, allowing efficient methods and systems comparisons,
unlike depending on data collected from live subjects for test
purposes (Sakai et al., 1996; Culjat et al., 2010). Besides, it limits
ethical issues concerning human and animal testing (Sakai et al.,
1996).

Recently, researchers in (Vannelli et al., 2015) designed a
phantom that replicates the motion of the aortic and mitral
valves in vivo, enabling the acquisition of accurate ultrasound
pictures of these parts. Additionally, it possesses a physiologically
plausible 50% left ventricular ejection percent. Heart phantoms were
used widely to mimic the cardiac mechanics and structure. A
biventricular polyvinyl alcohol (PVA) based heart phantom was
created that resembles the form of the heart including the
characteristics of MRI and ultrasound imaging. Further phantom
with pathologic characteristics that mimicked an aneurysm and

scarred areas was used (Tavakoli et al., 2012). PVA polymers that are
more rigid were used to replicate the scarred tissue. Realistic
asymmetric LV motion is made possible by the two-chamber
cardiac structure. Unhealthy heart rhythms were dynamically
simulated (Ursani et al., 2015), the dynamic heart phantom can
be actuated by a built in simulator or by using real time ECG signal
for the patients, which can then be scanned in the CT to determine
the appropriate gating strategy to the patient’s present heartbeat. A
patient’s data with cardiac arrhythmia were used to build a physical
heart phantom (Sandoval et al., 2018), where transesophageal
therapy for atrial fibrillation is guided by an adjusted registration
strategy.

As described in Table 3, a brief comparison of some of the
phantoms and the used imaging technique is shown. An in vitro
protocol was carried out using right ventricle (RV) shaped
phantoms composed of various materials that could be imaged
using cardiac magnetic resonance (CMR), cardiac computed
tomography (CT) and RT3DE (Sugeng et al., 2010). They
manually controlled this phantom to evaluate the RV volume. In
another work (Tavakoli et al., 2012), researchers proposed a
pathologic heart phantom to mimic an infarction and an
aneurysm. Three inclusions with varying forms and degrees of
flexibility were used to represent segmental dyskinesia. They
manually controlled the PVA cryogen’s freeze-thaw cycles and
used MRI and ultrasound for imaging. Applying the B-spline
deformable image registration method (BSDIR) a series of long-
axis labeled MR images were used to estimate the MRI strains (Zhu
et al., 2014). This approach was tested against Shelley’s dynamic to
investigate and validate cardiac motion linked to medical image
processing, reconstructing programs, and interventional guidance/
tracking apps.

Furthermore, authors in (Töger et al., 2018) created software for
the analysis of 4D flowMRI data for hemodynamics. Additionally, a
pulsatile flow simulation was employed to validate the
hemodynamic force data. Using a particle image velocimetry
(PIV) the reference flow field in the flow’s central symmetry
plane was measured, with setup made up of a FlowMaster 3S
camera (LaVision, Bicester, United Kingdom), Continuum
MiniLite 532 nm Nd:YAG laser and related controller gear. In
another work (Richards et al., 2018), a dynamic physical heart
phantom was created with an accurate coronary plaque to test
the accuracy of stenosis assessment at clinically appropriate heart
rates. In this work the conduit was filled with an iodinated contrast
substance to imitate a typical contrast enhanced CCTA protocol.
Shelley Medical Imaging DHP-01 was used as the foundation for the
heart dynamic implementation, and four different heart rates were
fitted with the generated ECG signal before the signals were included
into the controller software. Then a clinical cardiac protocol was
used to obtain images by a dual-source CT system (Somatom
Definition Flash, Siemens Healthineer, Germany and Forchheim).

Authors in (Ursani et al., 2015) based on piston fluid pump,
created a dynamic anthropomorphic heart phantom (DHAP), that
accurately replicates any heart rhythm for patients waiting in the
holding area. The Hazen Williams equation was used to determine
the pressure difference P) across the delivery pipe connecting the
heart module and heart pump. To determine the optimal gating
strategy suitable for the patient’s present cardiac rhythm and X-ray,
the patient was scanned in the CT and ECG sync output interface,
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TABLE 3 Heart phantoms are designed to suit imaging applications specially for studying the cardiac dysfunction. Imaging simulators play significant role in
assessing imaging systems. This table summarizes the dynamic hearts modeling myocardial dysfunction. List of previously developed heart phantoms based on
imaging tools.

