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The cytoskeleton is involved during movement, shaping, resilience, and
functionality in immune system cells. Biomarkers such as elasticity and
adhesion can be promising alternatives to detect the status of cells upon
phenotype activation in correlation with functionality. For instance,
professional immune cells such as macrophages undergo phenotype
functional polarization, and their biomechanical behaviors can be used as
indicators for early diagnostics. For this purpose, combining the biomechanical
sensitivity of atomic force microscopy (AFM) with the automation and
performance of a deep neural network (DNN) is a promising strategy to
distinguish and classify different activation states. To resolve the issue of small
datasets in AFM-typical experiments, nanomechanical maps were divided into
pixels with additional localization data. On such an enlarged dataset, a DNN was
trained by multimodal fusion, and the prediction was obtained by voting
classification. Without using conventional biomarkers, our algorithm
demonstrated high performance in predicting the phenotype of macrophages.
Moreover, permutation feature importance was employed to interpret the results
and unveil the importance of different biophysical properties and, in turn,
correlated this with the local density of the cytoskeleton. While our results
were demonstrated on the RAW264.7 model cell line, we expect that our
methodology could be opportunely customized and applied to distinguish
different cell systems and correlate feature importance with biophysical
properties to unveil innovative markers for diagnostics.
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1 Introduction

Macrophages are involved in every stage of the acute immune response as well as in the
regulation of tissue homeostasis and in the process of tissue repair. As professional
phagocytes, they detect, engulf, and digest particles, microbes, and apoptotic cell debris.
When an individual is healthy, the equilibrium of different activation phases (phenotypes) is
regulated in order to promote inflammation during the pathogens’ neutralization and
regeneration after the resolution of infection. Dysregulation of this equilibrium is involved in
many auto-immune or inflammatory diseases. Therefore, for diagnostics and treatment, the
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ability to recognize and detect different phenotypes is very
important and usually performed with staining agents that can
influence cell receptors and modify the cells’ status. In this
context, we wish to explore biomechanics as a source of
innovative markers to distinguish the macrophages’ phenotypes.

Cell mechanics is related to cellular response to the mechanical
forces exerted by the cell’s microenvironment, including
neighboring cells and the extracellular matrix. The ability of cells
to deform and change upon mechanical stress is critical for
homeostasis and all dynamic processes in tissues and organs (Li
et al., 2018). Mechanical deformability is supporting the complex,
dynamic, and anisotropic nature of cells, which must respond in
both space and time to the chemical-physical cues presented by the
cellular microenvironment. Changes in the mechanical properties of
cells often correlate with different cell types and disease states such
as cancer (Cross et al., 2007; Suresh, 2007) but are less investigated in
immunology.

Atomic force microscopy (AFM) is one of the best techniques to
directly access the mechanical property of macrophages correlated
with the structural organization of cytoskeletons. Until now, only a
few AFM studies have been performed on macrophages, (Rotsch
et al., 1997; Leporatti et al., 2006; Roduit et al., 2012), and especially
phenotype activation was investigated on fixed hardened cells (Pi
et al., 2014).

The main challenge in this work is to exploit AFM
nanomechanics (quantified as Young’s modulus and adhesion) as
additional dimensions to improve the accuracy in AI-based imaging
classification. In this framework, one of the best methods to extract
useful information from big datasets is definitely Deep Neural
Networks (DNNs), thanks to their performance (using parallel
computing), to achieve classification (Bengio and Delalleau,
2011). Deep learning has been tremendously successful in a
variety of applications for its strong fitting and predicting ability
since 2006 (Hinton and Salakhutdinov, 2006). The use of DNNs is
expected to achieve more reliable mechanical biomarkers and
deliver classification results for diagnostics with high speed and
precision.

Until now there are only a few available applications of AFM
mechano-imaging diagnostics aided actively by AI, a technique
predicted to have enormous impact for healthcare (Garcia, 2020).
For example, Darling and Guilak (2008) applied DNN algorithms on
cell nanomechanics from AFM force spectroscopy events (no
imaging), analyzing cells populations using a single parameter
per cell. While an accuracy of 96% was achieved in
distinguishing sub-populations of mesenchymal cell types
(different mechanical properties), the method was less
performant in distinguishing chondrosarcoma cell lines (similar
average elasticity), leading to lower accuracy. The approach of
applying DNN on single AFM force curves was also applied to
recognize brain cancer tissue (Minelli et al., 2017; Ciasca et al., 2019).
Although single force curves showed a certain feasibility during
machine learning classification, spatially resolved mechanical
properties in a form of mechanical maps are expected to deliver
information about properties distribution to be used as important
“feature” in object recognition.

