
Porous biomaterial scaffolds for
skeletal muscle tissue engineering

Natalie G. Kozan, Mrunmayi Joshi, Sydnee T. Sicherer and
Jonathan M. Grasman*

Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States

Volumetric muscle loss is a traumatic injury which overwhelms the innate repair
mechanisms of skeletal muscle and results in significant loss of muscle
functionality. Tissue engineering seeks to regenerate these injuries through
implantation of biomaterial scaffolds to encourage endogenous tissue
formation and to restore mechanical function. Many types of scaffolds are
currently being researched for this purpose. Scaffolds are typically made from
either natural, synthetic, or conductive polymers, or any combination therein. A
major criterion for the use of scaffolds for skeletal muscle is their porosity, which is
essential for myoblast infiltration and myofiber ingrowth. In this review, we
summarize the various methods of fabricating porous biomaterial scaffolds for
skeletal muscle regeneration, as well as the various types of materials used to
make these scaffolds. We provide guidelines for the fabrication of scaffolds based
on functional requirements of skeletal muscle tissue, and discuss the general state
of the field for skeletal muscle tissue engineering.
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1 Introduction

Volumetric muscle loss (VML) is a condition whereby a loss of skeletal muscle results in
impairment of both the regenerative capacity and overall functionality of the muscle. Even a
small (10%–20%) loss of muscle weight can result in an overall 30%–90% loss of strength
(Corona et al., 2015). Skeletal muscle possesses the ability to regenerate small-scale injuries
through the recruitment and differentiation of satellite cells (SCs), the local progenitor cell of
skeletal muscle tissue. However, once too much muscle mass has been destroyed, the tissue
loses its regenerative capabilities (Grasman et al., 2015b). It is estimated that 65.8 million
Americans sustain musculoskeletal injuries each year, including VML and other soft tissue
injuries, and the treatment cost of these injuries surpasses 176 billion U.S. dollars (Carnes
and Pins, 2020b). This loss of muscle can result from traumatic events such as from surgery,
cancer resection, car crashes, or battlefield injuries (Grogan et al., 2011). VML is common
amongst battlefield injuries; it has been found that 54% of soldiers who have sustained an
injury from the battlefield suffer from musculoskeletal injuries and from that number, 53%
involve damage to soft tissue. In the population of military personnel who have been
discharged because of a muscle-related condition, over 90% experienced an injury resulting
in VML (Corona et al., 2015).

The standard of care for VML repair is an autologous tissue transfer. In this treatment,
an undamaged muscle flap is surgically removed and grafted into the VML site. This
treatment method has several limitations. First, the grafted muscle flap cannot fully restore
lost functionality of the damaged muscle. Autologous tissue transfer may also result in
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tissue necrosis or infection, which occurs in about one out of ten of
these procedures (Mulbauer and Matthew, 2019). Additionally,
this treatment requires complicated surgery and thus demands a
high level of surgical skill, resulting in limited access to this
treatment based on location and surgeon availability (Carnes
and Pins, 2020b). Another treatment that is commonly
administered along with autologous tissue transfers is physical
therapy (rehabilitation). Physical therapy strengthens the muscle
groups that remain after injury and has been shown to enhance
angiogenesis, regulate the immune response, and the release of
myogenic growth factors (Liu et al., 2018). Although physical
rehabilitation can significantly improve the functionality of
injured muscle, it cannot induce large amounts of muscle
regeneration. Thus, where large volumes of muscle are lost, the
patient is limited in the types of exercises they can actually
participate in for physical therapy (Liu et al., 2018).
Additionally, functional deficits caused by VML can ultimately
lead to late-stage amputation of the injured limb (Sorensen et al.,
2022). Therefore, there is a clear need to develop tissue engineering
techniques for skeletal muscle regeneration which can restore
injured muscle volume and functionality. To enable broader
utilization of tissue engineered treatments, there should be a
material or approach which can be more easily administered
without the need for advanced surgical skill.

In this review, we discuss various strategies to develop
biomaterial scaffolds for use in treatment of VML and other
skeletal muscle pathologies by mimicking the skeletal muscle
tissue niche. The goal of this review is to highlight several
important design criteria which need to be considered when
fabricating a scaffold for this purpose, the most important being
scaffold porosity and alignment. We will also discuss methods of
scaffold fabrication as well as summarize potential materials used
in the development of these scaffolds. Finally, we discuss the
importance of scaffold optimization and provide future strategies
and requirements to successfully fabricate scaffolds for use in
skeletal muscle tissue regeneration.

