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Silk spinning, observed in spiders and insects, exhibits a remarkable biological
source of inspiration for advanced polymer fabrications. Because of the systems
design, silk spinning represents a holistic and circular approach to sustainable
polymer fabrication, characterized by renewable resources, ambient and aqueous
processing conditions, and fully recyclable “wastes.” Also, silk spinning results in
structures that are characterized by the combination of monolithic proteinaceous
composition and mechanical strength, as well as demonstrate tunable
degradation profiles and minimal immunogenicity, thus making it a viable
alternative to most synthetic polymers for the development of advanced
biomedical devices. However, the fundamental mechanisms of silk spinning
remain incompletely understood, thus impeding the efforts to harness the
advantageous properties of silk spinning. Here, we present a concise and
timely review of several essential features of silk spinning, including the
molecular designs of silk proteins and the solvent cues along the spinning
apparatus. The solvent cues, including salt ions, pH, and water content, are
suggested to direct the hierarchical assembly of silk proteins and thus play a
central role in silk spinning. We also discuss several hypotheses on the roles of
solvent cues to provide a relatively comprehensive analysis and to identify the
current knowledge gap. We then review the state-of-the-art bioinspired
fabrications with silk proteins, including fiber spinning and additive approaches/
three-dimensional (3D) printing. An emphasis throughout the article is placed on
the universal characteristics of silk spinning developed throughmillions of years of
individual evolution pathways in spiders and silkworms. This review serves as a
stepping stone for future research endeavors, facilitating the in vitro recapitulation
of silk spinning and advancing the field of bioinspired polymer fabrication.
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1 Introduction

Silk spinning is a sophisticated fabrication process turning aqueous proteinaceous
feedstocks into mechanically exceptional materials and structures, which represents an
engineering marvel developed by millions of years of natural evolution (Magoshi et al., 1996;
Vollrath and Knight, 2001; Rising and Johansson, 2015). Of note, silk spinning seems
fundamentally different from modern industrial manufacturing of synthetic polymers and
plastics that is based on fossil-derived feedstocks, intense energy input, and accumulated
environmental pollution. The characteristics of silk spinning are most likely in three essential
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aspects, including the feedstocks, processing conditions, and
product performance (Figure 1).

The feedstocks of silk spinning are the aqueous solutions of
concentrated silk proteins (25–50 wt%) (Hijirida et al., 1996; Laity
et al., 2015). Silk proteins are not a component of the extracellular
matrix (ECM), but it has the same chemical building blocks, amino
acids, as the living systems and usually exhibits controlled
degradation and negligible immunogenicity (Wang et al., 2008;
Deptuch et al., 2022). A monolithic proteinaceous structural basis
is expected to enable cell-mediated matrix remodeling and to
promote host-implant integration and biocompatibility, which is
instrumental to a magnitude of bioengineered tissue scaffolds
(Torculas et al., 2016; Holland et al., 2019; Guo et al., 2021).

The processing conditions of silk spinning are fully aqueous and
ambient, which is energy-saving and environment-friendly but also
helps keep the biofunctions of integrated molecules that may be lost
due to heating or organic solvents. This feature is highly desired for
manipulating the cellular microenvironment (Zhang et al., 2020)
and devising drug delivery systems (Wenk et al., 2011). During the
spinning process, the silk proteins are directed to assemble into
hierarchical structures, from secondary structures, micelles,
nanofibrils, and granules to fibers (Ebrahimi et al., 2015; Ling
et al., 2018; Lin et al., 2019; Su et al., 2020). Silk nanofibers are a
versatile tool for making valuable materials (Dong et al., 2016; Ling
et al., 2016; Müller et al., 2020). In addition, silk spinning is usually
carried out at around tens of milliliters per second (Shao and
Vollrath, 2002), which is faster than the month-long growth of
other structural proteins, such as tendon and mussel byssus, thus
promising for scaling up manufacturing productivity. The
interactions between silk proteins and the information-rich
solvent environment may represent an avenue for devising
fabrication conditions (Mu et al., 2020a).

Silks, especially spider dragline silks, are renowned for their
superior mechanical performance, partly resulting from the

orchestrated organization of polypeptide chains. For example,
dragline silk is as strong as high-tensile steel (1.1 GPa vs.
1.5 GPa) but is lighter in weight by roughly six times (1.3 kg/m3

vs. 7.8 kg/m3) (Omenetto and Kaplan, 2010). The structure-property
relationships or the structural basis of the mechanical performance
of silk materials have been extensively investigated (Giesa et al.,
2011; Tokareva et al., 2014), which underpins the further
investigation of the effect of processing conditions or the
structure-process-property relationship of silk spinning.

Silk spinning, due to its exceptional manufacturing merits, has
been recognized as an important source of inspiration for the
development of advanced biofabrications, such as footwear and
biomedical devices (Figure 1). The athletic apparel and footwear
company, Adidas, has worked with AMSilk to introduce the first
performance shoe made in 100% artificial silk fibers (Service, 2017).
The shoes are characterized by 15% lighter in weight, full
biodegradability, and the absence of plastics. In addition, silk
proteins have been processed via solvent-based (Perrone et al.,
2014) or thermoplastic molding (Guo et al., 2020b) into bone
screws, a common implantable device to assist in the healing of
bone defects. The silk-based bone screw exhibited benefits compared
to synthetic polymers and metals, including ease of implantation,
biodegradability, and minimal inflammatory response.