Sokolov et al. (2018) delivered one of the first applications of
DNNs in biological AFM in order to classify bladder cancer cells. In
contrast to the standard analyses, they applied DNNs after

extracting quantitative sets of surface parameters from height
images (e.g., roughness, directionality, fractal properties). The use
of these parameters instead of images substantially decreases the
dimension of the data space and the need for large datasets. AFM
morphological maps were used to distinguish between neuronal cell
development, (Lohrer et al., 2020) showing higher performance than
scanning electron microscopy to determine the maturation status of
dendritic cells automatically. Their approach is interesting but
applies only to morphology, while biomechanics is left
unexplored. Recently, Wang et al. (2021) used AFM mechanical
maps to train a malignancy classifier through machine learning
applied to different cancer lines. Validation of cells with different
degrees of morphological and elastic heterogeneity and malignancy
showed the good performance of the mechanomics biomarker and
its advantage over conventional morphological cytology.

AFM mechanical measurements have inherent drawbacks
related to poor automation and low speed, making AFM-based
technique less competitive over traditional AI optical imaging
diagnostics. In fact, as a data-driven method, deep learning
requires large training datasets (usually larger than 103).
Although deep learning methods were applied to improve
automated cell recognition by AFM, (Rade et al., 2022) it is
unlikely that 103 AFM scan images are obtained within a
reasonable time and cost. Therefore, use of deep learning on
such small datasets will inevitably lead to overfitting, resulting in
poor models with high training/verification accuracy but low-test
predicting accuracy.

A typical approach to solve this issue is data augmentation. For
example, in convolutional neural networks (CNNs), images can
undergo a spatial shift, rotations, and flip to generate sets of data
invariant from rototranslations (Azuri et al., 2021). The most
promising feature of CNNs in classifying images resides in the
possibility to extract details, learn, and build a model from input
images that can be used to classify new images. However, on small
datasets, the performance of the CNN model is limited, and too
many morphological details increase uncertainty in classification.
The considerable shape diversity within the same phenotype group
also makes the classification difficult, especially on small and low-
resolution image datasets of living cells (such as most mechano-
imaging results). Another typical solution is to pre-train a DNN on a
large auxiliary dataset, followed by fine-tuning on the small dataset
of interest. However, as in most of the experimental problems, no
suitable auxiliary dataset exists in atomic force microscopy
mechano-imaging of macrophages. Therefore, a new
methodology and protocol must be developed to fully exploit the
wealth of information from single AFM images of macrophages’
phenotypes.

The main challenge in this work is to exploit cell nanomechanics
by AFM (quantified as Young’s modulus, adhesion, etc.) as
additional dimensions to improve the accuracy for automated
AI-based imaging classification. In this work we design and
demonstrate a general route to train a deep learning model on
small AFM datasets based on a multimodal fusion and voting
mechanism. The new strategy was based on considering image
pixels (correspond of AFM force curves) with spatial attributes to
enlarge datasets while maintaining useable information of multi-
properties distribution in space and filter out the interference
information. On our small training dataset (100 AFM images of
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RAW264.7 murine macrophages), the predicting classification
accuracies for resting, pro-inflammatory, and pro-healing
phenotypes reached very high classification accuracies up to
88.9%, 100%, and 100%, respectively. This methodology is
expected to obtain high accuracy for other cells’ systems as well
while delivering important information on the correlative properties
with biological interest.

2 Materials and methods

2.1 Materials and cell culture

The cell line RAW 264.7 was purchased from Cell Bank of
ATCC and stored with dimethyl sulfoxide (DMSO, Sigma-Aldrich)
in a frozen pipe in liquid nitrogen for long-term storage. Before
experiments, the cells were cultured in Dulbecco’s modified eagle
medium (DMEM, Gibco) supplemented with 10% fetal bovine
serum (FBS; Sigma-Aldrich), 100 units cm−3 penicillin, and
100 units cm−3 streptomycin in a 5% CO2 and 98% air-
humidified incubator at 37°C. Subcultures were prepared by
scraping after washing twice with PBS. Subcultures or culture
medium exchanges were routinely established every 3 days. In
particular we tested resting phenotype (standard control) and
polarized to pro-imflammatory and pro-healing phenotypes after
LPS (1 μg cm−3 after 24 h) and IL-4 (0.1 μg cm−3 after 24 h)
stimulation, respectively. Lipopolysaccharide (LPS) is generally
found on bacteria surface therefore, it represents the most used
choice in immunology to activate the pro-inflammatory phenotype
in macrophages. Interleukin 4 (IL-4) is a cytokine released after the
inflammation phase to switch pro-inflammatory phenotypes to pro-
healing and start the regeneration process. In this work we will use
the simplified notation M0 for resting phenotype, M1 for pro-
inflammatory, and M2 for pro-healing phenotypes. In order to
thermalize the culture plates at 37°C, we used the environmental
controller with BioHeater from Asylum Research during all AFM
experiments.