2 Skeletal muscle anatomy

Skeletal muscle is a highly aligned tissue, the anatomy of which is
highlighted in Figure 1. This tissue is made up of long fibers called
myofibers, which upon stimulation from the neuromuscular
junction, synchronously contract to generate force, which is used
for a variety of functions including locomotion and ambulation of
peripheral limbs. Each myofiber within a muscle is covered by the
basal lamina, which is made up of several proteins such as type IV
collagen, laminin, and fibronectin. Glycosaminoglycans (GAGs)
such as heparan sulfate are also contained within the basal
lamina. SCs are found in the space between the myofiber and the
basal lamina, and are stimulated to regenerate damaged tissues
based on growth factors and mechanical signals transmitted by
the basal lamina and GAGs such as heparan sulfate (Velleman, 1999;
Grasman et al., 2015b). Each fiber is comprised of multiple
myofibrils and is surrounded by the endomysium. The
endomysium is a highly ordered, load-bearing network that
surrounds muscle fibers and aids in force transmission (Gillies
and Lieber, 2011; Sharafi and Blemker, 2011). Bundles of muscle

fibers are known as fasciculi, and are covered by the perimysium,
which is comprised of organized collagen (Gillies and Lieber, 2011).
The epimysium surrounds the whole muscle and is made up of large,
crimped collagen bundles which aid in force propagation across the
myotendinous junction (Gillies and Lieber, 2011; Dave et al., 2022).

When considering how to best develop biomaterial scaffolds for
use in skeletal muscle tissue engineering, one of the most important
attributes of skeletal muscle, in addition to its ability to generate and
transmit forces, is its alignment. A biomaterial scaffold must mimic
the aligned nature of skeletal muscle to facilitate the growth of fibers
and restore the damaged muscle. The scaffold should also support
the infiltration of many cells, direct SC fusion and differentiation to
form new myotubes, and facilitate nascent myotube maturation into
myofibers and overall incorporation into the healthy host tissue.
Another important characteristic of skeletal muscle is its ability to
withstand dynamic loading, which is in part modulated by its
mechanical properties. Therefore, successful scaffolds for skeletal
muscle regeneration must facilitate cellular ingrowth and alignment
while being mechanically stable within a mechanically actuating
tissue.

2.1 Skeletal muscle regeneration

Skeletal muscle maintains an innate ability to regenerate after
injury. Regeneration requires several different processes, such as
infiltration of cells, vascularization, innervation, and differentiation
of muscle progenitor cells into myofibers and is broken down into
three stages: the destruction/inflammation phase, the repair phase,
and the remodeling phase. This process of regeneration, particularly
the repair phase, can occur as long as the basal lamina remains
intact. The basal lamina is necessary as it acts as a scaffold for the
formation of myofibers and it is able to minimize fibrosis (Grounds,
1991).

In the destruction/inflammatory phase, damaged muscle fibers
and necrotic cells get degraded (Grasman et al., 2015b). Degradation
of the injured myofiber occurs once a specific region of the myofiber
becomes necrotized. The propagation of necrosis along the

FIGURE 1
Schematic illustration of the anatomy of skeletal muscle tissue.
This hierarchal arrangement of myofibers of increasing size-scales is
responsible for the efficient transmission of force. Several notable
anatomic features that are relevant to this review are highlighted.
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myofibers is stopped by a contraction band, which is formed by
cytoskeletal contraction at the site of damage within the fiber (Exeter
and Connell, 2010). The gap between the two ends of the necrotized
myofiber then gets filled with a hematoma, which ultimately induces
an inflammatory reaction (Järvinen et al., 2013), facilitating the
infiltration of neutrophils and macrophages which degrade the
damaged fiber (Grasman et al., 2015b; Ma et al., 2018). These
cells also release inflammatory factors such as TNF-α, which
inhibit myogenic cell differentiation during this phase of acute
inflammation and proteolytic activity (Ma et al., 2018).

In the repair phase, SCs are recruited to the injury site. Upon
activation, SCs will re-enter the cell cycle and a population of them
will commit to differentiation, becoming myoblasts. These
undifferentiated myoblasts proliferate further to increase cell
density, and will ultimately fuse with one another to form
myofibers. Within approximately 5 days, the necrotized myofiber
will be replaced by newly formed myofibers. In this phase, capillaries
also begin to grow into the injury site to aid in vascularization
(Järvinen et al., 2013), and growth factors such as insulin-like growth
factor 1 (IGF-1) are upregulated to stimulate myogenesis and
myofiber growth (Ma et al., 2018).