References Heart phantom control Ventricular pressure and
heart rate variability

Imaging tool Objective

Vannelli et al.
(2015)

Arduino controlled Pressure sensors fixed to record
aortic, ventricular and atrial
pressures at fixed heart rate set to
60bpm

Ultrasound Views Create tools for picture guiding in
valve repair and replacement.
Having a 50% left ventricular
ejection fraction

Sugeng et al.
(2010)

Manual control An in vitro protocol was carried out
using RV-shaped phantoms
composed of various materials that
could be imaged using various
imaging techniques. while pressure
and heart rate were not investigated

Cardiac computed tomography (CT)
and cardiac magnetic resonance
(CMR), RT3DE.

On CMR, CCT, and RT3DE
pictures, volumetric quantification
of RV volume was tested

Tavakoli et al.
(2012)

Manual control Internally produced biventricular
multimodal cardiac phantom that
can mimic both healthy and
unhealthy conditions, here the
pressure and heart rate were not
investigated

MRI and ultrasound imaging Building a pathologic heart phantom
to mimic an infarction and an
aneurysm. Three inclusions with
varying forms and degrees of
flexibility are used to represent
segmental dyskinesia. Depending on
PVA cryogen’s freeze-thaw cycles

Zhu et al. (2014) Modeling the heart computationally
and testing it against Shelley’s
dynamic

The fully nonlinear equilibrium
equations are resolved using a
mixed displacement/pressure
formulation. It was not the
hydrostatic pressure that was
applied inside the LV and RV that
was employed to govern the
motion of the heart phantom. In
tests, the heart phantom was made
to beat at a rate of 60 beats per
minute

A series of long-axis labeled MR
images were used to estimate the MRI
strains using the B-spline deformable
image registration method (BSDIR)

The heart phantom was created with
the specific intention of being used
as a tool for the investigation and
validation of cardiac motion
approaches linked to medical image
processing, reconstructing
programs, and interventional
guidance/tracking apps

Töger et al.
(2018)

Peak speeds employed in the five
distinct pump programs ranged from
21 to 36 cm/s

For visualization reasons, a
pressure field calculation was
made. Using a multigrid solver that
had already been published, the
pressure Poisson equation (PPE)
was resolved. The study’s
parameters called for healthy
subjects with normal heart rates

A References flow field in the flow’s
central symmetry plane was measured
using a particle image velocimetry
(PIV) setup made up of a Continuum
MiniLite 532 nm Nd:YAG laser, a
FlowMaster 3S camera (LaVision,
Bicester, United Kingdom), and
related controller gear

Creating software for the analysis of
4D flow MRI data for hemodynamic
forces. Additionally, a pulsatile flow
simulation is employed to validate
the hemodynamic force data

Richards et al.
(2018)

The conduit was filled with an
iodinated contrast substance to
imitate a typical contrast-enhanced
CCTA protocol. Shelley Medical
Imaging DHP-01 was used as the
foundation for the heart motion
implementation

Four different heart rates were
fitted with the generated ECG
signal, and the signals were
included into the controller
software

A clinical cardiac protocol was used to
obtain images with a dual-source CT
system (Siemens Healthineer,
Somatom Definition Flash,
Forchheim, Germany)

Create a dynamic physical heart
phantom with an accurate coronary
plaque to test the accuracy of
stenosis assessment at clinically
appropriate heart rates

Ursani et al.
(2015)

Anthropomorphic heart phantom
(DHAP) based on piston fluid pump,
which can mimic the patient’s heart
rhythm while patient with irregular
and higher HR is waiting in the
holding area

The Hazen Williams Equation is
used to determine the pressure
difference P) across the delivery
pipe connecting the heart pump
and heart module. ECG sync
output interface, 50 to 125 BPM
Programmable cardiac motion
software components

To determine the optimal gating
strategy suitable for the patient’s
present cardiac rhythm AND X-ray,
the patient was scanned in the CT.