2.2 AFM nanomechanics

A MFP3D-Bio from Asylum Research was employed in the
Force Mapping mode in order to perform morphological and
mechanical imaging. A series of single force spectroscopy events
(force vs. indentation curve or simply force curves FCs) are acquired
regularly spaced on a square matrix while recording topography at
maximum force. For all experiments we used spherical micrometric
probes (nominal radius R = 5,000 nm) in borosilicate glass attached
on a soft cantilever (nominal spring constant k = 0.2 Nm−1) from
Novascan. Beyond the nominal value, the radius of the spherical
probe was characterized by reverse imaging on regular spikes of the
TGT1 calibration grid (NT-MDT). Large micrometer-sized probes
allowed us to apply reduced local pressure and perform a robust
statistical averaging over a mesoscopic interaction area (volume) to
better characterize the effect of RTILs on the cell membrane but
while also providing a satisfactory lateral resolution compared to the
typical cell dimensions. Spring constant and optical lever sensitivity
were measured by acquiring a standard force curve on a glass surface

in water, successively, using a thermal noise routine from Asylum
Research. This experimental setup was successfully employed in
recent investigations by the authors (Galluzzi et al., 2018; Tang et al.,
2019; Zhang et al., 2022).

Briefly, we selected the parameters for the acquisition of FC:
ramp size 8 μm, force setpoint FMAX ≈ 7 nN, approaching velocity
v = 32 μm s−1, ramp rate 2 Hz. The setpoint force was selected in
order to obtain roughly 50% of curve in contact with cell and 50%
non-contact considering the higher part of cell. A total of 32 × 32 =
1024 force curves were typically acquired in each force mapping, as
we had enough resolution to distinguish single cells in a reasonable
scan time (9 min). A total of 10–15 AFM maps can be acquired on
the same sample.

The contact point of each FC was individuated by binning the
force axis and producing a histogram; the non-contact part is
determined as a sharply defined Gaussian distribution, which
peaked at zero force. The contact point distance (i.e., the
indentation length) was used to correct the morphology map. In
fact, morphology is usually obtained at maximum force and
indentation maps must be added to retrieve the zero-force
morphology, also known as the Morpho channel.

The region of the FC above the width of the Gaussian
distribution is considered as the indentation for the fitting
procedure. In this framework, the finite thickness correction
from Dimitriadis et al. (Dimitriadis et al., 2002) was
implemented on standard Hertz model of Eq. 1, considering
in the square bracket the height of the cell between probe and
substrate:

F � 4
3

E
��
R

√
1 − ν2( )δ

3/2 1 + 1.009χS + 1.032χS
2 + 0.578χS

3 + 0.0048χS
4[ ]

(1)
where F is the applied force, δ the indentation, ν the Poisson’s

ratio, E the effective Young’s Modulus of the cell, and R the radius
of the spherical probe and the dimensional parameter
χS �

���
Rδ

√
/h. Because there are several differences in the orders

of magnitude between probes and cells in Young’s modulus, we
always use the effective Young’s Modulus as the modulus of the
cell. The finite thickness correction was created while considering
a bound layer (i.e., well adherent) and a free-to-move layer with
respect to the substrate (Zhou et al., 2020). Since cells are not
completely or firmly attached to substrates, we always use a
boundary condition as an arithmetic mean of coefficient for
bound and not-bound states.

The indentation length depends on the maximum force
applied. During data analysis, the percentage of indentation
length can be controlled, and mechanical datasets were
selected using low indentation (0%–30%) and high indentation
(70%–100%). In this work, we defined separate channels for low/
high indentation called MechL and MechH, respectively. While
MechL is sensitive to the mechanical properties of shallow layers,
MechH is more sensitive to deep layers but always mechanically
convoluted with MechL.