The remodeling phase is the phase in which regenerating
myofibers mature, forming new contractile units, and integrate
with the surrounding healthy tissue (Järvinen et al., 2013).
Innervation is also essential for the maturation of myofibers; the
formation of neuromuscular junctions (NMJs) is necessary for
muscle functionality. Newly formed NMJs are typically observed
within 2–3 weeks after muscle damage (Laumonier and Menetrey,
2016). Another characteristic of the remodeling phase is that in this
phase, fibroblasts infiltrate the wound site and repair the damaged
connective tissue in the area. In larger injuries, fibroblasts may
remodel the connective tissue into scar tissue, thus limiting the
functional capabilities of this tissue.

In VML, there is a lack of myoblast infiltration due to lack of
regenerative cues from the basal lamina, resulting from the
traumatic loss of tissue (Grasman et al., 2015b). These injuries
have an adjusted destruction process, as the tissue at the margins
of the injury are degraded rather than the entire injury site
(Downing et al., 2021). Instead of regeneration, persistent
inflammation occurs at the site of the VML injury. This
inflammation inhibits satellite cell migration into the defect site,
reducing the amount of de novomuscle tissue formation, and rather
induces fibro-adipogenic progenitors to migrate, proliferate, and
differentiate to form fibroblasts. These fibroblasts deposit a fibrotic
matrix at the injury site, resulting in lack of functionality of the
muscle (Larouche et al., 2018). Therefore, there is a need for a
treatment which can bring back the lost regenerative cues, stimulate
myoblast infiltration, and rehabilitate the injured tissue.

3 Design requirements for biomaterial
scaffolds

Many types of biomaterials are currently being tested for use in
skeletal muscle regeneration. The goal for biomaterial design is to
create a material that can be implanted into the injury site and will
regenerate the tissue. Biomaterial scaffolds can be comprised of
natural biomaterials, such as collagen, fibrin, alginate, or

decellularized ECM, or synthetic biomaterials (Eugenis et al.,
2021), and several important design criteria for skeletal muscle
tissue engineering are summarized in Figure 2. The scaffold must
also facilitate alignment and must allow for cell infiltration and
nutrient transfer. To achieve this, scaffold porosity can bemodulated
to allow for cell migration into the scaffold. Alignment in a scaffold
can refer to the lining up of material comprising the scaffold—e.g.,
the alignment of collagen fibers. It can also refer to the pores within
the scaffold being lined up in a directional manner, creating a
channel-like structure. Channels within a scaffold provide an
environment conducive to the formation of aligned myofibers
(Jana et al., 2016). Scaffold alignment is critical for linear
orientation of myoblasts, for their subsequent fusion into
myofibers, and ultimately for their ability to efficiently contract
to generate force (Cheng et al., 2020). Functional outcomes depend
on the ability of the regenerated muscle to produce mechanical
forces, which can be dependent on the angle of pennation within the
specific muscle body (Westman et al., 2019; Sicherer et al., 2020).
Therefore, we posit that controlling the alignment of scaffolds to
mimic this organization will properly produce these forces and
maximize regeneration. The pores within a scaffold should have
certain characteristics such as a size which supports the influx of
cells and interconnectivity which allows for nutrient transfer.

Another characteristic of skeletal muscle to consider when
designing a scaffold is its mechanical properties, namely stiffness
values. The stiffness of native skeletal muscle tissue ranges from
12–16 kPa (Jana et al., 2016; Chaturvedi et al., 2017). Scaffolds for
skeletal muscle tissue engineering must have a similar stiffness; if a
scaffold is too stiff, it will not be able to transfer load to the cells within it
since it cannot deform (Breuls et al., 2008). Matching the scaffold
stiffness to the tissue stiffness is necessary to transmit forces to these cells
in order to influence their fate (Jana et al., 2016). If a scaffold is too soft,
myotube formation can be inhibited (Jana et al., 2016). Therefore, the
stiffness of a scaffold should mimic that of native skeletal muscle tissue
tomaximize biocompatibility andmyogenic differentiation to formnew
myofibers which can integrate into healthy tissue.

