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The precise alignment of tibiofemoral components in total knee arthroplasty is a
crucial factor in enhancing the longevity and functionality of the knee. However, it
is a substantial challenge to quickly predict the biomechanical response to
malrotation of tibiofemoral components after total knee arthroplasty using
musculoskeletal multibody dynamics models. The objective of the present
study was to conduct a comparative analysis between a deep learning
method and four conventional machine learning methods for predicting knee
biomechanics with different tibial component malrotation during a walking gait
after total knee arthroplasty. First, the knee contact forces and kinematics with
different tibial component malrotation in the range of ±5° in the three directions
of anterior/posterior slope, internal/external rotation, and varus/valgus rotation
during a walking gait after total knee arthroplasty were calculated based on the
developed musculoskeletal multibody dynamics model. Subsequently, deep
learning and four conventional machine learning methods were developed
using the above 343 sets of biomechanical data as the dataset. Finally, the
results predicted by the deep learning method were compared to the results
predicted by four conventional machine learningmethods. The findings indicated
that the deep learning method was more accurate than four conventional
machine learning methods in predicting knee contact forces and kinematics
with different tibial component malrotation during a walking gait after total knee
arthroplasty. The deep learning method developed in this study enabled quickly
determine the biomechanical response with different tibial component
malrotation during a walking gait after total knee arthroplasty. The proposed
method offered surgeons and surgical robots the ability to establish a calibration
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safety zone, which was essential for achieving precise alignment in both
preoperative surgical planning and intraoperative robotic-assisted surgical
navigation.

KEYWORDS

total knee arthroplasty, accurate rotational alignment, musculoskeletal multibody
dynamics model, deep learning, machine learning, biomechanics

1 Introduction

Accurate alignment of tibiofemoral components is a critical
element in obtaining favorable clinical outcomes for patients after
total knee arthroplasty (TKA). Poor rotational alignment of
tibiofemoral components can result in knee stiffness (Bedard
et al., 2011; Kim et al., 2014), evaluated joint contact stress
(Chen et al., 2015; Ueyama et al., 2020; Tang et al., 2022), and a
high prevalence of TKA revisions (Dalury et al., 2013; Panni et al.,
2018; Rajgopal et al., 2022). Moreover, over 50% of patients who
experienced joint pain after TKA had mal-rotational alignment of
the knee components, which is a substantial contributor to joint pain
and functional deficit (Hofmann et al., 2003; Bell et al., 2014;
Abdelnasser et al., 2019b; Rajgopal et al., 2022). The focus of
most clinical studies has been on assessing the impact of
component malrotation on knee function through postoperative
evaluations. Notwithstanding, these assessments fail to provide
surgeons accurately and quickly with the necessary biomechanical
performance data for preoperative surgical planning or
intraoperative surgical guidance. This lack of information may
result in unsatisfactory recovery of patient knee function after
TKA caused by component malrotation. Barrack et al. evaluated
the relationship between anterior knee pain and component rotation
after TKA, discovering that patients with anterior knee pain had an
average of 6.2° of internal rotation compared to a mere 0.4° of
external rotation in pain-free patients (Barrack et al., 2001).
Similarly, Abdelnasser et al. investigated the effects of intra-
operative intentional malrotation of the tibial component on vivo
kinematics, revealing that internal rotation of the tibial component
in TKA can result in postoperative extension deficits, potentially
causing pain and knee stiffness (Abdelnasser et al., 2019a). These
clinical findings underscored the importance of accurate component
alignment in determining the knee function of TKA patients.
Therefore, developing effective and quick methods to correct
component malrotation during preoperative planning and
intraoperative surgical guidance to prevent unsatisfactory
functional recovery after surgery remains a pressing
clinical challenge.

Numerous computational studies have explored the impact of
component malrotation on knee biomechanics during a walking gait
after TKA using musculoskeletal multibody dynamics and finite
element methods (Kuriyama et al., 2014; Smith et al., 2016;
Vanheule et al., 2017; Fang et al., 2022; Tang et al., 2022). Chen
et al. found that varus-valgus malrotation of the tibial/femoral
component and internal-external malrotation of the femoral
component with a 5° variation impacted peak medial contact
force by 17.8%–53.1%, peak lateral contact force by 35.0%–
88.4%, and peak total contact force by 5.2%–18.7% using a
multibody dynamics model (Chen et al., 2015). Likewise, Kang

et al. demonstrated that external malrotation of the femoral
component increased the lateral contact stress of the tibial
component, whereas internal malrotation increased the medial
contact stress using a finite element method (Kang et al., 2016).
Nonetheless, these computational models have a significant
limitation in that they are typically time-consuming and
computationally demanding. As a result, accurately and quickly
predicting the biomechanical response to component malrotation
during preoperative surgical planning or intraoperative surgical
guidance using computational models remains a
considerable challenge.