After reaching the maximum setpoint of force, the probe
inverts motion, decreasing applied force and retracting from the
sample. The retracting force curve is used to measure the
adhesion force necessary to overcome the physicochemical
bounds between the probe and cell surface. Adhesion, the
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so-called Adh channel, was registered as minimum of retracting
force curve after zero force alignment of non-contact part.
Adhesive interactions are generally small (on average
0.2–0.5 nN v.s. 5–10 nN of indentation force), ensuring the
validity of the non-adhesive model in Eq. 1.

2.3 Laser scanning confocal microscopy and
flowcytometry

RAW 264.7 macrophages were cultured as explained before and
then seeded in dishes (35 mm, Ibidi, Gräfelfing, Germany) and
25 cm2

flasks for Confocal Laser Scanning Microscopy (CLSM)
and Flowcytometry (FLC), respectively. Similar treatment and
protocol were used for both techniques. In more detail, cells were
fixed with Image-iT Fixative Solution (Invitrogen) for 15 min
followed by 0.1% Triton X-100 to improve membrane
permeability. Cells were incubated with primary monoclonal
antibody Anti -alpha Tubulin Mouse (Servicebio) for 2 h,
followed by incubation with a secondary Cy5 conjugated Goat
Anti-mouse antibody (Servicebio) for 45 min. Subsequently, cells
were incubated with Phalloidin Alexa Fluor 488 (Invitrogen) for 1 h
at room temperature.

At this stage of staining, cells were collected by scraping and
dispersed in PBS for FLC. A flow cytometer (CytoFLEX S, Backman
Coulter) was employed. Actin fibers were visualized by exciting with
a 488 nm laser and collecting fluorescent signal between ≈530 nm by
the FITC channel. Tubulin microfilaments were detected with a
638 nm excitation laser while detecting ≈670 nm signal. Data were
analyzed using FlowJo software, and gating in particular was used to
exclude deviant points and doublets.

For CLSM, cells were further incubated with DAPI (Invitrogen)
for 15 min and finally cured in ProLong Glass Antifade Mountant
before measurements. CLSM (Nikon AXR, Nikon, Japan) used the
same excitation/emission paths of FLC, adding 405 nm laser for
DAPI excitation and ≈460 nm emission peak. Images were acquired
at 1024 × 1024 resolution with four lines averaging, laser power and
gain were optimized and maintained constant for all samples.
Images were finally analyzed and exported using NIS-Elements
AR Analysis (Nikon, Japan).

2.4 General pipeline

The general processing pipeline of this work is schematized in
Figure 1. First, each macrophage is characterized by AFM, and after
data analysis, Adh, MechH, MechL, and Morpho channels are
obtained as depicted in Figure 2C. Since each pixel represents a
single force curve (one indentation event for different locations) of a
total force volume, the maps can be divided into pixels with four
channels. The transformation from AFMmaps to pixels enlarges the
dataset, reserves the morphology and mechanical information
obtained from the AFM measurement, but drops the location
distribution information of each pixel. Therefore, additional
distribution information on pixel level is needed in describing the
pixels. Besides these four channels, the normalized distance between
pixel position and cell center (ND) and the normalized distance
ranking between pixel position and cell center (NDR) were also
employed for each pixel position of this macrophage to characterize
its relative position in this macrophage.

The center position of each macrophage is defined as the average
location of all the pixels in it with the weight of height (Morpho
value). The ND of a pixel position represents its distance to the
center of its macrophage divided by the maximum distance to the
center of all pixel positions in this macrophage (shown in
Figure 2A). NDR was calculated in the following route (shown in
Figure 2B). First, all the pixel positions in a macrophage were sorted
from small to large distance to the center. Then these distance
rankings were divided by the pixel number the macrophage
contains. ND and NDR are important features to maintain useful
spatial information when dividing maps into pixels as well as to filter
irrelevant information such as some shape details. Although
similarly, the relationships between ND and NDR in
macrophages and different shapes are clearly different, especially
in terms of the roundness of the macrophage (as shown in
Supplementary Figure S1). Besides the pixel location information,
the relationship between ND and NDR reveals the shape
information of a macrophage but from a viewpoint of pixel
positions. More importantly, ND and NDR values differ from
pixel position to pixel position even in one macrophage, which
match well with the other four channels. Since the macrophagemaps
were divided into pixels to enlarge the dataset, all the data that differ