Degradation rate must also be considered when designing a
biomaterial scaffold. After implantation, biomaterial scaffolds
should eventually degrade to be replaced by native tissues. The
rate of degradation of a scaffold should ideally be equal to the pace of
ECM generation to best facilitate muscle regrowth, as ECM forms
gradually (Kheradmandi et al., 2016). Degradation of a scaffold is
also important because the degradation products of a biomaterial
scaffold are often bioactive, although the functions of these
degradation products can vary between having antimicrobial
effects, chemotactic effects for a variety of cell types, or they can
even modulate the host immune response (Badylak et al., 2016).
Because skeletal muscle injuries often take within 2–6 weeks to heal
(Quint et al., 2022), the degradation of a scaffold used for skeletal
muscle tissue regeneration should ideally be modulated to match
this timeline.

3.1 Porosity

Porous scaffolds are beneficial in the field of tissue engineering
because they facilitate nutrient/gas exchange, and increase the
surface area with which cells attach, proliferate, and differentiate.
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The porosity, and interconnectivity, of pores within the scaffold
allows cells to infiltrate through these spaces to facilitate tissue
regrowth throughout the scaffold. In their native configuration
within the body, the space between cells is filled with the ECM.
Glycosaminoglycans, a major component of the ECM, form porous
hydrated gels which fill up most of the space around cells (Alberts
et al., 2002). While porosity within a tissue in the body can be
defined as space either filled with these hydrated molecules or within
a gel formed by the hydrated molecule, we define porosity, for the
purpose of this review, as the negative space between the insoluble
content of the scaffold. It is critical to note the importance of
hydration for natural scaffolds, as this will impact the
presentation of the porous structure, while synthetic scaffolds will
not produce as much of a difference in the porous structure in their
hydrated state. In addition to fabricating tissue, porosity within a
scaffold also creates space for secondary structures, such as blood
vessels, and it leads to uniform degradation of the scaffold (Qazi
et al., 2015). Modulation of porosity and interconnectivity of pores
within a scaffold can impact mechanical properties such as
compressive modulus (Haas et al., 2019). Control of the pore size
in sponges can facilitate varying amounts of cell viability, cell
differentiation, and nutrient diffusion (Carnes and Pins, 2020b).
Pore size has also been shown to influence macrophage polarization;
macrophages within a scaffold with 34 µm pores had a 63% increase
in M1 polarization and an 85% decrease in M2 polarization as
compared to macrophages cultured outside of the porous scaffold
(Sussman et al., 2014). The porosity within a scaffold can also be
categorized as homogeneous or heterogeneous. In heterogeneous
scaffolds, the level of porosity, pore size, shape, and location are
manipulated to optimize these characteristics for a specific
application. Heterogeneous pore structures may be beneficial to

develop a controlled distribution of cells and growth factors
throughout the scaffold, as varying the shape of the pores has
been shown to affect cell growth (Yoo, 2012; Khoda and Koc,
2013). Heterogeneous pores, however, may negatively affect the
mechanical strength of the scaffold (Civantos et al., 2020). Polymeric
scaffolds with homogeneous, uniform pore distributions have
improved mechanical properties (Kim et al., 2005). Therefore,
further research should seek to determine the effects of
homogeneous versus heterogeneous pore structure on myoblast
behavior. There is a need for porous substrates for skeletal
muscle tissue engineering because myoblasts within the scaffold
must be able to aggregate in close enough proximity so that they can
fuse to form myotubes. The newly formed tissue needs to have a
synchronized response with the host to facilitate efficient
transmission of force, which is made possible by aligned
aggregation of cells and myofibers (Kheradmandi et al., 2016).

Porous biomaterial scaffolds have shown several indicators
which suggest that they promote long-term regeneration of
skeletal muscle tissue. In one study, the efficacy of non-porous
scaffolds was compared to that of porous scaffolds fabricated from
polycaprolactone (PCL) and decellularized muscle ECM in the
context of skeletal muscle regeneration. These scaffolds were
tested in vitro by seeding the scaffolds with induced myogenic
progenitor cells. The porous, fibrous scaffolds were able to
support the most myogenic cell fusion, as quantified by myosin
heavy chain (MHC) expression and fusion index analysis, out of all
the experimental groups. After implantation, not only did these
scaffolds facilitate skeletal muscle tissue regeneration, but they also
supported the formation of CD31-positive capillaries, indicating
revascularization. Non-porous scaffolds showed lower myogenic
gene expression and lower fusion index than porous scaffolds,

FIGURE 2
Summary of design requirements to be considered when creating scaffolds for use in skeletal muscle tissue engineering.
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and thus were not implanted in vivo, clearly demonstrating the
utility of porosity for muscle regeneration (Jin et al., 2021b).