The manufacturing features of silk spinning would be
generally valuable to help address the emerging challenges in
sustainability and healthcare. This article will briefly review
essential aspects of silk spinning mechanisms and the state-of-
the-art bioinspired approaches. We will discuss universal/cross-
species features, not species-specific, of silk spinning, as spiders
and silkworms share a substantial set of mechanisms despite their
separate evolution pathways (Andersson et al., 2016). For insect
silks, the focus will be placed on silk fibroin from the Bombyx
mori (B. mori) silkworms; for spider silks, the name of a certain
spider will be provided when necessary. Furthermore, a concise

FIGURE 1
Schematic of silk spinning-inspired biofabrication promising to promote advanced manufacturing, sustainability, and clinical therapeutics. The
exemplary silk structures include three-dimensional (3D)-printed lattices, plastics-free athletic footwear, and bone screws. Reproduced with permission
from Springer Nature (Guo et al., 2020b) and the American Association for the Advancement of Science (Service, 2017).
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section is dedicated to the promise of silk spinning as a holistic
approach to promoting material, energy, and environmental
sustainability. We envision this brief review to stimulate
further efforts in devising silk-spinning-inspired biofabrication.

2 Mechanisms of silk spinning

Despite substantial progresses in the past decades (Vollrath
and Knight, 2001; Omenetto and Kaplan, 2010; Eisoldt et al.,
2011; Liu Y. et al., 2019; Guo et al., 2020a; Mu et al., 2020a), the
understanding of silk spinning remains incomplete and may be
promoted by embracing recently evolved concepts and
techniques (Rising and Johansson, 2015; Moreno-Tortolero
et al., 2023). The fundamental mechanisms of silk spinning
are tightly related to the directed assembly of silk proteins
across hierarchical length scales, which is characterized by a
phase transition from liquid to solid underlying the fiber
spinning but also the precise manipulation and hierarchical
organization of silk proteins that lead to the superior
mechanical performance of bulk silk materials. It has been
suggested that the solvent cues in the native spinning
apparatus, i.e., the aqueous solution of silk feedstock, roughly
including pH, salt ions, and water content, may direct the
assembly of silk proteins in the absence of external heating
and extensive energy input (Magoshi et al., 1996; Heim et al.,
2009; Andersson et al., 2016). The interactions between the
solvent cues and the silk proteins thus seem to be a primary
molecular basis for the fiber spinning at the macroscopic level. In
the following sections, we will discuss two essential components
in the complicated mechanisms of silk spinning, the molecular
design of silk proteins and the solvent cues along the spinning
apparatus.

2.1 Molecular designs of silk proteins

Silk proteins are diverse across multiple species, such as spiders
and insects, partly due to the separated evolution pathways and
distinct habitats (Craig, 1997; Gatesy et al., 2001; Arakawa et al.,
2022). Despite their diversity, various silk proteins exhibit certain
highly conserved features in the molecular design (Figure 2), for
example, alternating hydrophilic and hydrophobic domains, the
abundance of certain amino acids, motifs, polymorphic
conformations, and the formation of higher-level structures,
i.e., β-sheets, micelles, and nanofibers. These universal features
seem important to the spinning process and may represent a
general scientific framework for the rational design of silk
spinning-mimetic fabrication. In particular, the molecular
understanding of the designing principles has inspired the
development of high-performance synthetic polymers (Wu et al.,
2017; Dou et al., 2019; Mohammadi et al., 2019; Shi et al., 2023).
Furthermore, the recombinant DNA technology and the advances in
protein engineering (Koga et al., 2012; Huang et al., 2016) underpin
the creative modulation of amino acid sequences to give rise to de
novo, genetically modified, and chimeric silk proteins, which may
bring benefits in improving production yield (Tucker et al., 2014;
Decker, 2018), extending functions (Gomes et al., 2011; D’Amone
et al., 2023), and facilitating fiber spinning (Teulé et al., 2009;
Andersson et al., 2017; Saric et al., 2021).

Below, we provided a brief discussion on the molecular design of
silk proteins in three aspects, amino acid composition, motif, and
conformation. Both spider and silkworm silks are similar in the
abundance of certain amino acids, such as glycine (G), alanine (A),
and proline (P) (Zhou et al., 2001; Rauscher et al., 2006). For
example, the heavy chain of B. mori silk fibroin contains
45.9 mol% glycine, 30.3 mol% alanine, and 0.3 mol% proline
(Figure 2; Table 1) (Murphy and Kaplan, 2009); one component

