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Throughout the twenty-first century, the view on inclusion bodies (IBs) has shifted
from undesired by-products towards a targeted production strategy for
recombinant proteins. Inclusion bodies can easily be separated from the crude
extract after cell lysis and contain the product in high purity. However, additional
solubilization and refolding steps are required in the processing of IBs to recover
the native protein. These unit operations remain a highly empirical field of research
in which processes are developed on a case-by-case basis using elaborate
screening strategies. It has been shown that a reduction in denaturant
concentration during protein solubilization can increase the subsequent
refolding yield due to the preservation of correctly folded protein structures.
Therefore, many novel solubilization techniques have been developed in the
pursuit of mild solubilization conditions that avoid total protein denaturation. In
this respect, ionic liquids have been investigated as promising agents, being able to
solubilize amyloid-like aggregates and stabilize correctly folded protein structures
at the same time. This review briefly summarizes the state-of-the-art of mild
solubilization of IBs and highlights some challenges that prevent these novel
techniques from being yet adopted in industry. We suggest mechanistic models
based on the thermodynamics of protein unfolding with the aid of molecular
dynamics simulations as a possible approach to solve these challenges in the
future.
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1 Mild inclusion body solubilization

While initially inclusion bodies (IBs) were thought to be aggregates of misfolded protein
(García-Fruitós et al., 2012), they have been shown to contain correctly folded secondary and
tertiary protein structures, in some cases even with biological activity (García-Fruitós, 2010;
Villaverde et al., 2015; Belkova et al., 2022; López-Cano et al., 2022). Preserving these existing
structures during the solubilization step has been correlated with an increase in refolding
yield due to reduced re-aggregation (Singh et al., 2015; Kachhawaha et al., 2022). Thus, the
concept of “mild solubilization” originated, describing the solubilization of IBs without fully
denaturing the protein. Many researchers use an arbitrary maximum threshold of 2–3 M
Urea to demarcate “mild” from “traditional” solubilization (Singh et al., 2015; Upadhyay
et al., 2016; Nekoufar et al., 2020; Maksum et al., 2022; Mohammadi et al., 2023). However,
the degree of denaturation induced by these conditions is highly dependent on the respective
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protein of interest (PoI). Therefore, in this manuscript, “mild
solubilization” describes attempts to solubilize aggregated protein
in such a way that all existing misfolded structures are unfolded,
whilst the highest possible amount of already existing correctly
folded secondary structures are preserved.

Despite the advantages of mild solubilization, it is still necessary
to add a sufficient amount of denaturing agent during solubilization
to allow misfolded structures to unfold. Hall et al. (2018) showed
that dimeric disulfide-linked recombinant human bone
morphogenic protein-2 could be extracted from IBs without
denaturation by using a buffer containing 4 M urea and 250 mM
guanidinium hydrochloride (Gnd-HCl). However, the extracted
protein showed no bioactivity. It was hypothesized that this was
due to the incorrectly folded disulfide bridges and hydrophobic core.
This was supported by refolding the protein after solubilization at
6 M Gnd-HCl, thereby producing a bioactive product. This example
shows that successful mild solubilization has to balance preserving
the correctly folded structures with the unfolding of any misfolded
structures.

Several analytical methods have been established to evaluate the
structural changes during the solubilization and subsequent
refolding of IBs. Infrared (IR) and Raman spectroscopy can be
used to track changes in the secondary and tertiary structure of
proteins, as well as the formation of disulfide bonds (Pauk et al.,
2021). FT-IR spectroscopy can even be used to differentiate and
quantify intramolecular α-helix structures from amyloid-like β-
sheet bridges of IBs within intact cells (Ami et al., 2006). By
deconvoluting the IR spectra, the contributions of individual
structure types, such as α-helices or β-sheets, can be quantified
(Umetsu et al., 2005). However, amide signals of the protein
commonly overlap with prominent water and urea signals.
Therefore, high protein concentrations are required to use IR and
Raman spectroscopy.