3.2 Methods of fabrication of porous
scaffolds

There are various methods which can produce scaffolds with
porous architectures, such as electrospinning, porogen leaching, and
freeze-drying (Figure 3). Many materials have been electrospun into
scaffolds for skeletal muscle regeneration; examples of which are
poly (lactic-co-glycolic acid) (PLGA), PCL, collagen, elastin, gelatin,
hyaluronic acid, and silk fibroin. These materials have displayed
potential for use in skeletal muscle tissue engineering (Klumpp et al.,
2010; Narayanan et al., 2016; Beldjilali-Labro et al., 2018; Politi et al.,
2020). Electrospinning is an effective method for biomaterial
fabrication because it creates ECM-like fibers. There are numerous
processing parameters during the electrospinning process that can be
tuned to create scaffolds with various characteristics. For example,
electrospinning can produce random or aligned scaffolds depending
on the collector geometry and rotational speed, and fiber thickness
can be varied based on the concentration of the polymer being used
or the distance of the nozzle to the collector plate (Beldjilali-Labro
et al., 2018). The type of nozzle, collector surface, flow rate, and
applied voltage can also vary the resulting material properties
(Kulkarni et al., 2010; Vass et al., 2020). Pore morphology can be
controlled by changing the biomaterial/solvent ratio, using a sacrificial
template, or conducting other post-processing methods (Wang et al.,
2023). Internal porosity can be created within the electrospun fibers
by using various phase separation techniques, in which solvents
can be separated out to leave pores behind in the material (Huang

and Thomas, 2020). Although the electrospinning process is useful
for creating porous scaffolds and can be used to fine-tune scaffold
architecture, it remains challenging to fabricate nanofibrous
scaffolds with precise dimensions and morphology (Pant et al.,
2023).

3D printing techniques can also be used to fabricate porous
scaffolds by designing specific architectures within the structure at
the micro and/or macro levels (An et al., 2015; Chia and Wu, 2015;
Jammalamadaka and Tappa, 2018; Yan et al., 2018). Solid freeform
fabrication (SFF) includes processes in which materials are created
from computer-aided design files without using molds or other
forming tools (Trunec and Maca, 2014). Such strategies are
attractive for tissue engineering because this technology can be
used to make 3D structures that are customized to the needs of
each patient, and gives the user direct control over scaffold
architecture (Chia and Wu, 2015). One of the major limitations
of bioprinting is the lack of consensus regarding printing
parameters. Since the composition of bioinks, printing
parameters, and biofunctionalization methods vary greatly, it is
difficult to determine the gold standard for a specific tissue type
(Sigaux et al., 2019). The degradation rates of bioinks also differ
from those of native tissue—bioinks tend to degrade much slower in
part because of the stabilization processes required to endure
fabrication (Parak et al., 2019). Improvements in aligning bioink
degradation rate to that of the formation rate of tissue at the repair
site are being explored (Jeon et al., 2019; Singh et al., 2019; Barceló
et al., 2022). 3D bioprinting has been explored for use in skeletal
muscle regeneration, showing promise with the use of materials such
as alginate, gelatin, fibrin, and collagen, and cell types such as
C2C12s, fibroblasts, and human umbilical vein endothelial cells
(HUVECs) (Zhuang et al., 2020).

FIGURE 3
Summary of scaffold fabrication methods capable of controlling scaffold alignment and/or pore size. Methods are separated into the size scale at
which the fibers or the pores of the scaffold can be created. These size scales are separated into the nanometer, micrometer, and millimeter scale.
Methods which cross the dotted lines can be used to create scaffolds with features at multiple size scales, which are indicated by placement of the
graphic.
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Another commonmethod to create a porous scaffold is through the
incorporation of a porogen, such as salt or sugar molecules, into
solution with the biomaterial. Incorporation of the porogen occurs
immediately prior to the polymerization of the scaffold, such that the
scaffold forms around the porogens. Once the scaffold is fully formed,
porogens are removed by incubation in an appropriate solvent, resulting
in the formation of pores interspersed throughout the scaffold (Chen
et al., 2002; Lee et al., 2005; Huri et al., 2014). The size of the porogen
directly determines the size of the pores in the scaffold, and the
concentration of the porogen within the scaffold determines its
porosity. Porogen leaching is an effective method for creating
porous scaffolds, since it provides direct control over both the size
and distribution of the pores (Chen et al., 2002). This method is thus
highly tunable to create scaffolds with specific pore sizes and porosities.
Porogen leaching does present some limitations, however. The use of
large amounts of salt porogens in a material can reduce the mechanical
strength of the material once the porogen is removed, as indicated by a
decrease in compressive modulus. Additionally, inefficient removal of
the porogen can result in local regions of the scaffold with high
osmolarity, leading to local toxicity (Kim et al., 2009b).