FIGURE 2
Schematics of the spinning apparatus and silk fibroin proteins of B. mori silkworms. (A) Spinning apparatus of B. mori silkworms. (B,C) Molecular
design of silk fibroin heavy chain and the structural and composition of primary amino acids. The molar percentage is also indicated in parentheses. (D)
Conformational polymorphism of silk fibroin. Two conformations, random coils and β-sheets, are assumed to adopt distinct energy and entropy.
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of spider dragline silks, major ampullate spidroin 1 (MaSp1),
contains around 42.3 mol% glycine, 32.7 mol% alanine, and
0.4 mol% proline (Ayoub et al., 2007; Malay et al., 2022). Glycine
and alanine are hydrophobic with small side chains, including a
hydrogen atom and a methyl group. From the perspective of steric
effects, the small side chains enable chain flexibility and facilitate the
tight stack of polypeptide chains and the formation of β-sheets. In
addition, proline is anomalous in the nitrogen-involved, five-
membered ring in its backbone, which markedly restricts the
angle of the polypeptide bonds and usually prevents the
formation of β-sheets (Morgan and Rubenstein, 2013). Thus, silk
fibroin heavy chain and the MaSp1 exhibit a tendency to form β-
sheets; the dynamics of the conformational transition can be tuned
by some strategies (Raia et al., 2017; Mu et al., 2022b). In
comparison, other structural proteins with slimier glycine ratio
yet an elevated ratio of proline, such as resilin (glycine
39–42 mol% and proline 7–12 mol%) and elastin (glycine 33 mol
% and proline 12 mol%), tend to adopt random coil conformation
(Rauscher and Pomès, 2012). Furthermore, silk fibroin contains
around 5.3 mol% tyrosine that has a phenolic amphipathic side
chain and is both hydrophobic and polar, thus offering versatile
physicochemical properties (Table 1). The hydroxyl group makes
tyrosine more polar than phenylalanine, which enables hydrogen
bonding and improves the solubility in water; the aromatic ring
primarily renders tyrosine hydrophobic and enables hydrophobic
interactions. Also, the redox capability of tyrosine has been exploited
to process silk proteins, including chemical modification (Sahoo
et al., 2021; Liu et al., 2022), hydrogel crosslinking (Applegate et al.,
2016; McGill et al., 2017; Choi et al., 2021; Mu et al., 2022b), and
three-dimensional (3D) printing (Costa et al., 2017; Mu et al.,
2020b).

In addition, the incorporation of certain amino acids can
manipulate the biocompatibility and mechanical properties. For
example, the Arg-Gly-Asp sequence can be incorporated into silk
proteins to promote cell adhesion and osteoblastic differentiation
(Bini et al., 2006; Morgan et al., 2008). According to the propensity
of amino acids to form β-sheets, the replacement of alanine with

isoleucine has improved the mechanical performance of artificially
spun silks, as discussed in Section 3.1 (Johansson et al., 2010).

Silk proteins are large proteins (larger than 300 kDa) and analogous
to linear block copolymers, which contain non-repetitive N- and C-
terminal domains and tens of repeated segments dominated by either
hydrophobicity or hydrophilicity (Bini et al., 2004) (Figure 2B). The
length of the silk fibroin heavy chain and the MaSp1 is dominated by
hydrophobicmotifs, such as AAAAAA (forMaSp1) and GAGAGS (for
silk fibroin, S is serine). The polypeptide chains of silk protein are
believed to form micelle-like structures (Jin and Kaplan, 2003; Lu et al.,
2012) and liquid crystals (Vollrath and Knight, 2001). These assembled
and intermediate structures are suggested to play a critical role in
promoting the ambient storage of highly concentrated silk dope and
mediating the fibrillogenesis in silk spinning. Textured birefringence, as
optical evidence of liquid crystals, has been observed in native silk dope
found in Nephila edulis (N. edulis) spiders (Knight and Vollrath, 1999)
and B. mori silkworms (Asakura et al., 2007).

Silk proteins are characterized by adopting multiple functional
conformations, such as random coils and β-sheets (Figure 2D).
Random coils are not a single conformation but a range of rapidly
interchangeable conformations, making silk proteins water-soluble
and constituting semi-amorphous regions; β-sheets are pleated
polypeptide chains, especially hydrophobic domains, in a sheet-
like structure primarily via hydrogen bonds, rendering silk proteins
water-insoluble and constituting crystalline regions (Koh et al.,
2015; Oktaviani et al., 2018). The size of the β-sheet nano-
crystals is related to the ultimate strength and stiffness of silks
(Keten et al., 2010). Silk proteins may adopt other secondary
structures, such as α-helices and β-turns, characterized by
infrared (IR), circular dichroism (CD), nulcear magnetic
resonance (NMR), and Raman spectrum (Rousseau et al., 2004;
Hu et al., 2006; Lefevre et al., 2008). However, according to NMR,
silk fibroin is highly unlikely to adopt α-helices compared to spider
silks (Asakura et al., 2015; Asakura, 2021). This result is attributed to
the differences in the amino acid composition of the motifs (e.g.,
GAGAGS vs. AAAAAA) and the lack of a good reference of α-
helices for the vibrational spectrum (Asakura et al., 2015).

TABLE 1 The composition and properties of primary amino acids in the heavy chain of silk fibroin (P05790).

Amino acid Abbrev Molar ratio (%) Side chains Hydrophobic Polar β-sheet motifs

Glycine Gly G 45.9 Hydrogen Yes - Yes

Alanine Ala A 30.3 Methyl Yes - Yes

Proline Pro P 0.3 Pyrrolidine ring Yes - No

Tyrosine Tyr Y 5.3 Phenol ring Yes Yes Yes

Serine Ser S 12.1 Hydroxymethyl - Yes Yes

Valine Val V 1.8 Isopropyl Yes - Yes
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The conformational transition of silk proteins from random
coils to β-sheets underpins the phase transition, solubility
alterations, and aggregations of silk proteins and, thus, is critical
to silk spinning and artificial fabrications with silk-based feedstocks.
Methanol and other polyols can induce β-sheets of silk proteins and
are widely used in the artificial fabrication with silk proteins, such as
fiber spinning (Xia et al., 2010; Koeppel and Holland, 2017; Bowen
et al., 2018) and 3D printing (Ghosh et al., 2008; Sun et al., 2012; Jose
et al., 2015). Importantly, the use of organic solvents in the
fabrication process introduces a disparity from the native
conditions of silk spinning and represents a different mechanism.
Such disparity in silk structures may compromise the control over
mechanical performance and the downstream biomedical
applications.