Recently, artificial intelligence (AI) techniques have emerged as
a promising alternative for quickly and accurately predicting human
biomechanics. Numerous studies have employed machine learning
methods to forecast ground reaction forces from patient gaits (Oh
et al., 2013; Guo et al., 2017; Wouda et al., 2018; Johnson et al., 2019;
Komaris et al., 2019), computer vision methods to estimate patient
poses (Mehrizi et al., 2019; Tamura et al., 2020), and wearable
sensors to assess patient kinematics (Stetter et al., 2019; Gholami
et al., 2020; Mundt et al., 2020). Stetter et al. demonstrated that
combining wearable sensors and artificial neural networks
accurately estimated knee joint forces across various movements,
including linear motions, changes of direction, and jumps (Stetter
et al., 2019). Zhu et al. proposed a knee contact force prediction
method that integrated artificial fish swarm and random forest
algorithms, with experiments verified that the proposed method
outperformed classical multibody dynamics analysis and artificial
neural network models (Zhu et al., 2020). Moreover, Rane et al.
trained a deep neural network using a set of kinematic, kinetic, and
electromyographic measurements from 156 subjects during gaits
and showed that the magnitudes of the medial knee joint force and
muscle forces predicted by the proposed method were in good
agreement with those derived from musculoskeletal modeling.
(Rane et al., 2019). However, there is a paucity of literature on
the development of machine/deep learning methods for accurately
predicting knee biomechanics with different tibial component
malrotation in TKA. Additionally, it remains uncertain whether a
noteworthy distinction exists between the deep learning method and
conventional machine learning methods in predicting knee
biomechanics under different tibial component malrotations
during a walking gait in TKA. Therefore, the development of
machine/deep learning methods for accurate and rapid prediction
of knee biomechanics with different tibial component malrotations
during a walking gait in TKA is essential for preoperative surgical
planning and intraoperative robotic-assisted surgical navigation.

The objective of the present study was to: 1) develop deep
learning method and conventional machine learning methods to
predict knee biomechanics with different tibial component
malrotation during a walking gait after TKA using the dataset
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derived from the developed musculoskeletal multibody dynamics
model; 2) conduct a comparative analysis between the deep learning
method and conventional machine learning methods for predicting
knee contact forces and kinematics with different tibial component
malrotation during a walking gait after TKA.

2 Materials and methods

2.1 Musculoskeletal multibody
dynamics model

A patient-specific musculoskeletal multibody dynamics model of
TKA (Chen et al., 2016; Zhang et al., 2019; Zhang et al., 2020) was
developed using Anybody modeling system (version 6.0; AnyBody
Technology, Aalborg, Denmark), based on an advanced bonemorphing
technique utilizing the patient’s preoperative and postoperative
computed tomography (CT) scans (Damsgaard et al., 2006;
Pellikaan et al., 2014) (Figure 1). Data from a TKA patient (gender:
male; mass: 75 kg; height: 180 cm; surgery: left knee), obtained from the
publicly SimTK website (https://simtk.org/home/kneeloads), was
employed to develop the patient-specific musculoskeletal model
(Fregly et al., 2012). The patient’s database included the geometries
of knee implants and the lower limb bones derived from patient CT
scans. In addition, marker trajectories and ground reaction forces
obtained from motion capture experiments were included in the
database. The segments and each muscle’s isometric strength were
scaled according to the patient’s weight and height utilizing a length-
mass-fat scaling approach (Rasmussen et al., 2005; Lund et al., 2015;
Marra et al., 2015; Chen et al., 2016; Hu et al., 2019). An innovative knee
joint model consisting of 11 degrees of freedom was established via the
force-dependent kinematics method, including deformable contact
models of the artificial knee joint (Andersen and Rasmussen, 2011;
Marra et al., 2015; Chen et al., 2016). The tibiofemoral joint had 6° of
freedom, and the patellofemoral joint had 5° of freedom, assuming a
rigid patellar tendon ligament (PTL) (Chen et al., 2016). Three
deformable contact models were defined between the femoral
component and the medial/lateral tibial components, as well as
between the femoral component and the patellar component, based
on the elastic foundation theory (Fregly et al., 2003). The knee joint
model was enveloped by ligaments including the medial collateral

ligament (MCL), lateral collateral ligament (LCL), posterior cruciate
ligament (PCL), posterior-medial capsule (PMC), anterior-lateral
ligament (ALL), medial patellofemoral ligament (MPFL), and lateral
patellofemoral ligament (LPFL) (Chen et al., 2016; Zhang et al., 2020).
These ligaments were modeled as nonlinear spring elements with a
piecewise force-displacement relationship (Blankevoort et al., 1991). An
inverse kinematics method (Andersen et al., 2010) was conducted to
determine the pelvic motion, hip angles, and foot locations based on the
walking gait data, the scaled musculoskeletal model, and the optimized
marker locations (Marra et al., 2015; Chen et al., 2016). These
kinematics and ground reaction forces were subsequently input into
the inverse dynamics analysis, which incorporated the force-dependent
kinematics method (Andersen and Rasmussen, 2011;Marra et al., 2015;
Chen et al., 2016), to calculate tibiofemoral contact forces and
kinematics. In the inverse dynamics analysis, a cubic polynomial
muscle recruitment criterion was also adopted to determine which
set of muscles will balance a given external load. Additional information
regarding the development of the musculoskeletal multibody dynamics
model of TKA can be found in our previous studies (Chen et al., 2016;
Zhang et al., 2019; Zhang et al., 2020).