Freeze-drying is a process that uses ice as a porogen. Polymers
are frozen and then lyophilized to remove ice crystals, resulting in an
interconnected, porous architecture. In this process, a protein
scaffold is first formed using water as a solvent, frozen, and
lyophilized to remove the ice and leave a porous structure within
the scaffold. When the solution is frozen, ice crystals form, causing
the biomaterial to orient around the ice crystals. Sublimation of the
ice crystals leaves behind a network of interconnected pores which
can act as a scaffold for use in tissue engineering applications
(Freyman et al., 2001). Freeze drying can be limited by potential
heterogeneity of pore architecture and by small pore sizes, however
these parameters can be tuned by adjusting the rate of freezing as
well as bulk polymer concentration (Deville et al., 2006; Perez-
Puyana et al., 2020). Freeze drying has several benefits as compared
to other scaffold fabrication methods. Freeze drying uses water as a
solvent, which is preferred over the use of harsh chemical solvents, as
are often used in fabrication methods such as electrospinning.
Additionally, freeze drying can be combined with other methods
such as gel casting and salt leaching to improve scaffold properties
(Feroz and Dias, 2021). For the remainder of this review, we will
focus on scaffold formulations utilizing this principle.

3.3 Control of pore size

Another important aspect of porous biomaterial scaffolds is the
size of the pores (Figure 3). Larger pores (in the range of a few
hundred microns) are beneficial for the infiltration of cells (Phipps
et al., 2012), while smaller pores (from nanometers up to several
microns) have a high surface to volume ratio, which improves the
adsorption of proteins, such as albumin, onto the scaffold. The
interaction of adsorbed proteins with cells may facilitate improved
regeneration of the tissue (Li et al., 2012; Perez and Mestres, 2016).
The ability of small pores (34 µm vs. 160 µm) to control macrophage
polarization can also aid tissue regeneration (Sussman et al., 2014).
Pores on the 500 µm size scale have been demonstrated to facilitate
cell infiltration and differentiation, while 200 µm pores promoted
differentiation (Perez and Mestres, 2016). Larger pores (325 vs.

85 µm) tend to promote cell attachment more so than small pores
(Murphy et al., 2010). Clearly, pore size can play a major role in
directing cell function and behavior.

Controlling the freezing rate of scaffolds while using the freeze-
drying method will directly control the size of the resultant pores
through a phenomenon known as undercooling. Undercooling is the
difference between the temperature of the material during the freezing
process and the actual freezing temperature (O’Brien et al., 2005).
Larger undercooling facilitates the generation of smaller ice crystals,
resulting in smaller pores. Therefore, we can control pore size within a
scaffold by varying the temperature at which the material is frozen
(O’Brien et al., 2004). In a study by Murphy et al., collagen-GAG
scaffolds were produced with mean pore sizes of 96–151 µm.
This range was achieved by varying the freezing temperature
between −40 and −10°C and using a constant cooling rate to reach
the final freezing temperature. Scaffolds with smaller pores (i.e.,
scaffolds frozen at −40°C) supported significantly more cell
attachment than scaffolds with larger pores (i.e., scaffolds frozen at
higher temperatures) (Murphy and O’Brien, 2010). A study by Haugh
et al. demonstrated that pore size within collagen sponges decreased
until the final freezing temperature reached −50°C. Further reductions
in the final freezing temperature to −70°C did not create any further
decrease in pore size (Haugh et al., 2010). Variation of pore size is
important as different types of cells are different sizes and will need
different sized pores tomimic their natural extracellular matrix (ECM).