2.2 Spinning apparatus and solvent cues

The spinning apparatus is a specialized tapering tubular
epithelium organ that underpins the secretion, storage,
transportation, and spinning of silk proteins (Knight and
Vollrath, 1999; Asakura et al., 2007) (Figure 3). The spinning
apparatuses found in silkworms and spiders are different in
terms of, for example, the evolution of origin and the number of
spinnerets. The spinning apparatus in silkworms originates from
salivary glands, includes three distinct divisions (posterior, media,
and anterior), and has a pair of spinning apparatus that fuse into one
spinneret. The two major silk proteins of silkworms, fibroin and
sericin, are secreted at the posterior and media divisions,
respectively. As a result, the silkworm silk is composed of two
brins (largely fibroin) conglutinated by the sericin binder or coating
(Chen et al., 2012). In comparison, the spinning apparatus of spiders
originates from the epidermal invaginations of the abdomen
(opisthosoma) and is divided into a winding tail, central sac, and
three-limb duct (Andersson et al., 2016).

The solvent environment along the spinning apparatus,
including various solvent cues and flow dynamics, seems to be
delicately controlled over a certain dynamic range, indicating a
critical role in silk spinning. The semi-quantitative analysis of

element composition revealed the spatial distribution and
multiple-fold change of salt ions, including sodium (Na+),
chloride (Cl−), potassium (K+), phosphate (PO4

3−), and sulfate
(SO4

2−) (Knight and Vollrath, 2001; Zhou et al., 2005a).
Microelectrode and pH-indicating dyes suggested a gradually
lowered pH gradient along the spinning apparatus from around
8.0 to 6.0 (Foo et al., 2006; Miyake and Azuma, 2008; Andersson
et al., 2014; Domigan et al., 2015). Water is also removed from the
spinning dope, most likely via absorption through the epithelium,
leading to an increased solid content from around 25 wt% to over
90 wt% (Vollrath et al., 1998; Kojic et al., 2004). In addition to these
solvent cues, spinning speed and shear rate within the spinning
apparatus have been recognized as important factors in silk spinning
(Shao and Vollrath, 2002; Sparkes and Holland, 2017).
Computational simulation on the effect of spinning speed on the
flow behavior is promising to offer insights into the development of
biomimetic spinning approaches (Breslauer et al., 2008; Kinahan
et al., 2011). This section will discuss the current understanding of
the three major solvent cues, including salt ions, pH, and water
content, and their potential role in devising biomimetic
biofabrication.

2.2.1 Salt ions
The element analysis of the spinning dope along the spinning

apparatus has been carried out using a range of techniques,
including cryo-scanning electron microscope (SEM)-energy
dispersive X-ray (EDX) (Knight and Vollrath, 2001), proton-
induced X-ray emission (PIXE) (Zhou et al., 2005a), atomic
adsorption spectroscopy (AAS) (Zhou et al., 2005a; Zhou et al.,
2005b), inductively coupled plasma mass spectroscopy (ICP-MS)
(Zhou et al., 2005a), ICP-AAS (Wang et al., 2017; Liu Q. et al., 2019),
and ICP-optical emission spectroscopy (ICP-OES) (Laity et al.,
2019). Most likely due to the differences in the detection
mechanisms of these techniques and the sample preparation,
there is no consensus on the exact salt concentration, but the
overall trend of salt ions along the spinning apparatus from the
posterior to the anterior and from the tail to the duct has been
identified. For example, the two most abundant metal elements in
the spinning apparatus of silkworms and spiders demonstrated

FIGURE 3
(A,B) Schematics of the anatomic structures and solvent cues (salt ions and pH) in the spinning apparatus of silkworms and spiders.
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almost the same trend K increase and Ca or Na decrease (Magoshi
et al., 1996; Knight and Vollrath, 2001; Chen et al., 2004; Zhou et al.,
2005a) (Figure 3). Furthermore, partly due to the unique anatomic
feature of the anterior division/duct, such as the small diameter and
the tough cuticular intima at the site of fiber formation (Domigan
et al., 2015), the exact concentrations of salt and other solvent cues
remain inaccessible (Rising and Johansson, 2015).

Salt ions have been known to affect the conformational
transition, thermostability, and viscoelastic properties of silk
proteins. Almost all metallic ions found in the native spinning
apparatus of silkworms and spiders have been found to induce
the formation of β-sheets of silk proteins, which include cupric
(Cu2+) (Zhou et al., 2003; Zhou et al., 2005a), Ca2+ (Zhou et al., 2004;
Koeppel et al., 2020), K+ (Chen et al., 2002a; Chen et al., 2002b;
Dicko et al., 2004; Slotta et al., 2007; Ruan et al., 2008; Slotta et al.,
2008; Lammel et al., 2010; Koeppel et al., 2020), Na+ (Dicko et al.,
2004; Ruan and Zhou, 2008), magnesium (Mg2+) (Zhou et al.,
2005a), zinc (Zn2+) (Zhou et al., 2005a), and ferric (Fe3+) ions (Ji
et al., 2009). In other reports, under different experimental
conditions (such as the composition and concentration of silks
and the concentration of salts), these metallic ions have been
found to exhibit different effects. For example, K+ and Na+ were
found to increase the content of random coils and facilitate the
breakdown of the molecular network (Zhou et al., 2005a); Ca2+ at a
concentration higher than 10 mg per gram of silk protein inhibited
the conformational transition (Zhou et al., 2004); Na+ was suggested
to impede the conformational transition and the corresponding
aggregation, thus beneficial for the storage of silk proteins (Hagn
et al., 2010; Hagn et al., 2011); Ca2+ and Mg2+ were found to stabilize
the predominantly disorder state of the spider silk protein (Dicko
et al., 2004). Although cations have been predominately studied, the
effect of anions, such as PO4

3−, on silk proteins also elicited
substantial research attention (Rammensee et al., 2008; Eisoldt
et al., 2010; Humenik et al., 2014), such as ion-induced liquid-
liquid phase separation (Malay et al., 2020).