The creation of a dynamic
anthropomorphic heart phantom
(DHAP) that can accurately replicate
any patient’s heart rhythm while
they wait in the holding area

Zhou et al. (2018) Includes heart chambers, external
circulation, bionic valves, a
computerized control system, and a
motor mechanism

When the heart rate is between
40 and 90 beats per minute, the
end-diastolic and end-systolic
pressures are chosen to be 2.67 kPa
and 13.3 kPa, respectively.
Additionally, backflows of 7.6%
and 1% are found for themitral and
tricuspid valves that under
heartbeat of 60 bpm

Only the phantom was CT scanned,
and all of its parts can be clearly
distinguished in the resultant slice
images

The suggested biomimetic cardiac
simulator was driven by artificial
muscle

(Continued on following page)
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50 to 125 BPM programmable cardiac motion software components
were used. In another work (Zhou et al., 2018), researchers suggested
a biomimetic cardiac simulator driven by artificial muscle. This
system included heart chambers, external circulation, bionic valves,
a computerized control system, and a motor mechanism. They
scanned the process using CT technique, and when the heart rate
was between 40 and 90 bpm, the end-systolic and diastolic pressures
were chosen to be 2.67 kPa and 13.3 kPa, respectively. Additionally,
backflows of 7.6% and 1% were found for the mitral and tricuspid
valves that under heartbeat of 60 bpm.

To enhance the therapy of atrial fibrillation based on the
direction of transesophageal high intensity focused ultrasound
(HIFU), a new 3D-CT to 2D-US registration technique was
created (Sandoval et al., 2018). This phantom’s size was
comparable to a woman’s heart, with the right ventricle
measuring 66 mL, and the left ventricle being 76 mL. They
altered this phantom to incorporate a tube-like structure that
represents the esophagus. The physical phantom CT images were
processed; and they fitted smoothed centerline from a set of
180 extracted points of segmented esophagus. Another study
(Chen et al., 2021) compared the CT and single photon emission
computed tomography (SPECT) calculations of ejection fraction at
high heart rate. CT and SPECT were compared using a dynamic
cardiac phantom with customizable end-diastolic volume (EDV),
end-systolic volume (ESV), and heart rates of 40, 60, 80, and
100 bpm, respectively. In this work, the dynamic cardiac
phantom (United States , Durham, Data Spectrum Corporation,
North Carolina) was programmed to pump at EF = 30 or EF = 60.

Furthermore, researchers in (Urbina et al., 2016) aimed to
create and evaluate an aortic phantom that is compatible with
magnetic resonance imaging (MRI), modeling both aortic
coarctation (AoCo) and normal circumstances. To compare its
hemodynamics with AoCo patients and healthy volunteers, they
made up the system using an MRI-compatible pump, aortic
model, control unit, shutdown valves, compliance chamber,
and non-returnables. In this work the systole and diastole
pressures were measured at 5 distinct positions in the aortic
model. Normal phantom and healthy volunteers’ hemodynamic
values were as follows: cardiac output: 3.5/4.5 L/min, heart rate:
68/61 bpm, and MRI imaging was used for flow and velocity
waveforms measuring.

4 Overall perspective

4.1 Implications

1. Extracted features and home monitoring: Linear and nonlinear
features derived from BCG signals showed significant
distinctions between normal and heart failure patients. Home
monitoring technologies have embraced diverse configurations of
embedded BCG sensors, indicating promising prospects for
future tele monitoring of heart failure patients.

2. ICG potential: Impedance signals appear as a potential source of
heart rate information through beat-by-beat analysis.
Continuous monitoring of systemic vascular resistance, stroke

TABLE 3 (Continued) Heart phantoms are designed to suit imaging applications specially for studying the cardiac dysfunction. Imaging simulators play significant
role in assessing imaging systems. This table summarizes the dynamic hearts modeling myocardial dysfunction. List of previously developed heart phantoms
based on imaging tools.