Another spectroscopic method for protein structure analysis is
circular dichroism (CD) spectroscopy (Clarke, 2011), which
measures the difference in absorption of right- and left-circularly
polarized light. The resulting spectra show characteristic bands for
the individual secondary protein structure types.

If the (un)folding occurs as a two-state reaction, differential
scanning calorimetry (DSC) can be used to measure the enthalpy of
unfolding (Ionescu et al., 2008). This is especially important to
characterize the thermodynamics of the folding states.

Dynamic light scattering (DLS) is a widely used method to
measure particle size distribution. This information can be used to
track aggregation processes. Moreover, this technique can also be
used to measure the hydrodynamic radius of proteins. As the protein
unfolds, its hydrodynamic radius increases, thus enabling DLS to
monitor the unfolding process (Yu et al., 2013).

Finally, intrinsic tryptophan (= Trp) fluorescence is a very
robust method often used to track in situ refolding. The observed
fluorescence maximum shifts as Trp residues in the protein get
buried within the hydrophobic core during the folding process (Duy
and Fitter, 2006). Additionally, acrylamide quenches Trp
fluorescence via an entirely physical mechanism. This can be
used to determine the Stern-Volmer constant and therefore
quantify the amount of Trp residues located within the core of
the protein versus those positioned towards the bulk medium
(Tallmadge et al., 1989; Upadhyay et al., 2016).

In many protein folding studies, CD spectroscopy is used as a
secondary analysis method alongside intrinsic Trp fluorescence. As a
larger number of structural groups (amide bonds, aromatic amino
acids, disulfide bonds) contribute to the information gained (Clarke,
2011; Pauk et al., 2021), CD spectroscopy is able to give detailed
information about the structure of the protein. Meanwhile, Trp
fluorescence offers high sensitivity and is compatible with high
solute concentrations. These traits also make Trp fluorescence
spectroscopy an excellent option to be considered as an online
PAT tool for solubilization and refolding processes.

To achieve mild solubilization without total denaturation of the
protein, reduced amounts of the traditional solubilizing agents, urea
and Gnd-HCl, are usually paired with other chemical or physical
conditions. Most prominently, alkaline pH is used to increase
protein solubility at lower denaturant concentrations (Khan et al.,
1998; Patra et al., 2000; Singh et al., 2008; Lu and Lin, 2012; Ishikawa
et al., 2022). Other chemical options are organic solvents (Upadhyay
et al., 2016; Sarker et al., 2019; Nekoufar et al., 2020) or detergents,
like N-lauroyl sarcosine, SDS, CHAPS, and Triton X-100 (Francis
et al., 2012; Ishikawa et al., 2022; López-Cano et al., 2022). Physical
methods for mild solubilization include high pressures of up to
2.4 kbar (Chura-Chambi et al., 2022a; Chura-Chambi et al., 2022b)
and, most recently, freeze-thaw cycles (Padhiar et al., 2018; Maksum
et al., 2022). Finally, ionic liquids (ILs) are novel solvents able to
dissolve IBs whilst potentially retaining secondary or even tertiary
protein structure.

1.1 Ionic liquids as mild solubilization agents

ILs are salts in a liquid state at temperatures below 100°C that
have gained much attention in IB processing due to their adaptable
physicochemical properties and environmental benefits. ILs have
shown great potential as mild solubilization agents, dissolving
aggregated protein whilst preserving native secondary structures
of proteins (Fujita et al., 2016). Furthermore, they can help refold
chemically denatured protein by replacing urea or Gnd-HCl from its
solvation layer due to preferential interaction (Singh and Patel, 2018;
Sindhu et al., 2020). Both of these properties could help to intensify
refolding processes and lower their environmental burden by
reducing the need of diluting the solubilizate. The influence of
the most common IL ions on protein folding has been recently
reviewed by Guncheva (2022).