FIGURE 1
General processing pipeline for the training and prediction process of the DNN model in this work.
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from macrophage to macrophage should be banned, such as
information on the shape, size, height, and volume of a
macrophage. This kind of macrophage information is invariable
when pixel position changes in a macrophage. If such macrophage
information is added as additional channels of the pixel positions,
the DNN will focus on the macrophage information, ignoring the
fluctuation in pixel position information. The large pixel dataset will
degenerate into a small macrophage dataset again, with the
redundant information of pixel positions, leading to overfitting of
the DNN. Therefore, ND and NDR are employed as two additional
channels instead of macrophage information. The information of
these six channels was fused as data points containing the properties
and localization information of each pixel on macrophage’s surface.
The phenotype category of this macrophage was used as the training
label of the pixel positions in it. Therefore, the four AFM channels of
a single cell were expanded in 100-fold data points, each of them
containing six features and a label. In this way, the size of the AFM
dataset was enlarged by a 102 factor.

After the transformation from picture dataset to list dataset (as
shown in Table 1), a DNN model was trained to obtain the
relationship between the features and the labels of pixel
positions. The obtained DNN model was used to predict the
labels of pixel positions in test dataset, a list dataset with the
same structure as the training dataset. The test dataset acts as a
blind experiment since the labels of the test dataset were kept
unknown both in the DNN test process and the voting process.
The category of each test macrophage was predicted by the voting on
the result of the pixel positions in it.

2.5 Data processing

The original AFM datasets selected only whole macrophages or
nearly whole macrophages to locate the macrophage center
correctly. Then, the AFM data was processed as schematized in
Supplementary Figure S2. The AFM dataset was randomly divided

FIGURE 2
(A)Graphical example of ND definition as normalized distance from center and (B) definition of NDR as normalized ranking of distance from center.
(C) AFM experimental force curve on the macrophage, showing approaching (blue) and retracting (red) and contact. On approaching curve MechL is
evidenced as result of Eq. 1 fit in range [0%–30%] of indentation and MechH as fit on range [70%–100%]. Adh is evidenced as the force required to detach
from the sample surface during the retraction motion. Morpho is calculated as the sum of the height map at maximum force and indentation.
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into a training set, validation set, and test set by a ratio of 0.6, 0.2, and
0.2, respectively. Then the AFM result of each macrophage in three
sets was divided into pixel points and the three picture sets was
transformed to three list set as described above. The details of the
three sets are shown in Supplementary Table S1. The size of the
training set, validation set, and test set are 17729 × 6, 4938 × 6, and
6358 × 6, respectively.

After normalizing all features into [-1, 1], the normalized feature
was input into a DNN model.

2.6 Model training

The DNN was coded mainly using the TensorFlow deep
learning framework (Abadi et al., 2016). As shown in
Supplementary Figure S3, the model is built by fully connected
layers, with a structure shown in Supplementary Table S2. Adding
up all the parameters in Supplementary Table S2, its total trainable
parameter number is 3891. The six features of each pixel position
were sent into the input layer and propagated forward through seven
hidden layers to the output layer to calculate the three classification
possibilities. The training set size is 17729 (as shown in
Supplementary Table S1), which is enough to train this network.
Additionally, dropout, L2 regularization, and early stopping were
used in the training process to further reduce the possibility of
overfitting. Dropout (Hinton et al., 2012; Srivastava, 2013; Srivastava
et al., 2014) was applied to induce part of neurons to stop working
with a certain probability, reducing the dependency among the
neurons. L2 regularization (Cortes et al., 2009) is used to add the
square sum of all the trainable parameters into the objective function
(i.e., the error function between the calculated output and the label),
reducing the complexity of the DNN fitting function and thus
increasing the robustness of DNN. Early stopping (Yao et al.,
2007) is an easy way to stop overfitting by stop training when
the training effect not getting obviously better within several epochs.

2.7 Voting mechanism

The voting result of a macrophage’s phenotype is determined by
a weighted voting process of pixel values and positions of cell
surfaces. Since the macrophages are adherent, the locations with
high thickness are located at the nucleus position, while lower
thicknesses represent the periphery, and a different cytoskeletal

composition is expected. As the cell height, composition, and
heterogeneity change, the relationship between morphology and
additional properties may change, so that classification uniqueness
and the classification ability of features are influenced. The feature
classification ability of different cell composition can be captured as
an empirical weight function in which the heterogeneity can be
represented by different thickness values over the cell area. Here, a
polynomial relation was employed and the voting weight W(x) at
pixel position x can be calculated as shown in Eq. 2:

W x( ) � α · Morpho x( ) − β x( )( )
γ + C (2)