The mechanisms regarding the effects of salt ions on silk
proteins for silk spinning are yet to be fully understood. One
hypothesis is based on the non-specific electrostatic interactions
between positively charged metallic ions, such as Ca2+ and K+, and
negatively charged groups, such as carboxyl groups of glutamate and
aspartate amino acids (Kim et al., 2004; Zhou et al., 2004). Divalent
Ca2+ may form a transient “salt bridge” to prompt chain interactions,
while monovalent K+ may modulate this behavior by electronic
shielding. On the basis of the electronic interaction-involved
crosslinks, a model called “sticky reptation” (Leibler et al., 1991)
is introduced to explain the quantitative effects of metallic ions on
the macroscopic rheological behaviors of silk protein solutions
(Koeppel et al., 2020; Schaefer et al., 2020).

Another hypothesis proposed that specific domains of silk
proteins will interact with metal ions, for example, via metal
coordinate bonds. The metal coordinate bonds have been found
in a variety of structural proteins and play a central role in the
functionality, including dope-Fe bonds in mussel byssus cuticles and
phosphoserine-Ca bonds in sandcastle worm glue (Degtyar et al.,
2014). The hydrophilic domain of silk fibroin, containing histidine,
glutamine, and aspartate (Figure 2), has been suggested to provide
binding sites for Fe3+ (Ji et al., 2009) and Cu2+ (Zhou et al., 2005a).
The GYGmotif in the hydrophobic domain is also suggested to bind

K+ (Ruan et al., 2008). In particular, the GYG is highly conserved in
the sequence of K+-selective channel proteins (Doyle et al., 1998).

The third hypothesis is based on the specific ion effects on the
macroscopic aggregation of proteins in aqueous solutions,
i.e., Hofmeister-type salting out (Kim et al., 2005; Heim et al.,
2009). The Hofmeister series ranks the capability of salt ions to
precipitate proteins, which is related to the inherent properties,
composition, and concentration of salt ions via interactions with the
backbone and negatively charged side chains (Kunz et al., 2004;
Zhang and Cremer, 2006; Zhang and Cremer, 2009; Lo Nostro and
Ninham, 2012). The ions in the Hofmeister series are divided into
kosmotropes and chaotropes; the former usually exhibit a stronger
capability to salt out proteins than the latter. Kosmotropic ions are
weakly hydrated cations and strongly hydrated anions, such as K+

and SO4
2−; chaotropic ones are strongly hydrated cations and weakly

hydrated anions, such as Ca2+, Na+ and Cl−. The mechanisms of the
Hofmeister salt ions on the macroscopic aggregation of other
macromolecules have been investigated, including elastin-like
polypeptide (Rembert et al., 2012), lysozyme (Zhang and Cremer,
2009), and poly(N-isopropyl acrylamide) (PNIPAM) (Heyda and
Dzubiella, 2014). The property of kosmotropic and chaotropic ions
seems in line with the gradient of ions along the spinning apparatus,
where Ca2+ and Na+ contribute to the storage of silk proteins, and K+

facilitates the sol-gel transition. Notably, under certain solvent
conditions (1 wt% silk proteins and 0.5 M salts), the
conformational change and solubility of silk proteins did not
follow the Hofmeister series (Dicko et al., 2004). In addition, the
Hofmeister effects have been exploited to fabricate high-
performance hydrogels (Jaspers et al., 2015; He et al., 2018; Wu
et al., 2021), which, however, is largely based on the close packing of
polymer chains rather than a hierarchical molecular assembly.
Therefore, the role of the Hofmeister-type salt ion effects in silk
spinning may require further investigation.

2.2.2 pH
The spinning apparatus in silkworms and spiders exhibits a

pH gradient that gradually decreases. In spiders, the pH is lowered
from 7.6 to 5.7 (Andersson et al., 2014); the pH in silkworms is from
8.2 to 6.2 (Domigan et al., 2015) (Figure 3). Notably, the pH cannot
be measured by microelectrode in the narrow part of the duct and
the anterior part due to the anatomic features (Andersson et al.,
2014; Domigan et al., 2015). The spatial pH gradient is generated
and maintained most likely by the proton pump in the epithelium
and active carbonic anhydrase (CA) (Andersson et al., 2014;
Domigan et al., 2015).