An alternate approach for modifying the size of pores within a
biomaterial sponge using the freeze-drying method is changing the
concentration of the biomaterial. The higher the biomaterial
concentration used, the smaller the resulting pores will be. This
has been demonstrated using gelatin (Takemoto et al., 2008; Wu
et al., 2010), alginate (Shapiro and Cohen, 1997), chitosan (Ikeda
et al., 2014), and collagen (Madaghiele et al., 2008; Yamamoto et al.,
2015). Concentration can be used as a control point for pore size
because increasing biomaterial concentration will increase the
viscosity of the solution. Higher viscosity creates an environment
which restricts the growth of ice crystals, creating smaller pore sizes
(Wu et al., 2010).Wang et al. demonstrated this with hyaluronic acid
(HA), where 0.5% w/v scaffolds resulted in pores with an average
diameter of 80 μm, which is slightly larger than the diameter of
cultured skeletal muscle myoblasts (~20–30 µm) and improved
overall cell attachment. Increasing the amount of HA to 1% w/v
resulted with pores that were too small for myoblast migration
(Wang et al., 2009). A pHEMA-gelatin porous scaffold (2% w/v
gelatin and a 1:2 ratio of PEGDA:pHEMA) contained pores with an
average size of 50–80 μm C2C12 myoblasts adhered to, and
proliferated, throughout these scaffolds and formed
multinucleated myofibers. These results demonstrate that this
pore size range is beneficial for myofiber formation (Singh et al.,
2010). The size of the pores within the scaffold must be the correct
size to support myofiber growth.

3.4 Pore alignment and connectivity

Anisotropy is essential for skeletal muscle regeneration, as skeletal
muscle is a highly aligned tissue, and can be controlled through fiber
alignment and pore size (Figure 3). Scaffolds made of multilayers of
patterned materials act as anisotropic scaffolds which can be used in
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tissue regeneration.Micro- and nanofibrous scaffolds as well as scaffolds
containing aligned pores are common types of scaffolds used in skeletal
muscle tissue engineering. Micropatterned substrates with aligned
topography can also be used to develop muscle constructs (Jana
et al., 2016). Anisotropy can also be induced through
electrospinning (Liu et al., 2018; Rezvani Ghomi et al., 2022),
lithography (Norman and Desai, 2006), and 3D printing (Zieliński
et al., 2023). In the context of porous, sponge-like materials, anisotropy
refers to the alignment of the porous network within a scaffold, while an
isotropic network would be defined as a uniform distribution of pores
with no alignment or inherent connectivity. Channels made of these
aligned, interconnected pores may facilitate the formation of aligned
myofibers that would integrate with mature host muscle tissue.
Myogenic cells seeded onto aligned, nanofibrous poly
(hydroxybutyrate) (PHB) scaffolds revealed higher fusion index,
myofiber length, and degree of alignment as opposed to cells seeded
on non-aligned scaffolds comprised of the same material (Ricotti et al.,
2012). A study by Jana et al. looked at 2D anisotropy of fibers within a
chitosan-PCL film versus a chitosan-PCL nanofibrous substrate. The
nanofibrous substrate promoted alignment and elongation of
myoblasts, as well as the expression of myogenic differentiation
markers after 6 days of culture. These results are in stark contrast
with those from the chitosan-PCL films without nanofibrous
architecture, which promoted neither terminal differentiation of the
myoblasts, nor myoblast alignment (Jana et al., 2014). Together, these
results highlight the importance of alignment and demonstrate its
importance to aid in the formation and regeneration of skeletal
muscle tissue.

3.5 Methods of fabrication of aligned porous
scaffolds

A facile method to control pore formation within these scaffolds
utilizes a controlled or uncontrolled freezing rate. When a sample is
fully submerged into a freezing environment, quench freezing
occurs. Uncontrolled, quench freezing causes ice crystals to form
randomly, creating an isotropic network of interpenetrating pores
(O’Brien et al., 2004). When such isotropic scaffolds are used, cells
can infiltrate and grow in any direction. A controlled freezing rate
controls the directionality of the pores within the scaffold by causing
the ice crystals to align uniaxially, ultimately creating channel-like
formations of porosity. Directionality of pores is facilitated by
controlling the freezing rate; however, there are several methods
to implement this principle such as using an insulative mold or by
varying the freezing apparatus.

The most direct method of creating anisotropy within a
scaffold is by controlling the cooling rate. In this method, the
material is placed into a shelf freeze-dryer and the shelf-
temperature of the freeze-dryer is decreased at a constant rate
until it reaches the final temperature. This method generates
pores with a more homogeneous size than scaffolds using an
uncontrolled freezing process (O’Brien et al., 2004). Freezing rate
can also be controlled by lowering the sample into a reservoir of
liquid nitrogen at a specific rate; this method has been used to
create polyvinyl alcohol (PVA) scaffolds (Zhang et al., 2005).
Another method to induce the temperature gradient necessary to
generate aligned pores is to load a biomaterial sample into an