In which α and γ are the empirical parameters to represent the
importance of the thickness information, while C is another
empirical parameter to represent the part independent of the
thickness. Morpho (x) is the characterized Morpho value at pixel
position x. β(x) is the estimated Morpho value of the substrate at
pixel position x. In this work, since the Morpho value of the
substrate is set to 0 in the AFM characterization, β(x) = 0.
Additionally, the voting weights are set to 1 in order to obtain a
universal conclusion without experiential factors, i.e., α, γ are 0 and
C is 1 and thus all weights are equal. More accurate voting results can
be expected when changeable weights are used. The changeable
weights from Eq. 2 or in another formation can be obtained when
the experience of experts is employed, followed by training on an
additional validation dataset, which is different from the validation
dataset used in DNNs. Supplementary Figure S4 shows how the
parameters in Eq. 2 affect the voting results. When the methodology
and the pipeline in this work was applied to other cell line, the
empirical weight function can be modified and trained reasonably.
Additional explanation can be found in the Supplementary Material
(Pixel Voting Classification).

2.8 Permutation feature importance

To calculate the importance of feature Xi, the data of feature
Xi in the test set were shuffled as Xi’. The new test set obtained
was sent into the obtained DNN model for new prediction. The
mean absolute error (MAE) between the new prediction and
the original prediction was used to characterize the importance
of the feature Xi (Fisher et al., 2019). In this work, each of the
six features was shuffled 20,000 times, and the normalized
average MAE of each feature represents the importance of
the feature.

TABLE 1 Example of a structure of the training set.

Adh MechH MechL Morpho ND NDR Category

0.7249 1.4986 1.9664 4530.2 0.707107 0.688889 M0

0.34208 2.4412 1.8936 1048.2 0.675941 0.875 M2

0.22594 2.8802 2.9136 6842.1 0.166667 0.042254 M1

..

. ..
.

1.2217 2.0469 1.9219 3940.4 0.316228 0.538462 M2

0.24199 1.8969 2.0261 6175.4 0.517727 0.427083 M0
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3 Results and discussion

3.1 AFMmechano-imaging and cytoskeleton
analysis

The AFM nanomechanical experiment was performed on RAW
264.7 cells after biochemical stimulation to induce phenotype
polarization in comparison with resting phenotype.

Live macrophages have a very low Young’s modulus (average
150 Pa for M0 phenotype on full indentation range), which is
consistent with the large deformability required during
phagocytosis; the Young’s Modulus and adhesion by AFM show
significant modifications upon phenotype polarization (M1 or M2).
As shown in Figure 3, morphology, the Young’s Modulus and
adhesion by AFM are presented using 64 × 64 resolution. For
instance, M1 phenotype population shows volume swelling and
more rounded and flattened morphology, while the Young’s
modulus increases significantly. M2 pro-healing phenotype shows
a decrease in cell size, stretched linear morphology, slight increase of
the Young’s modulus, and only slight increase in adhesion.

The average values and quantification from the AFM datsets are
presented in SupplementaryTable S3 and Supplementary Figures S5A–E.
Interestingly the quantification using flowcytometry (intensity data in
Supplementary Table S4) is in agreeement with AFM; for instance, size
and granularity (Supplementary Figures S5F–H) follows the volume
measured by AFM (Supplementary Figure S5B). The shallowmechanical

modulus (MechL, Supplementary Figure S5C) is relative to the most
external layer of cytoskeleton that is in partial agreement with actin signal
(Supplementary Figure S5G), while the deep Young’s modulus (MechH,
Supplementary Figure S5D) provides information from internal layers,
which is in partial agreement with tubulin signal from flowcytometry
(FLC) (Supplementary Figure S5H). The partial agreement andmixing is
expected because the mechanical modulus of a complex multilayer
system is convoluted, for example, high values in shallow layers also
contribute when measuring deep layers (like the case of M1). The results
show a clear correlation between phenotype determination by
biochemical methods and biomechanics, highlighting the feasibility of
using AFM mechanical data to distinguish between pro/neuter/anti-
inflammatory functional status in macrophages.