The gradually acidified environment along the spinning
apparatus is suggested to play an important role in silk spinning,
which is to solubilize silk proteins during storage and to initiate the
aggregation of silk proteins for spinning. The effects of pH on silk
proteins are perhaps based on two mechanisms. The first one is the
general effect of pH on the surface charge of proteins. A pH closer to
the isoelectric point of silk proteins (silk fibroin, 4.4; spidroin, 4.22)
(Dicko et al., 2004; Foo et al., 2006) will reduce the surface charge of
the silk proteins and the electrostatic repulsive forces between
polypeptide chains, thus promoting chain interactions and
protein aggregation. The second one is the pH-sensitive relay of
the N-terminal domain (NT) (Askarieh et al., 2010; Kronqvist et al.,
2014). The NT of spidroin is conserved across species (Gaines et al.,
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2010), indicating the broad applicability. At pH 7.0, the NT remains
monomer and facilitates the dissolution of silk proteins; at a lower
pH, around 6.4, the NT forms dimers and initiates aggregation,
characterized by the formation of nanofibrils and solution turbidity,
in comparison to the recombinant mini-spidroin without the NT
(Askarieh et al., 2010; Landreh et al., 2010). The pH-sensitive relay
also seems to depend on the salt concentration (Hagn et al., 2011;
Rising, 2014). The vapors of acetic acid (pH, 2.0) and ammonia (pH,
7.0) were used to treat native silk dopes from silkworms, which leads
to reversible gelation, characterized by the ratio between storage and
loss moduli (G′ and G″) (Terry et al., 2004). Several outstanding
fiber spinning approaches with silk feedstocks are based on
pH effects, which will be discussed in Section 3.1.

The effects of salt ions and pH on the assembly of silk proteins
are not usually decoupled. It is primarily because common pH buffer
solutions are always composed of various salt ions. However,
organic quaternary amines, such as tetramethylammonium
(TMA), may replace sodium and potassium ions to formulate
pH buffer solutions and verify the effects of mineral ions on
macromolecues, on the solubility of PNIPAM (Bruce et al.,
2020), thus promising for silk proteins.

2.2.3 Water content
Along the spinning apparatus, the water, as the solvent for silk

proteins, is also actively manipulated, which is gradually reduced,
perhaps by the active reabsorption of the epithelium and the
evaporation to air after exhibiting the spinneret (Magoshi et al.,
1996; Vollrath and Knight, 2001). The removal of water slows down
the linear velocity of the spinning dope, which is beneficial for the
manipulation of other solvent cues by diffusion, as well as is
necessary for the formation of solid and compact structures (Foo
et al., 2006). The role of water content or water removal has been
recognized as a fundamental mechanism for conformational
transition (Hu et al., 2008; Mo et al., 2009; Yazawa et al., 2016;
Nishimura et al., 2018). Also, water molecules are a plasticizer to
manipulate the flexibility of the polypeptide chains of silk proteins
and determine the mechanical performance of silks (Hu et al., 2007;
Lawrence et al., 2010; Yazawa et al., 2016; Nishimura et al., 2018).

The intricate control of water content in the spinning dope is
related to the assembly of silk proteins in silk spinning (Vollrath and
Knight, 2001; Jin and Kaplan, 2003). In particular, the polyethylene
oxide (PEO) solutions were used to remove water from silk fibroin
solutions, leading to globular-like structures in 0.8–15 µm diameter
that derives from the coalescence of micellar-like nanostructures
(100–200 nm in diameter) and forms fibrillar structures under shear
forces (Jin and Kaplan, 2003). On the basis of the principle of water
removal, osmotic stress of poly(ethylene glycol) (PEG) solutions
were used to induce the conformational transition of silk proteins
(Sohn et al., 2004) and eventually led to an artificial wet-spinning
approach with the assistance of organic solvents (Sohn and Gido,
2009).

3 Bioinspired biofabrication

The silk spinning-inspired fabrications may exhibit substantial
benefits in manufacturing sustainability and biomedical therapeutics
compared to industrial polymer fabrication. In addition to

recapitulating the extrusion-based fiber spinning, there are other
ways to process silk proteins into a variety of valuable structures and
materials, such as photocrosslinking (Kim et al., 2018; Mu et al.,
2020b; Mu et al., 2022b; Xie et al., 2023), salt leaching and
lyophilization (Kim et al., 2005; Tozzi et al., 2018), gel spinning
(Lovett et al., 2008), spin coating (Jiang et al., 2007; Bucciarelli et al.,
2018; Chen J. et al., 2019), thermomoulding (Guo et al., 2020b),
lithography (Kim et al., 2014; Jiang et al., 2018; Zhou et al., 2018),
and others (Rockwood et al., 2011; Li et al., 2022). This section
discusses two approaches that primarily rely on the recapitulation of
the native solvent cues along the spinning apparatus, including fiber
spinning via an aqueous acidic bath and 3D printing via an aqueous
salt bath.

3.1 Fiber spinning

Most artificial fabrication with silk protein feedstocks, including
fiber spinning and 3D printing, rely on organic solvents, including
methanol and isopropanol (Koeppel and Holland, 2017), which
aggregate silk proteins in a manner largely different from the native
mechanisms and lead to the non-native organization of silk proteins.
A whole-aqueous spinning process for artificial fiber spinning has
been devised based on the mechanism of pH-mediated assembly
(Askarieh et al., 2010; Andersson et al., 2014) with an aqueous bath
(500 mM Na-acetate and 200 mM NaCl pH 5.0) and the feedstocks
of monolithic recombinant spider silk proteins. It exhibits a
toughness of around 45 MJ/m3 (Andersson et al., 2017)
(Figure 4). When the pH of the bath is below around 3.0 or
above 7.0, the extruded silk proteins fail to form continuous
filaments. The acidic bath with pH 5.5 also leads to a significant
shift toward quaternary structure and β-sheet conformations
(Andersson et al., 2017). In another study using the same buffer,
the toughness of artificial silk fibers is improved to 74 ± 40 MJ/m3

(Schmuck et al., 2021). Furthermore, the artificial spinning of
rationally designed spider silk proteins in another acidic bath
(750 mM acetate buffer, 200 mM NaCl, pH 5.0) led to the
toughness of 146 and 125 MJ/m3 (Arndt et al., 2022), which is
comparable to 136 MJ/m3 of Argiope argentata dragline silks
(Blackledge and Hayashi, 2006). The rational design is to replace
alanine at certain positions with isoleucine, which is claimed to
enable the high-yield production of recombinant proteins in
prokaryotic hosts as well as enhances the propensity to form β-
strands and β-sheets (Johansson et al., 2010).