As per the patient’s surgical report (Fregly et al., 2012; Chen et al.,
2015; Chen et al., 2016), two 90° cuts were made on the proximal tibia
in the coronal and sagittal planes with respect to the long axis. The
distal femur was cut at 6° valgus from the anatomical axis. A 3°

external rotation cut was made on the posterior femur with respect to
the posterior condyles. These cuts were defined as the neutral position
of the femoral and tibial components in the developed patient-specific
musculoskeletal multibody dynamics model of TKA. To investigate
the effect of tibial component malrotation, the rotational positions of
the tibial component were modified from the neutral position in
343 cases: neutral, ±1°, ±3°, and ±5° of anterior-posterior
slope, ±1°, ±3° and ±5° of internal-external rotation, and ±1°, ±3°

and ±5° of varus-valgus rotation (Figure 2). Each tibial component
with the same femoral component was separately imported into the
developed patient-specific musculoskeletal multibody dynamics
model of TKA. The knee contact forces and kinematics during a
walking gait under different tibial componentmalrotation in the range
of ±5° in the three directions of anterior/posterior slope, internal/
external rotation, and varus/valgus rotation were calculated. These
results will serve as a dataset to develop deep learning and machine
learning methods (Table 1).

FIGURE 1
The developed patient-specific musculoskeletal multibody dynamics model of total knee arthroplasty.
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2.2 Deep learning model

A deep learning model using recurrent neural networks (RNNs)
was developed to predict knee contact forces and kinematics with
different tibial component malrotations over a walking gait cycle.
The model utilized predictor features of tibial component

malrotation, including anterior-posterior slope, internal-external
rotation, and varus-valgus rotation (Figure 2; Table 1). The
predicted features included knee contact forces and kinematics
(Table 1). The RNN architecture consisted of two bi-directional
long short-term memory (LSTM) cells (Hochreiter and
Schmidhuber, 1997) and three fully-connected layers. Different

FIGURE 2
Schematic diagram for different tibial component malrotation.

TABLE 1 Predictor and predicted features used in deep learning and machine learning methods.

Predictor features Predicted features

Tibial Component Malrotation Anterior-Posterior Slope Contact Forces Total Contact Force

Medial Contact Force

Lateral Contact Force

Internal-External Rotation Flexion-Extension Rotation

Kinematics Internal-External Rotation

Varus-Valgus Rotation

Varus-Valgus Rotation Anterior-Posterior Translation

Proximal-Distal Translation

Medial-Lateral Translation
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tibial component malrotation were represented by xi ∈ RA×T with A
tibial component malrotation variables over T time steps. The knee
biomechanics over a walking gait cycle were obtained using the
musculoskeletal multibody dynamics model and stored in yi ∈ RB×T

with B output variables. RNNs were trained to with the aim of
minimizing the objective function:

J X, Y, θ( ) � 1
N

∑
N

i�1
yi − ŷi
����

����2 + λ θ‖ ‖2

The training set,X � x1, x2, . . . , xN{ } and Y � y1, y2, . . . , yN{ },
comprised different tibial component malrotation and
corresponding knee biomechanics derived from the
musculoskeletal model. RNNs predicted knee biomechanics time
series trends (ŷi) based on the corresponding predictor features
(different tibial component malrotation). Here, λ is the
regularization parameter, which controls the trade-off between
fitting the training data and keeping the parameter values small.
θ is the parameter vector that the model aims to learn. It contains the
weights associated with each feature in the input matrix X.

RNNs were trained for 10,000 iterations using Adam
optimization with a learning rate of 0.0001 (Kingma and Ba,
2014). The weights of the RNNs were randomly initialized from
a Gaussian distribution (μ = 0, σ = 0.01). An L2 regularization (λ =
0.001) and batch size of 2 were employed. These hyperparameters
were fine-tuned based on our dataset and experimental setup,
aiming to optimize the training process and enhance the model’s
performance. PyTorch served as the implementation framework for
the deep learning model in this study (Paszke et al., 2017).

2.3 Machine learning model

Similarly, four ensemble learning methods were developed to
predict knee contact forces and kinematics with different
component malrotation over a walking gait cycle. These models
utilized predictor features of tibial component malrotation,
including anterior-posterior slope, internal-external rotation, and
varus-valgus rotation (Figure 2; Table 1). The predicted features
included knee contact forces and kinematics (Table 1). Four
ensemble learning methods were developed using Scikit-learn in
Python (Pedregosa et al., 2012; Buitinck et al., 2013): Random Forest
regression, AdaBoost regression, Gradient Boosting regression,
Voting regression. Ensemble methods aimed to enhance the
generalizability and robustness of a single estimator by
combining the predictions of multiple base estimators built using
a given learning algorithm (Pedregosa et al., 2012).