References Heart phantom control Ventricular pressure and
heart rate variability

Imaging tool Objective

Sandoval et al.
(2018)

A commercial heart model (PVAH-
01 Medical Imaging Technologies,
Shelley Automation Inc. London,
Canada) limited to the ventricles

This phantom’s size is comparable
to a woman’s heart, with the left
ventricle being 76 mL and the right
ventricle measuring 66 mL. They
altered this phantom to
incorporate a tube-like structure
that represents the esophagus

The physical phantom CT images was
processed, A smoothed centerline was
fitted from a set of 180 extracted
points of segmented esophagus

To enhance the direction of
transesophageal high intensity
focused ultrasound (HIFU) atrial
fibrillation therapy, create a new
image-processing technique. a
brand-new 2D-US to 3D-CT
registration technique that was
tailored for the control of
arrhythmia transesophageal HIFU
treatment

Chen et al. (2021) A Dynamic Cardiac Phantom (Data
Spectrum Corporation, Durham,
North Carolina, United States ) was
programmed to pump at EF = 30 or
EF = 60.

For SPECT and CT, the heart rates
were respectively 40, 60, 80, and
100 bpm

Single photon emission computed
tomography (SPECT) and CT
imaging

This study compares the CT and
SPECT calculations of ejection
fraction (EF) at high heart rate. CT
and SPECT were compared using a
dynamic cardiac phantom with
customizable end-systolic volume
(ESV), end-diastolic volume (EDV),
and heart rate

Urbina et al.
(2016)

An MRI-compatible pump, aortic
model, control unit, shutdown valves,
and compliance chamber,
nonreturnables make up the phantom

Systole and diastole pressures were
measured at 5 different positions in
the aortic model. Normal phantom
and healthy volunteers’
hemodynamic values were as
follows: heart rate: 68/61 bpm,
cardiac output: 3.5/4.5 L/min

MRI imaging for flow and velocity
waveforms measuring

To create and evaluate an aortic
phantom that is compatible with
magnetic resonance imaging (MRI),
modeling both normal and aortic
coarctation (AoCo) circumstances
and to compare its hemodynamics
with healthy volunteers and AoCo
patients. And improve the systole
and diastole pressure gradients
compared with previous studies
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volume, cardiac output, and systolic time intervals stands as
exemplary clinical applications of this technique.

3. Significance of PPG wave: The PPG waveform encapsulates a
wealth of health-related information, encompassing vascular
dynamics, oxygenation levels, heart rate, and rhythm.
comprehensive analysis of this waveform holds potential in
diagnosing various cardiovascular disorders, including arterial
stiffness and atherosclerosis

4. ECG as a diagnostic instrument: ECG reigns as a preeminent
non-invasive diagnostic tool for real-time monitoring of cardiac
physiological processes. Its application extends to the diagnosis of
diverse cardiovascular ailments, encompassing atrial fibrillation,
myocardial infarction, ventricular and premature atrial
contractions, and congestive heart failure.

5. Integration of Deep Learning: Modern technological
advancements harness deep learning models to autonomously
and implicitly extract features from ECG data. These models
further simulate heart failure based on ECG data, augmenting
diagnostic capabilities.

6. Role of heart simulators: Heart simulators, adept at emulating the
mechanical dynamics of the heart, yield dependable and
replicable outcomes. They facilitate meticulous process and
system comparisons, thereby underpinning reliable
advancements in cardiac research and diagnostics.

4.2 Limitations

While exploring various methodologies and technologies for
cardiovascular assessment, it is important to acknowledge certain
limitations that appear during their application. This section
highlights several constraints and challenges encountered in the
implementation of these techniques.

1. Variability in BCG design: The design of the fixed template for
BCG exhibits significant variability contingent on the dynamic
measurement conditions. Consequently, it does not conform to a
universal standard. The alterations in patient movement,
postural adjustments, electrode placement, blood composition,
skin moisture levels, ambient radiofrequency interferences, and
even variations in body composition collectively contribute to the
constraints met in ICG.

2. Challenges in Real-Time PPG: Acquiring a real-time PPG signal
while mitigating considerable artifacts presents a notable
challenge. The comprehensive assessment of the influence of
diverse noise sources on the real-time PPG signal and the
subsequent development of methodologies for their effective
elimination from the acquired signal are components integral
to forthcoming research endeavors.