3.2 3D printing

Spiders and silkworms fabricate 3D structures, such as orb webs
and cocoons. Thus, silk spinning seems to present a natural version
of extrusion-based 3D printing/additive manufacturing. 3D printing
based on digital design may provide a range of manufacturing
benefits compared to conventional subtractive manufacturing
(Heinrich et al., 2019; Zhang et al., 2021). Notably, 3D printing
is advantageous in the fabrication of mold-free, digitally designed,
patient-specific scaffold with considerable turnaround time and
anatomic accuracy that is promising in the treatment of a range
of tissue defects. Silk spinning has inspired a range of 3D printing
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approaches that may use concentrated electrolytes (Lewis, 2006),
organic solvents (Ghosh et al., 2008; Jose et al., 2015), and structural
additives (Zheng et al., 2018). These outstanding studies have been

extensively examined in prior publications (Guo et al., 2020a; Mu
et al., 2020a; Agostinacchio et al., 2021; Mu et al., 2021; Chakraborty
et al., 2022).

FIGURE 4
Schematics of artificial fiber spinning with recombinant spider silks. (A) Instrument setup. (B,C) Slack and straightened status of artificially spun spider
silk fibers. (D) Artificial silks demounted from the collection wheel. Reproduced with permission from the American Chemical Society (Rising and
Harrington, 2023).

FIGURE 5
(A,B) Comparison between silk spinning and bio-inspired 3D printing. A de novo salt bath (4 M NaCl, 0.5 M K2HPO4, pH 6.0) is devised to mimic the
native solvent environment along the spinning apparatus. Reproduced with permission from John Wiley and Sons (Mu et al., 2020c).
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Recently, we demonstrated a de novo aqueous salt bath for 3D
printing with monolithic silk fibroin inks (Mu et al., 2020c; Mu et al.,
2022a), which may represent an important step toward silk
spinning-inspired biofabrication (Figures 5, 6). The most
important technical traits of this 3D printing method include the
whole-aqueous and ambient processing conditions (the absence of
heating and organic solvents), the monolithic proteinaceous
composition of the ink (the elimination of non-protein additives),
exceptional printability, and, importantly, a mechanism different
from temperature-induced, enzymatic, and ionic crosslinking for
the 3D printing with collagen, fibrin, gelatin, and alginate. The
synergy of all technical traits is critical to fulfilling the promise of
silk spinning-inspired biofabrication in sustainable polymer
fabrication and various biomedical applications.

The composition of the salt bath is primarily inspired by the
three solvent cues along the spinning apparatus, including ions, pH,
and water content, as discussed in Section 2.2. The aqueous salt bath
contains 4 M NaCl and 0.5 M K2HPO4, which brings the K+ and
HPO4

2− to the extruded silk protein inks by diffusion. The high salt

concentration also leads to a high osmolarity that helps removes
water from the extruded silk inks. In addition, the salt bath is slightly
acidic, around pH 6.0, which reduces the electrostatic repulsive
forces and facilitates the interaction and assembly of silk protein
molecules. In the absence of crosslinking chemicals and heating
(Gantenbein et al., 2018; Lee et al., 2019), the mechanical
performance, especially tensile strength and toughness, of the
3D-printed silk structures is comparable with or superior to most
biopolymers (Mu et al., 2020c).

Furthermore, the 3D printing approach exhibited much-
improved printability and fidelity compared to other 3D printing
with silk protein inks (Jose et al., 2015; Schacht et al., 2015)
(Figure 6). 3D-printed silk fibroin pyramid and wheel, imaged by
scanning electron microscope (SEM), demonstrated the resolution
of filaments around 100 µm and the well-organized connection
between filaments and layers. This approach also allows multi-
material printing, i.e., the use of two kinds of inks and the
construction of a 4-layer composite lattice (Figure 6B). The
bioinspired 3D printing approach can print vase-like structures

FIGURE 6
Morphological characterizations of 3D printed silk fibroin structures. (A) Scanning electron microscope (SEM) images of 3D-printed silk fibroin
pyramid- and wheel-like structures. (B) A four-layer 3D printed lattice structure composed of two kinds of inks. (C) 3D-printed vase-like silk fibroin
structures. (D) 3D-printed silk fibroin microfluidic device. (E) 3D-printed silk fibroin cantilevers. Reproduced with permission from John Wiley and Sons
and under CC-BY (Mu et al., 2020c; Mu et al., 2022a).
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and a Y-shaped perfusable microfluidic device, which involves
vertical and high aspect ratio structures (Figures 6C, D). Also,
this result indicates the feasibility of printing a functional device,
which may be beneficial to speed up the turnaround from the design
to the product. In the previous work (Mu et al., 2020c), we also
demonstrated that the aspect ratio of the 3D-printed overhanging
silk fibroin filament is up to 375, which is higher than other reports,
including ~20 (electrolytes) (Smay et al., 2002), ~33 (Carbomer)
(Chen Z. et al., 2019), and ~1 (silk fibroin) (Dickerson et al., 2017).
The overhanging filament is only supported by the two ends and
tends to sag and thus has been suggested to be a criterion for
assessing printability (Ribeiro A. et al., 2017). In addition to
overhanging filaments, we demonstrated the 3D-printed silk
fibroin cantilevers (Mu et al., 2022a) (Figure 6E). A range of
cantilevers is printed on top of a base and is supported by only
one end, thus more challenging to print than overhanging filaments.
The 3D-printed cantilever remains straight without sagging when
the span length is around 400 µm and below. The cantilever-like
structures seem a valuable alternative to the overhanging filaments
for the assessment of the printability and the optimization of the ink
composition and printing conditions.