The Random Forest algorithm (Breiman, 2001; Pedregosa et al.,
2012) was applied in this study, which involved merging k base
learned models (M1, M2, . . ., MK) to construct an enhanced
composite prediction model, denoted as M*. To generate base
model Mi, k training sets [D1, D2, . . ., DK, where Di (1 ≤ i ≤ k)]
were derived from a given dataset D. The given dataset in this study
referred to the original dataset that contained the input features (e.g.,
tibial component malrotation features like anterior-posterior slope,
internal-external rotation, varus-valgus rotation) and corresponding
output variables (knee contact forces and kinematics). The given
dataset was used to generate k training datasets through a technique

called bootstrap aggregating or “bagging.” Bagging involved random
sampling with replacement from the given dataset, resulting in k
unique training datasets (D1, D2, . . ., DK). Each training dataset was
used to train a separate base model (M1, M2, . . ., MK) within the
Random Forest ensemble. The purpose of creating multiple training
datasets was to introduce diversity among the base models, as each
base model was trained on a different subset of the original dataset.
When a new data tuple was presented to the ensemble model, each
base model returned a predicted result, and the ensemble model
produced the final prediction by averaging or taking the mode of the
predicted results from the base models (Pedregosa et al., 2012; Zhu
et al., 2020).

The AdaBoost algorithm (Freund and Schapire, 1997; Pedregosa
et al., 2012) was employed in this study, utilizing sequential weak
learners, which were models that only marginally outperform
random guessing, such as small decision trees, to repeatedly
modified versions of the data. These weak learners were
iteratively applied to modified versions of the data. The final
prediction was obtained by combining the predictions of all weak
learners through a weighted majority vote or sum. During each
boosting iteration, the weights w1, w2, . . ., wN assigned to each
training sample were adjusted. Initially, all weights were set towi = 1/
N, enabling the first iteration to train a weak learner on the original
data (Pedregosa et al., 2012). Subsequently, at each iteration, the
weights of the training samples were individually modified, and the
learning algorithm was reapplied to the reweighted data. Specifically,
for a given iteration, the weights of training examples incorrectly
predicted by the previous boosted model were increased, while the
weights of correctly predicted examples were decreased (Pedregosa
et al., 2012). As the iterations progressed, examples that were
challenging to predict received progressively greater influence.
This iterative adjustment of weights compelled each subsequent
weak learner to focus on the examples that were previously missed
by the preceding weak learners in the sequence (Drucker, 1997;
Hastie et al., 2009; Pedregosa et al., 2012). By iteratively adjusting the
weights and training weak learners, AdaBoost constructed a strong
ensemble model that combines the predictions of the individual
weak learners to improve overall regression prediction performance.

The Gradient Boosting algorithm, as proposed by Friedman and
refined by Pedregosa et al., leveraged the combination of multiple
weak learners to construct robust ensemble models (Friedman,
2001; Pedregosa et al., 2012). By employing gradient descent
optimization, each subsequent model was trained to minimize
the loss function, such as mean squared error, of the previous
model. During each iteration, the algorithm calculated the
gradient of the loss function with respect to the predictions of
the current ensemble and utilized this gradient to train a new weak
model. The objective was to minimize the gradient, thereby
improved the overall performance of the ensemble. The
predictions of the newly trained model were then integrated into
the ensemble, reinforcing the collective predictive capability. This
iterative process continued until a predefined stopping criterion was
satisfied (Pedregosa et al., 2012).

The voting regression algorithm combined different machine
learning regression algorithms and returned the average predicted
values (Pedregosa et al., 2012). In this approach, multiple regression
models were trained using various algorithms, including Random
Forest, AdaBoost and Gradient Boosting. Each individual model
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generated its prediction for a given input, and the final prediction
was obtained by averaging the predicted values of all models. The
voting algorithm allowed for a more robust prediction by
considering the collective knowledge of multiple models and
balancing out their individual weaknesses. The voting regression
approach was particularly useful when the individual models had
similar performance levels, as it leveraged their combined strengths
to improve overall prediction accuracy (Pedregosa et al., 2012).

2.4 Performance analyses

The deep learning and learning models developed in this study
were evaluated for accuracy using 5-fold cross-validation, where the
dataset was divided into 5 equal subgroups used for the training and
validation (Burton et al., 2021). An additional test dataset withheld
from the cross-validation was used to confirm the performance of
the models. To ensure consistency across all deep learning and
machine learning algorithms, the same cross-validation splits were
used for all models. To evaluate the models, each subgroup was held
out for evaluation once, and all models were trained five times. The

performance of the developed deep learning and machine learning
models was assessed against musculoskeletal multibody dynamics
model outputs, which were considered the ground truth. The
evaluation was conducted using two metrics: Root mean square
error (RMSE) and Pearson correlation coefficient. The Pearson
correlation coefficient ρ was classified as weak (ρ ≤ 0.35),
moderate (0.35 < ρ ≤ 0.67), strong (0.67 < ρ ≤ 0.9), and excellent
(0.9 < ρ) according to the obtained values.