3. ECG measurements can be influenced by factors such as
electrode placement variability, patient movement artifacts,
and interference from external electromagnetic sources.
Additionally, while modern technology leverages deep learning
models to enhance ECG data analysis, the interpretability of these
models remains a challenge.

4. Heart simulators for imaging tools: The primary design
orientation of heart simulators is geared towards
accommodating imaging assessment tools. These simulators

are characterized by their applicability to high-cost
prototyping and maintenance. As indicated in the reviewed
literature, the predominant focus of heart simulators lies in
serving imaging methodologies, underscoring their specialized
utility in this context.

4.3 Recommendations

Based on the analysis and findings presented in the study, to
support the creation and adoption of non-invasive sensor-based
technologies, foster collaboration between researchers, engineers,
physicians, and industry stakeholders. Working together can assist
in solving technological issues, encourage data exchange, and
hastening the conversion of research into clinical practice.
However, to evaluate the precision, dependability, and
generalizability of sensor-based models for heart failure, systolic
and diastolic dysfunction, comprehensive validation studies
involving various patient populations should be carried out. To
guarantee the clinical relevance and efficacy of these technologies
across various patient profiles and healthcare contexts, robust
validation is essential.

Also, concentrate on the creation of wearable sensors and
remote monitoring systems that can track important
physiological characteristics over a long time. Long-term
monitoring can offer insightful information about the course of
the disease, the effectiveness of the treatment, and the early
identification of exacerbations, allowing for prompt interventions
and individualized care. Devote close attention to how user-friendly
and satisfying non-invasive sensor-based solutions are; create
mobile applications with user-friendly interfaces and clear
instructions so that patients and healthcare professionals can
quickly explore and comprehend the gathered data. Patients can
be empowered to participate in their own care and make educated
decisions with clear visualizations and timely alerts.

Also, it is important to assert privacy issues and make sure that
effective security procedures are in place to safeguard private patient
information obtained via non-invasive sensors. Maintaining patient
trust and ensuring ethical use of the gathered data depend on
compliance with data protection laws and regulations. Machine
learning were used widely for the identification of the heart failure
clinical cases, although accuracy is affected by algorithm type and
data size, frame rates of the imaging outcomes and physician
intervention is critical leading to different models from hospital
to the other.

Deep learning approaches—which are more potent and
effective ways to handle the enormous volumes of data
generated—evolved from machine learning approaches, has
proven to have potential for use in heart failure modeling.
Although it is a black box technique, some studies showed
promising results on evaluating the algorithms based on how
clinical end point choice is made.

5 Conclusion

Heart dysfunction is the cause of worrisome patient outcomes,
a subsequent high-rate mortality, and increased economic loss.
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The creation of precise and individualized models for heart failure
prediction, diagnosis, and management has been made possible by
the integration of non-invasive sensing technologies including
BCG, ICG, PPG, ECG, and imaging-based heart simulators.
These sensor-based models can offer insightful information
about the development and severity of heart failure by using
analytics and machine learning approaches. To enhance patient
outcomes and quality of life, they have the capacity to identify early
warning signals, predict exacerbations, and perfect treatment
approaches. Furthermore, the potential for remote monitoring
provided by non-invasive sensor-based technology allows
healthcare personnel to track patient status from a distance and
take proactive action when necessary. This can result in prompt
interventions, fewer hospital stays, and better patient
management, especially for those with chronic or severe heart
failure.

The widespread application and adoption of non-invasive
sensor-based technology for heart failure modeling still faces
difficulties, nevertheless. Data integration, interoperability,
privacy issues, and the requirement for validation across a range
of patient populations are some of these difficulties. To guarantee
that these technologies are useful and prevalent for patients and
healthcare professionals, it is also crucial to address their usability
and accessibility issues.

To sum up, non-invasive sensor-based technologies have
enormous potential for developing heart failure, systolic and
diastolic dysfunction modeling. These technologies have the
potential to transform cardiac dysfunction management and
greatly enhance patient care and outcomes with sustained study,
technological breakthroughs, and collaboration between
researchers, engineers, and physicians.
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