Although interesting, the average values from AFM and FLC
data do not consider the space distribution of properties. For this
reason we compared the AFM analysis with confocal microscopy
CLSM. Supplementary Figure S6 shows the overlay of nucleus
(blue), actin fibers (green), and tubulin filaments (red) for
macrophages under the three conditions. Confocal microscopy,
in particular, shows actin is localized at the external layers for all
cells and is abundant for central part of M1 cells, while tubulin
filaments are mostly near the nucleus or in the elongated filopodia of
the M2 phenotype, which is also in agreement with AFM and
flowcytometry. While there is no previous information about the
nanomechanics of prohealing M2, there is evidence in literature that
actin is involved in the M1 phenotype in the re-structuration of

FIGURE 3
AFM measurements for resting and polarized macrophages. Morphology, shallow Young’s Modulus (MechL), deep Young’s Modulus (MechH) and
adhesion maps for RAW 264.7 @37C, respectively, M0 phenotype (A–D), M1 phenotype after 1 μg/mL LPS (E–H), and M2 phenotype after 0.1 μg/mL IL-4
stimulation (I–L).
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shape and cell functionality. Pi et al. (2014) performed AFM on
RAW 264.7 upon LPS stimulation, and although cells were fixed, an
increase in Young’s modulus, adhesion, and surface roughness were
detected. Moreover, they noticed actin redistribution by CLSM,
which might be the main reason for the stiffness increase
detected by AFM.

3.2 CNN model

AFM images corresponding to different channels were used as
input in different neural network models for classification. As a
compared model, a convolutional neural network (CNN, a deep
learning model used on image dataset) was used to classify the
phenotypes. The most common data augmentation approach for
CNN was to rotate, flip, and crop the AFM data maps of
macrophages as shown in Supplementary Figure S7. After that,
CNN was trained and the predicted accuracies in confusion matrix
are shown in Supplementary Figure S8. However, the performance
of the obtained CNNmodel is a near random guess, which is mainly
because of the irregular shape and mechanical heterogeneity of
living macrophages. As shown in Supplementary Figure S9 for AFM
and Supplementary Figure S6 for CLSM, the shape diversity of
macrophages is great both within the same category and between
different categories. For a typical small dataset of force volume
images on macrophages the performance of CNN is low. The reason
is mainly due to the CNN algorithm focusing on spatial details that
are not well-defined (due to 32 × 32 resolution) and useless for
phenotype discrimination.

3.3 DNN model

The DNN model as mentioned in Section 2.6 was employed,
showing better performance. The learning curves in Figure 4A
show that the training and validation accuracy of the model
reaches 70% after two epochs, indicating a strong learning
efficiency. The model prediction results are represented in the

confusion matrix of Figure 4B, demonstrating the predicted
accuracy of the model for M0, M1, and M2 is 74.8%, 92.6%,
and 78.2%, respectively. The results show that the M1 phenotype
can be distinguished easily from the other phenotypes, and this is
reflected in the fact that mechanical features such as MechL and
MechH have higher values compared with M0 and M2. On the
otherhand, M0 and M2 have a similar mechanical modulus and
similar shapes, causing more mistakes in the phenotype
determination.

3.4 Voting

According to the category prediction for pixel positions from
the DNN model, the category of macrophages was predicted by a
voting mechanism. Calculations (shown in Supplementary
Figure S10) show that the predicting voting accuracy of a
macrophage can be as high as 99.9% if the pixel position
prediction accuracy and pixel number of the macrophage are
high enough. The calculations assumed all predictions of pixel
positions are independent. This is a strong assumption, but it is
still useful to understand the reliability and robustness of voting
mechanism. For example, in a three-category prediction, the
voting predict accuracy of a macrophage can be calculated
using Eq. 3:

P � Cr
m · pr0 · Cw1

m−r · pw1
1 · Cw2

m−r−w1
· pw2

2 · pm−r−w1−w2
3 (3)

In Eq. 3, P is the predicting voting accuracy of amacrophage;m is the
pixel number in the macrophage; r, w1, and w2 are the number of pixel
points voting the right category, voting the first wrong category, and
voting the secondwrong category, respectively; p0, p1, and p2 represent the
predicting possibility of pixel points into the right category, the predicting
possibility of pixel points into the first wrong category, and the predicting
possibility of pixel points into the second wrong category, respectively.
The theoretical relationship between the predicting voting accuracy of a
macrophage and the pixel number in themacrophage was calculated and
is shown in Figure 5A using Eq. 2 and the pixel predicting accuracy of the
trained DNN model in Figure 4B.