3 Results

The knee total contact forces, medial contact forces, lateral
contact forces, flexion-extension rotation, internal-external
rotation, varus-valgus rotation, anterior-posterior translation,
proximal-distal translation, and medial-lateral translation during
a walking gait under different tibial component malrotation in the
range of ±5° in the three directions were presented in Figure 3.

The comparison of ground truth values and deep learning
prediction for knee contact forces under different tibial
component malrotation during walking gait after TKA was

FIGURE 3
The knee biomechanics under different tibial component malrotation during a walking gait after total knee arthroplasty (the red line represent knee
biomechanics under tibial component neutral position during a walking gait; the blue line represent knee biomechanics under different tibial component
malrotation during a walking gait).
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presented in Table 2. For the training set, the RMSE for total contact
force, medial contact force, and lateral contact force were 7.77, 33.90,
and 11.17 N, respectively, as predicted by the deep learning model.
The Pearson correlation coefficient for total contact force, medial
contact force, and lateral contact force were 0.999, 0.995, and 0.999,
respectively, as predicted by the deep learning model. For the
validation set, the RMSE for total contact force, medial contact
force, and lateral contact force were 32.54, 37.41, and 15.47 N,
respectively, as predicted by the deep learning model. The
Pearson correlation coefficient for total contact force, medial
contact force, and lateral contact force were 0.995, 0.995, and
0.999, respectively, as predicted by the deep learning model. For
the test set, the RMSE for total contact force, medial contact force,
and lateral contact force were 38.44, 51.78, and 19.74 N, respectively,
as predicted by the deep learning model. The Pearson correlation
coefficient for total contact force, medial contact force, and lateral
contact force were 0.995, 0.993, and 0.999, respectively, as predicted
by the deep learning model.

The comparison of ground truth values and four machine
learning predictions for knee contact forces under different tibial
component malrotation during a walking gait after TKA was
presented in Table 3. For the Random Forest regression model
(test set), the RMSE and Pearson correlation coefficient for total
contact force, medial contact force, and lateral contact force were
63.15, 58.51, and 23.93 N, respectively, and 0.987, 0.992, and
0.998, respectively. For the AdaBoost regression model (test set),
the RMSE and Pearson correlation coefficient for total contact
force, medial contact force, and lateral contact force were 75.15,
81.94, and 34.84 N, respectively, and 0.983, 0.982, and 0.994,
respectively. For the Gradient Boosting regression model (test
set), the RMSE and Pearson correlation coefficient for total
contact force, medial contact force, and lateral contact force
were 65.98, 58.33, and 30.22 N, respectively, and 0.986, 0.992,

and 0.994, respectively. For the Voting regression model (test
set), the RMSE and Pearson correlation coefficient for total
contact force, medial contact force, and lateral contact force
were 62.32, 70.55, and 24.85 N, respectively, and 0.987, 0.984,
and 0.998, respectively.

The comparison of ground truth values and deep learning
prediction for knee kinematics under different tibial component
malrotation during a walking gait after TKA was presented in
Table 4. For the training set, the RMSE for flexion-extension
rotation, internal-external rotation, varus-valgus rotation,
anterior-posterior translation, proximal-distal translation, and
medial-lateral translation were 0.07°, 0.04°, 0.11°, 0.04 mm, 0.03,
and 0.05 mm, respectively, as predicted by the deep learning
model. The Pearson correlation coefficient for flexion-extension
rotation, internal-external rotation, varus-valgus rotation,
anterior-posterior translation, proximal-distal translation, and
medial-lateral translation were 0.999, 0.999, 0.998, 0.999, 0.999,
and 0.998, respectively, as predicted by the deep learning model.
For the validation set, the RMSE for flexion-extension rotation,
internal-external rotation, varus-valgus rotation, anterior-
posterior translation, proximal-distal translation, and medial-
lateral translation were 0.12°, 0.20°, 0.10°, 0.20, 0.29, and
0.07 mm, respectively, as predicted by the deep learning model.
The Pearson correlation coefficient for flexion-extension rotation,
internal-external rotation, varus-valgus rotation, anterior-
posterior translation, proximal-distal translation, and medial-
lateral translation were 0.998, 0.996, 0.998, 0.997, 0.997, and
0.999, respectively, as predicted by the deep learning model. For
the test set, the RMSE for flexion-extension rotation, internal-
external rotation, varus-valgus rotation, anterior-posterior
translation, proximal-distal translation, and medial-lateral
translation were 0.19°, 0.18°, 0.11°, 0.16, 0.35, and 0.06 mm,
respectively, as predicted by the deep learning model. The

TABLE 2 The comparison of ground truth values and deep learning prediction for knee contact forces under different tibial componentmalrotation during a
walking gait after total knee arthroplasty.