The 3D printability is related to the dynamics of the sol-gel
transition of silk fibroin inks. The sol-gel transition should be fast
enough to maintain the filamentary morphology of the extruded silk
inks, while a too-fast transition may lead to inferior bonding
between layers and the clog of dispensing needles. The sol-gel
transition can be controlled by the concentration and
composition of salt ions. For example, 5M K2HPO4 bath will
lead to a more rapid change of G’ than the bath of 4 M NaCl
and 0.5 M K2HPO4, thus prone to clog the dispensing needle and
compromising the 3D printability (Mu et al., 2020c). The cutting off
of the extruded silk fibroin filaments is controlled by air pressure.

4 Silk spinning for systems sustainability

The modern industry of polymer manufacturing largely relies on
non-renewable fossil resources and energy-intensive thermal processing
(Baird and Collias, 2014; Cabernard et al., 2022), and results in

environmental pollution of greenhouse gases (Posen et al., 2017)
and (micro)plastics (MacLeod et al., 2021; Vethaak and Legler,
2021) (Figure 7). In addition, global polymeric production is
estimated to double by 2045 (Bergmann et al., 2022), thus escalating
the sustainability challenges. Notably, most efforts to keep polymer
manufacturing sustainable are based on a reductionist approach, which
focuses on the improvement of isolated, individual parts yet still relies
on other non-sustainable ones.

To keep the sustainability of our society in the coming decades is
a multidimensional and nested complex challenge (Anastas, 2019).
Thus, systems thinking and approaches become increasingly
important in tackling the emerging sustainability challenges in
polymer manufacturing (Zimmerman et al., 2020). Systems
thinking is characterized by innovative designs at the molecular
level for the whole life cycle, circular processes, and an expanded
definition of performance with environmental and energy
considerations (Zimmerman et al., 2020).

To this end, silk spinningmay offer a biological source of inspiration
to devise a holistic, sustainable approach to polymer fabrication
(Vollrath and Porter, 2009; Tao et al., 2012; Mu et al., 2020a; Li
et al., 2022; Rising and Harrington, 2023) (Figure 7). The molecular
design of silk proteins is central to the sustainability of silk spinning. Silk
proteins are composed of amino acids and can be harvested from
sericulture and host animals, which are renewable. Silk proteins can be
directed to assemble into hierarchical structures under ambient and
aqueous conditions without intense energy input (high temperature and
pressure) and organic solvents (Holland et al., 2012; Sparkes and
Holland, 2019). The complex information coded in the assembly of
silk proteins is believed to reduce the energy input. In contrast, the
fabrication of high-performance polymer products often requires high
temperatures and pressure. The end-of-life management of silk proteins
is convenient, as silk proteins are degradable, compostable and even
edible, leading to no environmental accumulation. The in vivo and
in vitro degradation of silk proteins has been scrutinized (Horan et al.,
2005; Wang et al., 2008). The degradation byproduct of silk proteins is
likely short peptides and amino acids, which could be used in making
feedstocks, thus contributing to a circular process. The significant
potential of silk spinning in sustainable polymer fabrication
highlights the importance of investing in fundamental research on

FIGURE 7
Comparison between silk spinning and industrial polymer manufacturing. Silk spinning may inspire a holistic approach to addressing sustainability
challenges in polymer fabrication.
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molecular mechanisms and exploring bioinspired advanced fabrication
approaches.

5 Conclusion

In summary, this article briefly reviews some important
mechanisms of silk spinning and bio-inspired biofabrication
techniques. The tiny creatures, such as spiders and silkworms,
provided sophisticated molecular mechanisms for devising
bioinspired polymer fabrication with possibly significant impact on
our society. In particular, the monolithic proteinaceous composition
and ambient and aqueous processing conditions are highly desired for a
holistic approach to addressing emerging challenges in healthcare and
sustainability. In addition, the future of silk spinning-inspired
biofabrication for biomedical applications seems rosy, especially for
hard tissue regeneration (Yan et al., 2012; Melke et al., 2016; Ribeiro V.
P. et al., 2017; Cheng et al., 2018; Fitzpatrick et al., 2021), bioelectronics,
vascular grafts (Lovett et al., 2010; Bosio et al., 2017; Tanaka et al., 2021),
and nerve conduits (Madduri et al., 2010; Alessandrino et al., 2019;
Carvalho et al., 2021), and has drawn substantial attention from
academia and industry globally (Kundu et al., 2013; Holland et al.,
2019). Amajor hurdle for devising silk-spinning-inspired biofabrication
is the incomplete understanding of the exact molecular mechanisms
and native solvent cues. We envision that future advances in the field of
silk spinning-inspired biofabrication will be driven by collaborations
between multiple disciplines and the critical need for promoting
sustainability and devising high-value biomedical tools.
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