FIGURE 4
(A) The learning curves of the DNN model; (B) The predicting accuracy confusion matrix of the DNN model.
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The theoretical prediction voting accuracy for phenotype
increases as the pixel number on the macrophage increases.
The theoretical voting accuracies of M0, M1, and
M2 macrophages are higher than 99.9% when the pixel
number in a macrophage is higher than 20, 7, and 17,
respectively. In the real voting process, the predictions of pixel
positions are not independent, so the pixel number thresholds for
three kinds of macrophages are different. The average pixel
numbers of M0, M1, and M2 macrophages in the test set are

104, 334, and 134, respectively, as shown in Supplementary Table
S1. The real voting accuracy of macrophages in this work for M0,
M1, and M2 macrophages is 88.9%, 100%, and 100%,
respectively. As explained in the previous section before
applying pixel voting, inflammatory phenotype M1 is clearly
well-distinguishable, while the misclassification may come
from the similarity between M0 and M2 in modulus and shape.

Typical examples of voting maps are presented in Figure 6
where different colors represent the outcomes of voting

FIGURE 5
(A) The relationship between the theoretical predicting voting accuracy of a macrophage and the pixel number in the macrophage using the pixel
predicting accuracy of the trained DNN model. (B) The real voting accuracy confusion matrix of macrophage in this work.

FIGURE 6
Some representative voting and classification results on selected cells: (A) M0, (B) M1, (C) M2, and (D) M2 with poor classification. The pixel
predictions of the trained DNN model were artificially colored red for M0, green for M1, and blue for M2.
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classifications pixel by pixel. Figures 6A–C shows representative
images of well-classified cells, showing M0 with red, M1 with
green, and M2 with blue. Figure 6D represents a poor
classification in the M2 group where the modulus of
periphery parts is similar to M1 and shape is a hybrid of the
three typical conformations. Pixel voting also introduces
inherent errors, always discriminating as M2 for the cell
center where ND and NDR degenerate to zero (−1 after
normalization). Few degenerate points on the cell area are
negligible for final classification.

Interestingly, points located at the far edges of macrophage can
be mistaken as the M1 phenotype. This is mainly due to the
correlation with mechanical moduli (MechL and MechH)
increasing at the periphery and being mistaken for the
M1 phenotype, which has higher moduli. This is biologically
relevant for living macrophages that are concentrating actin
cytoskeletons in the periphery during the migration process.
Indeed, actin is used as a motor for cell movements, and
increasing the density during pulling and traction is also reflected
in an increase in the mechanical modulus (Weirich et al., 2021).
Movements and an increase in the modulus can shift the evaluation
towards the M1 phenotype.

3.5 Feature importance analysis

The mean absolute error (MAE) induced by changing a
feature as mentioned in Section 2.8 was computed as a feature
importance analysis. The importance of a feature is calculated by
the increase in the model’s prediction error after permuting the
feature. A feature is important if shuffling its values increases the
MAE obviously. The MAE of each feature and the shuffle round is
shown in Figure 7A. The feature importance was calculated as
shown in Figure 7B.

In the DNN algorithm, all data layers are employed to classify
different phenotypes, and therefore the response of different
features is convoluted. It is interesting to notice that the
adhesion signal was evaluated as a poor discriminator. Indeed,
without functionalization of the spherical probe (silicon oxide)

there is no specific difference in membrane adhesion between
different phenotypes. Considering all the properties obtained by
AFM, the most relevant for classification are mechanical moduli
from shallow and deep indentation and their local distribution
features ND and NDR, which contain convoluted information
from shallow and deep cytoskeleton filaments and position
information.

4 Conclusion

In this work, a general route to enlarge AFM datasets, train a
DNN model by multimodal fusion, and obtain predictions by use
of a voting mechanism was proposed. A DNN model was
successfully trained on a small AFM dataset of macrophages.
The theoretical calculations confirmed the reliability and
robustness of voting mechanism, i.e., the prediction voting
accuracy of a macrophage, can be as high as 99.9% if the pixel
position prediction accuracy and pixel number in the
macrophage are high enough. The obtained voting prediction
accuracy for M0, M1, and M2 is 88.9%, 100%, and 100%,
respectively. This model can be used as a powerful tool to
quickly classify macrophages in AFM characterization. The
feature importance of the DNN model was calculated,
highlighting property distribution and the mechanical
modulus as the most performant features for classification.
This finding is biologically relevant as flowcytometry and
confocal microscopy confirmed that phenotype activation
triggers different conformations at the cytoskeleton level. This
work not only provides a new approach to train a deep learning
model on small AFM datasets, but it also sheds light on deep
learning training for other experimental problems hindered by
small datasets.
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FIGURE 7
(A) The relationship between the MAE of each feature and the shuffle round; (B) the normalized feature importance.
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