Training set Validation set Test set

Predicted Feature RMSE (N) ρ RMSE (N) ρ RMSE (N) ρ

Total contact forces 7.77 0.999 32.54 0.995 38.44 0.995

Medial contact forces 33.90 0.995 37.41 0.995 51.78 0.993

Lateral contact forces 11.68 0.999 15.47 0.999 19.74 0.999

TABLE 3 The comparison of ground truth values and machine learning prediction for knee contact forces under different tibial component malrotation
during a walking gait after total knee arthroplasty.

Total contact forces Medial contact forces Lateral contact forces

Regression Models RMSE(N) ρ RMSE(N) ρ RMSE(N) ρ

Random Forest 63.15 0.987 58.51 0.992 23.93 0.998

AdaBoost 75.15 0.983 81.94 0.982 34.84 0.994

Gradient Boosting 65.98 0.986 58.33 0.992 30.22 0.994

Voting 62.32 0.987 70.55 0.984 24.85 0.998
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Pearson correlation coefficient for flexion-extension rotation,
internal-external rotation, varus-valgus rotation, anterior-
posterior translation, proximal-distal translation, and medial-
lateral translation were 0.998, 0.998, 0.998, 0.998, 0.997, and
0.999, respectively, as predicted by the deep learning model.

The comparison of ground truth values and machine learning
prediction for knee kinematics (rotation) under different tibial
component malrotation during a walking gait after TKA was
presented in Table 5. For the Random Forest regression model
(test set), the RMSE and Pearson correlation coefficient for
flexion-extension rotation, internal-external rotation, and
varus-valgus rotation were 0.13°, 0.28°, and 0.22°, respectively,
and 0.999, 0.996, and 0.996, respectively. For the AdaBoost
regression model (test set), the RMSE and Pearson correlation
coefficient for flexion-extension rotation, internal-external
rotation, and varus-valgus rotation were 0.23°, 0.29°, and 0.24°,
respectively, and 0.998, 0.995, and 0.996, respectively. For the
Gradient Boosting regression model (test set), the RMSE and
Pearson correlation coefficient for flexion-extension rotation,
internal-external rotation, and varus-valgus rotation were 0.14°,
0.25°, and 0.25°, respectively, and 0.999, 0.996, and 0.996,
respectively. For the Voting regression model (test set), the
RMSE and Pearson correlation coefficient for flexion-extension
rotation, internal-external rotation, and varus-valgus rotation
were 0.16°, 0.31°, and 0.24°, respectively, and 0.999, 0.995, and
0.996, respectively.

The comparison of ground truth values and machine learning
prediction for knee kinematics (translation) under different tibial
component malrotation during a walking gait after TKA was

presented in Table 6. For the Random Forest regression model
(test set), the RMSE and Pearson correlation coefficient for
anterior-posterior translation, proximal-distal translation, and
medial-lateral translation were 0.30, 0.29, and 0.15 mm,
respectively, and 0.995, 0.995, and 0.998, respectively. For the
AdaBoost regression model (test set), the RMSE and Pearson
correlation coefficient for anterior-posterior translation,
proximal-distal translation, and medial-lateral translation were
0.31 mm, 0.47, and 0.22 mm, respectively, and 0.995, 0.994, and
0.997, respectively. For the Gradient Boosting regression model
(test set), the RMSE and Pearson correlation coefficient for
anterior-posterior translation, proximal-distal translation, and
medial-lateral translation were 0.29, 0.56, and 0.18 mm,
respectively, and 0.996, 0.992, and 0.998, respectively. For the
Voting regression model (test set), the RMSE and Pearson
correlation coefficient for anterior-posterior translation,
proximal-distal translation, and medial-lateral translation were
0.34, 0.60, and 0.15 mm, respectively, and 0.995, 0.992, and
0.998, respectively.

4 Discussion

The most important findings of the present study were that the
deep learning method were capable of accurately and reliability
predicting knee contact forces (total contact force, medical contact
force, and lateral contact force) and kinematics (flexion-extension
rotation, internal-external rotation, varus-valgus rotation, anterior-
posterior translation, proximal-distal translation, and medial-lateral

TABLE 4 The comparison of ground truth values and deep learning prediction for knee kinematics under different tibial component malrotation during a
walking gait after total knee arthroplasty.

Training set Validation set Test set

Predicted Features RMSE ρ RMSE ρ RMSE ρ

Flexion-Extension Rotation (°) 0.07 0.999 0.12 0.998 0.19 0.998

Internal-External Rotation (°) 0.04 0.999 0.20 0.996 0.18 0.998

Varus-Valgus Rotation (°) 0.11 0.998 0.10 0.998 0.11 0.998

Anterior-Posterior Translation (mm) 0.04 0.999 0.20 0.997 0.16 0.998

Proximal-Distal Translation (mm) 0.03 0.999 0.29 0.997 0.35 0.997

Medial-Lateral Translation (mm) 0.05 0.998 0.07 0.999 0.06 0.999

TABLE 5 The comparison of ground truth values and machine learning prediction for knee kinematics (rotation) under different tibial component
malrotation during a walking gait after total knee arthroplasty.