Similarly, deep eutectic solvents (DES) are a subclass of ILs
which has been recently investigated in protein stability studies
(Yadav and Venkatesu, 2022). DES are mixtures of salts that are
liquid at room temperature since the eutectic mixture has a
significantly lower melting point compared to the individual
components (Abbott et al., 2003). Although there have been
several interesting studies concerning the conformational stability
and folding state of proteins in these solvents (Niknaddaf et al., 2018;
Kist et al., 2019; Sanchez-Fernandez et al., 2022), to our knowledge,
there is no literature available yet regarding the solubilization of
aggregated protein in DES. This emerging field of research is
important for industrial applications, as many DES are
comprised of cheap and biocompatible bulk chemicals
(Gonçalves et al., 2021; Jesus et al., 2023; Usmani et al., 2023).
Furthermore, DES are capable of being recycled, providing an
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economical and environmental advantage over traditional
chaotropic agents (Prabhune and Dey, 2023).

Despite these potential benefits, ILs and DES are very
challenging to fit into the currently established IB process design
strategy. The early development of the chemical environment for
solubilization and refolding is still carried out by empirical and
elaborate screening experiments, as summarized in a recent review
(Buscajoni et al., 2022). A schematic depiction of the currently
established process development steps is shown in Figure 1.

The initial selection of buffer components is based on experience
and reviewing the literature. Therefore, the design space is usually
constrained to a short list of already established chemicals. Screening
experiments are generally done in a DoE approach, maximizing
responses, such as the solubilization efficiency, final product
concentration after refolding, or the refolding yield, using the
response surface method (Ahmadian et al., 2020). This approach
can be iterated with adapted design spaces until an optimum for the
desired response is found. The resulting model is then used to define
the process parameters. Alternatively, data-driven models can
predict optimal process parameters based on experimental data.
A recent publication (Walther et al., 2022) has shown such a data-
driven integrated process model for the solubilization, refolding, and
purification steps in an industrial setting. This empiric approach
based on statistics efficiently optimizes a set of quantitative process

parameters. Still, the choice of the initial design space, based on
experience, is highly influential on the final process, and the results
cannot be transferred between different PoIs. Furthermore, if a
comprehensive list of chemicals and their combinations are
considered as buffer components, the experimental designs
become very expensive in time and resources.

Besides some technical constraints (i.e., high pressure), this
seems to be one of the reasons that, besides alkaline pH, none of
the developed mild solubilization techniques are applied in
industrial processes yet. Especially ILs are very hard to integrate
into the screening-based approach due to the sheer amount of
possible ion pair combinations. Another disadvantage of the
current design method is the lack of generated platform
knowledge. Therefore, this cumbersome and time-intensive
process has to be repeated for each new PoI. The missing
platform knowledge is also problematic when the push toward
quality by design (QbD) principles is considered (ICH, 2017; Beg
et al., 2019).

One approach to generate this knowledge is the formulation of
mathematical models for each process step. However, for the
solubilization and refolding steps, there is still a lack of
mechanistic models describing the effects of the chemical
environment. The refolding step is usually described by kinetic
models, parametrizing reaction rates from the denatured to
intermediate, native, or aggregated states (Jungbauer and Kaar,
2007; Pauk et al., 2021). The kinetics of solubilization has been
shown to be predominantly dependent on pore diffusion resistance
into the IB particles (Walther et al., 2013; Walther et al., 2014).
However, while these kinetic models present an important tool to
describe the influence of factors like protein concentration and
process times, they do not help in choosing a suitable buffer
composition for mild solubilization. To address these
shortcomings of the currently established process design
approach, the authors want to suggest the use of two theoretical
tools:

1) Thermodynamic unfolding models as a way to describe and
predict the solubilization process more precisely, and

2) Molecular dynamics simulations (MDS) to predict the
interactions of the PoI with a wide array of chemicals.