Flexion-extension
rotation (°)

Internal-external rotation (°) Varus-valgus rotation (°)

Regression Models RMSE ρ RMSE ρ RMSE ρ

Random Forest 0.13 0.999 0.28 0.996 0.22 0.996

AdaBoost 0.23 0.998 0.29 0.995 0.24 0.996

Gradient Boosting 0.14 0.999 0.25 0.996 0.25 0.996

Voting 0.16 0.999 0.31 0.995 0.24 0.996

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Zhang et al. 10.3389/fbioe.2023.1255625

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1255625


translation) with different tibial component malrotation during a
walking gait after TKA, compared to four conventional machine
learning methods.

The dataset of knee contact forces and kinematics with
different tibial component malrotation during a walking gait
after TKA (Figure 3) was based on our developed and validated
musculoskeletal multibody dynamics model (Chen et al., 2015;
Chen et al., 2016; Zhang et al., 2023). Our previous studies have
shown that the musculoskeletal multibody dynamics model could
accurately predict knee contact forces and kinematics during a
walking gait after TKA (Zhang et al., 2019; Zhang et al., 2020),
which were generally in excellent agreement with the
experimental data previously measured in the patients via
instrumented prosthesis. Nonetheless, the musculoskeletal
multibody dynamics model is subject to time-intensive
procedures and limited in its capacity to promptly generate
the biomechanical response of the patient’s knee joint after
TKA. During the preoperative planning phase of a patient’s
knee arthroplasty, the musculoskeletal multibody dynamics
model may not be able to quickly offer the surgeon precise
information regarding the biomechanical relationship between
the prosthesis position and the knee biomechanics in TKA
because of the time-consuming of computational models. The
deep/machine learning models that were developed in this paper
to predict the knee contact forces and kinematics with different
tibial component malrotation during a walking gait after TKA
effectively overcomes the limitations of musculoskeletal multi-
body dynamics models in clinical applications. These models
could quickly and accurately predict knee biomechanics for
different component malrotation to facilitate optimal
preoperative planning and intraoperative guidance for TKA
procedures.

The RMSE (38.44 N) (testing set) of the deep learning method
in predicting the total contact force under different tibial
component malrotation during a walking gait after TKA was
significantly lower than the RMSE (62.32–75.15 N) (testing set)
of four machine learning methods in predicting the total contact
force under different tibial component malrotation after TKA.
Similarly, the RMSE (51.78 N) (testing set) of the deep learning
method in predicting the medial contact force under different
tibial component malrotation during a walking gait after TKA
was lower than the RMSE (58.33–81.94 N) (testing set) of four
machine learning methods in predicting the medial contact force
under different tibial component malrotation after TKA. The

RMSE (19.74 N) (testing set) of the deep learning method in
predicting the lateral contact force under different tibial
component malrotation during a walking gait after TKA was
lower than the RMSE (23.93–34.84 N) (testing set) of four
machine learning methods in predicting the lateral contact
force under different tibial component malrotation after TKA.
These results revealed that compared to four conventional
machine learning methods, the developed deep learning
method had higher accuracy in predicting total contact force,
medial contact force, and lateral contact force under different
tibial component malrotation during a walking gait after TKA, as
evidenced by the relatively low RMSE values and high Pearson
correlation coefficients (Tables 2, 3).

Furthermore, the RMSE (0.18°) (testing set) of the deep
learning method in predicting the internal-external rotation
under different tibial component malrotation during a walking
gait after TKA was significantly lower than the RMSE
(0.25°–0.31°) (testing set) of four machine learning methods in
predicting the internal-external rotation under different tibial
component malrotation after TKA. Similarly, the RMSE (0.11°)
(testing set) of the deep learning method in predicting the varus-
valgus rotation under different tibial component malrotation
during a walking gait after TKA was significantly lower than
the RMSE (0.22°–0.25°) (testing set) of four machine learning
methods in predicting the varus-valgus rotation under different
tibial component malrotation after TKA. The RMSE (0.16 mm)
(testing set) of the deep learning method in predicting the
anterior-posterior translation under different tibial component
malrotation during a walking gait after TKA was significantly
lower than the RMSE (0.29–0.34 mm) (testing set) of four
machine learning methods in predicting the anterior-posterior
translation under different tibial component malrotation after
TKA. The RMSE (0.06 mm) (testing set) of the deep learning
method in predicting the medial-lateral translation under
different tibial component malrotation during a walking gait
after TKA was significantly lower than the RMSE (0.15–0.22 mm)
(testing set) of four machine learning methods in predicting the
medial-lateral translation under different tibial component
malrotation after TKA. These results indicated that compared
to four machine learning methods, the developed deep learning
model had higher accuracy in predicting internal-external
rotation, varus-valgus rotation, anterior-posterior translation,
and medial-lateral translation under different tibial
component malrotation during a walking gait after TKA, as

TABLE 6 The comparison of ground truth values and machine learning prediction for knee kinematics (translation) under different tibial component
malrotation during a walking gait after total knee arthroplasty.

Anterior-posterior
translation (mm)

Proximal-distal
translation (mm)

Medial-lateral
translation (mm)

Regression Models RMSE ρ RMSE ρ RMSE ρ

Random Forest 0.30 0.995 0.29 0.995 0.15 0.998

AdaBoost 0.31 0.995 0.47 0.994 0.22 0.997

Gradient Boosting 0.29 0.996 0.56 0.992 0.18 0.998

Voting 0.34 0.995 0.60 0.992 0.15 0.998
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evidenced by the relatively low RMSE values and high Pearson
correlation coefficients (Tables 4–6).

However, the RMSE (0.19°) (testing set) of the deep learning
method in predicting the flexion-extension rotation under
different tibial component malrotation during a walking gait
after TKA (Table 4) was marginally higher than the RMSE
(testing set) of the Random Forest regression model (0.13°),
Gradient Boosting regression model (0.14°), and Voting
regression model (0.16°), but was lower than the AdaBoost
regression model (0.23°) in predicting the flexion-extension
rotation under different tibial component malrotation after
TKA (Table 5). The RMSE (0.35 mm) (testing set) of the deep
learning method in predicting the proximal-distal translation
under different tibial component malrotation during a walking
gait after TKA (Table 4) was marginally higher than the RMSE
(testing set) of the random forest regression model (0.29 mm),
but was still lower than the RMSE (testing set) of AdaBoost
regression model (0.47 mm), Gradient Boosting regression
model (0.56 mm), and Voting regression model (0.60 mm) in
predicting the proximal-distal translation under different tibial
component malrotation after TKA (Table 6). Nevertheless, the
deep learning model demonstrated higher accuracy in predicting
the flexion-extension rotation and the proximal-distal
translation under different tibial component malrotation
during a walking gait after TKA, compared to other machine
learning methods.

Several limitations of this study should be discussed. Firstly,
the dataset of knee contact forces and kinematics with different
tibial component malrotation during a walking gait after TKA
was established using our developed musculoskeletal multibody
dynamics model based on a patient’s experimental data. The
objective of this study was to develop deep/machine learning
methods to predict knee biomechanics for different tibial
component malrotation during a walking gait in TKA. The
focus was on establishing the relationship between different
tibial component malrotation and the knee biomechanics
specifically within TKA. The main intention of this study was
not to predict knee biomechanics from different gaits across
patients. Therefore, this study conclusively demonstrated that the
deep learning method was able to predict the knee contact forces
and kinematics accurately and quickly under different tibial
component malrotation in TKA, which provides surgeons and
surgical robots with a calibration safety zone for the preoperative
planning and intraoperative guidance in TKA. Because of the
limited number of patients, it was recommended that the reader
construes the current study as a case series. This could potentially
serve as a significant initial step for forthcoming extensive
investigations, especially in large-scale research studies
leveraging computer vision, deep learning and musculoskeletal
simulation. The effect of different patients and prosthesis designs
on knee biomechanics for different component malrotation will
continue to be explored in future work. Secondly, the use of
mechanical alignment, anatomical alignment, and kinematic
alignment in TKA remains controversial. The alignment of the
prosthesis in this study was based on the principle of mechanical
alignment, and the biomechanical effects of different
tibiofemoral component malrotation under different alignment
principles will also be further investigated in future work.

Thirdly, the objective of this study was to utilize the
developed deep/machine learning methods to predict knee
biomechanics during a walking gait in TKA for different tibial
component malrotation. However, it is important to note that the
biomechanical effects of different femoral component
malrotation should be investigated in future work. Fourthly,
walking gait was taken into consideration in this study since it
is the activity that occurs the most frequently in day-to-day life,
and direct in vivo measurements of joint contact forces derived
from instrumented TKA prostheses are available for use in model
validation. Deep learning models of knee biomechanics under
different tibiofemoral component malrotation after TKA with
various gait patterns, such as squatting, stair climbing, and
jumping, will be investigated comprehensively in future work.
Finally, in this study, four conventional machine learning
methods and a deep learning method were employed to
predict knee contact forces and kinematics with different tibial
component malrotation during a walking gait in TKA. A larger
dataset should be involved in future studies. Additional
investigation is necessary to explore the optimization of both
the sample size and algorithm.

5 Conclusion

The deep learning method developed in the present study was
able to accurately and rapidly predict knee contact forces and
kinematics with different tibial component malrotation during a
walking gait after TKA, outperforming four conventional machine
learning methods. The proposed method provided surgeons and
surgical robots with the capability to establish a calibration safety
zone, a critical aspect in ensuring precise alignment for both
preoperative surgical planning and intraoperative robotic-assisted
surgical navigation.
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