2 Mechanistic models and molecular
dynamics simulations for solubilization
prediction

While no mechanistic models specifically describing the
solubilization of IBs have been published so far, the
thermodynamics of protein folding has been studied
extensively. The chemical denaturation of a protein in an
aqueous system occurs because a denaturant preferentially
binds to the protein over water. Since the unfolded state
provides a greater number of interaction sites for the
denaturant, this confirmation is energetically favored, and the
protein unfolds. Early observations showed that the free energy of
unfolding in water linearly correlates to the denaturant
concentration (Pace et al., 2008). This linearity can be
explained by the protein-solvent interaction behaving more

FIGURE 1
Schematic representation of the established approach to
solubilization process development. The factors of the first statistical
design of experiments (DoE) are chosen based on experience and
literature, while the ranges are limited by the technical feasibility
of the screening experiments. After evaluating the results, the DoE is
iterated with adapted design spaces until sufficiently optimized
process parameters are found and transferred to larger scales.
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similarly to a solvent exchange than to covalent binding
(Schellman, 2002; Pace et al., 2008). The slope of this system-
specific linear correlation is called the “m-value” (Greene and
Pace, 1974) and can be used to estimate the free enthalpy of
unfolding within water. While this m-value helps quantify
“denaturation power” in a system (Magsumov et al., 2020), it
is still an empiric parameter without a clear mechanistic
interpretation (Wakayama et al., 2019). To formulate a
mechanistic model, physically defined parameters are required,
as exemplarily proposed by Hall et al. (2018). This model
describes chemical denaturation via six parameters,
representing a countable number of interaction sites for both
the folded and unfolded state, distinctive binding constants for
different groups of interaction sites, and the intrinsic stability of
the native protein structure. However, this model was still built
on insights gained from denaturation experiments using urea and
Gnd-HCl as denaturants. Among other aspects, Wakayama et al.
(2019) expanded the existing thermodynamic models by
considering the possibility of stronger binding interactions
and alternative denaturing factors, such as high pressure or
temperature, thus, potentially creating a mechanistic basis for
physical methods of mild solubilization and new denaturants
like ILs.

However, this model still does not resolve the problem of
choosing a suitable denaturant without screening all options, as
the model parameters are always specific for a definite protein-
solvent system. Instead of limiting the possibilities to urea and Gnd-
HCl, it would be required to estimate a protein’s solubility in a wide
range of alternative solvents, being especially relevant to ILs.

The solubility of protein can be partly estimated using the
Hofmeister series (Hofmeister, 1888), which has developed into a
series comparing individual cations and anions, qualitatively
describing their influence on protein solubility. These Hofmeister
effects were initially attributed to the ions increasing or decreasing
the H-bond structuring of water. The H-bond structure was
assumed to affect the hydration layer of the protein, explaining
the influence on solubility. While this is partly true, extensive
research revealed that the actual mechanisms are a far more
complex mixture of Coulombic and disperse interactions,
excellently reviewed by Schröder (2017) within the context of ILs.
These newer mechanistic insights into protein-solvent interactions
are heavily based on computational science, especially MDS. These
simulations have been used to quantify the effect of different ions on
the solubility of hydrophobic solutes (Thomas and Elcock, 2007),
thereby differentiating the term “Hofmeister effects” into three
categories of individually quantifiable contributions:

1) water—water hydrogen bonding (or “water structuring” in the
Hofmeister context).

2) free energy of the hydrophobic interaction between solutes and
3) preferential interaction of ions and solutes.

To investigate the specific interaction of individual solvent
molecules with proteins, MDS have become state-of-the-art
(Schröder, 2017; Ferina and Daggett, 2019; Otzen et al., 2022;
Sinha et al., 2022). In these simulations, the motions of a protein
molecule and the surrounding solvent molecules are simulated
under the influence of their respective force fields. MDS have

been used to gain insight into the distance and orientation
between proteins and other solutes/solvents (de Oliveira and
Martínez, 2020; Otzen et al., 2022), protein-protein interactions,
such as aggregation (Loureiro and Faísca, 2020), as well as preferred
interaction tendencies between multi-component mixtures (Ghosh
et al., 2017). These insights might be used to formulate an early
prediction of suitable chemical environments to solubilize IBs,
without the need to conduct a single experiment in the lab.
Figure 2 shows a potential extension of the currently established
process development approach using the suggested methods.

MDS could be used to investigate the protein-solvent
interactions for a comprehensive list of chemicals. These
simulations could give a first estimation of the parameters that
describe the denaturation curve, determining the concentration
range in which the PoI is partially folded. Thus, novel
solubilizing agents could be considered without additional
screening experiments in the laboratory. Furthermore, basing
experimental designs on physical parameters could be a key step
to generate transferable process knowledge, leading to platform
technology and QbD. While the significant computational cost of
MDS must be considered (Sinha et al., 2022), there have been
significant recent advances limiting this downside. Besides
methodological improvements (Dominic et al., 2023), cloud-

FIGURE 2
Schematic description of solubilization process development
including the proposed additions highlighted by green dashed lines.
Molecular dynamics simulations (MDS) are used to determine a first
estimation for the parameters of a mechanistic model describing
protein denaturation. Based on these values, a range of promising
denaturants and buffer components are picked for the initial
experimental design. The iterative optimization loop feeds back into
the denaturation model, which is used as an input for the next design
space.
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computing approaches (Zimmerman et al., 2021) and artificial
neural networks (Tsai et al., 2022; Dominic et al., 2023) are
significantly improving real-time efficiency. Furthermore, the
optimization of simulation software for graphics processing units
(GPUs) has made MDS feasible for consumer-grade hardware
(Hollingsworth and Dror, 2018). The impact of GPU technology
on the availability of MDS can be illustrated by comparing two
studies that benchmark the hardware available at the time of their
publication. In 2013 an NVIDIA GTX-TITAN was able to simulate
dihydrofolate reductase, a 21.5 kDa protein comprised of
23,558 atoms, for 110.65 ns per day of computation (Salomon-
Ferrer et al., 2013). Six years later, an NVIDIA RTX
2080 generated the same simulation times for an 80,000-atom
membrane protein embedded in a lipid bilayer, including the
surrounding water and ion molecules (Kutzner et al., 2019). In
comparison, a recent study by Piccoli and Martínez (2022) used
MDS to predict the denaturing effects of four ILs on ubiquitin by
generating 3D structures of denatured ubiquitin with two longer
simulations of 50 and 100 ns, respectively. Then MDS of only 10 ns
each could be used to investigate the interactions of the ILs with the
protein in different folding states. Considering these simulation
times, current consumer hardware is likely to be powerful enough
for the proposed use of MDS.

3 Conclusion and outlook

The mild solubilization approach aims to preserve protein
structures present in IBs to increase refolding yields by reducing
the reaggregation of the solubilized PoI. This has been
empirically done by reducing urea and Gnd-HCl
concentrations during the solubilization while using alkaline
pH, high pressure, detergents, organic solvents, and freeze-
thaw cycles to increase protein solubility. Recently, ILs have
been investigated, both as a very promising method to
solubilize protein aggregates without unfolding their native-
like structure, as well as refolding additives that counteract the
effects of the traditional denaturants. However, due to the
number of possible ion combinations, the established process
design method of empirically screening buffer components
quickly leads to an overwhelming number of experiments.
Furthermore, this approach does not generate platform
knowledge and has to be repeated for each new PoI.

To improve the established design process, MDS could be used
in combination with mechanistic models that describe the
thermodynamics of protein (un)folding to base experimental
designs on physical parameters and improve process
understanding. The current advances in the field of machine
learning, and algorithms like AlphaFold, have made significant

progress toward sequence-based protein structure prediction
(Nussinov et al., 2022). These novel tools could soon be used to
obtain the main requirement for MDS, a detailed 3D structure of the
protein, without resource-intensive protein structure analytics.
Combining these knowledge-based simulation tools might even
enable the prediction of an entire refolding process based on the
sequence of the PoI.
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