insulative mold, such as a polytetrafluoroethylene (PTFE) mold,
and place on top of a cooled block. This creates a temperature
gradient, as the PTFE mold insulates the material from the
environmental temperature. In this case, the freezing front
propagates from the bottom of the material, resulting in
alignment of ice crystals as the material freezes (Asuncion
et al., 2016). This method has been utilized to produce
anisotropic silk fibroin scaffolds (Mandal and Kundu, 2009),
PLLA scaffolds (Ko, 2020), and collagen-GAG scaffolds
(Basurto et al., 2021). Characteristics of the molds used to
induce directional freezing, such as the material type and the
dimensions of the mold, have also been varied to measure their
effects on the pore architecture of collagen scaffolds (Davidenko
et al., 2012). In a study by Pot et al., anisotropic scaffolds were
made using an aluminum/obomodulan wedge block to
unidirectionally freeze collagen. The authors changed the pore
size within these scaffolds by varying parameters such as freezing
temperature and collagen concentration, while still maintaining
pore alignment (Pot et al., 2015). Both of these freeze-drying
methods (e.g., gradually decreasing the temperature of the freeze-
dryer or keeping the temperature constant but insulating the
scaffold material), create a temperature gradient which facilitates
the formation of anisotropic pores within the material.

There are also methods of creating anisotropic alignment
within scaffolds beyond the freeze-drying approach. One of these
methods involves the use of magnetic particles as porogens.
Before polymerization, these particles can be patterned in the
presence of a magnetic field. Guo et al. fabricated a collagen
scaffold with aligned pores by mixing iron oxide particles into a
type I collagen solution (Guo and Kaufman, 2007). The solution
was added to a microscope slide, and then a magnetic stir bar was
added either underneath or on top of the slide. The samples along
with the magnet were placed into a 37°C incubator until
polymerized. This method resulted in the formation of
collagen gels with aligned fibers, as the iron oxide particles
within the collagen were able to pull the collagen fibers in the
direction of the magnetic field (Guo and Kaufman, 2007).
Another approach to induce fibrillar alignment of biomaterials
is to physically strain the materials. Applying axial stretching to
fibrin and collagen materials induced reorganization of fibrin
fibrils within the materials (Pins et al., 1997; Brown et al., 2009;
Grasman et al., 2014). This reorganization created more
alignment upon these microthreads by inducing the formation
of axially aligned topographical architecture (Grasman et al.,
2014). These stretching methods are an effective method of
inducing fibrillar alignment for use in regeneration of muscle
fibers, and, importantly, represent an alternate approach to
scaffold alignment without relying on pore formation.

4 Biomaterials used in skeletal muscle
regeneration

Many biomaterials have been utilized for research in skeletal
muscle tissue regeneration. The major classes of biomaterials that
we will discuss in this review are natural, synthetic, and
conducting polymers. While each of these biomaterial classes
have shown promise in the field of skeletal muscle tissue
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engineering, they all have varying characteristics, advantages,
and disadvantages. For instance, the mechanical, structural, and
physicochemical properties of synthetic materials are more
tunable than those of natural materials. Natural materials,
however, contain bioactive cues, which synthetic materials
lack (Qazi et al., 2015). Since these are all desirable
characteristics, semi-synthetic composite biomaterials are
created, in which natural and synthetic biomaterials are
combined to obtain the desirable properties of each class. This
can improve tissue engineering outcomes (Speidel et al., 2022).
Conducting polymers are a specific subclass of synthetic
polymers that are innately electrically conductive (Qazi et al.,
2015). These material classes each have beneficial effects on
skeletal muscle regeneration and will be elaborated upon in
the subsequent sections of this review.

4.1 Natural materials for skeletal muscle
regeneration

In this section, we will review the most common types of natural
biomaterials. Several types have been studied for use in skeletal muscle
engineering applications. Some examples of these materials are
summarized and defined in Table 1, as well as the advantages and
limitations of these materials in the context of skeletal muscle
regeneration.

Collagen as a biomaterial has low antigenicity, good
biodegradability, and biocompatibility (Rezvani Ghomi et al., 2021).
It also has tunable mechanical properties, which can be optimized
during fabrication as well as with post-fabrication processes, such as
crosslinking, and promotes cell growth because of the presence of
several cell binding motifs throughout its triple helical structure
(O’Brien et al., 2005; Qazi et al., 2015). Various methods have been
employed to fabricate aligned collagen scaffolds, such as
electrospinning, directional freeze-drying, cyclic stretching, magnetic
alignment, extrusion, and microfluidics (Dewle et al., 2020). In a study
by Kroehne et al., type I collagen scaffolds with aligned pore structure
were seeded with C2C12 myoblasts, which formed myotubes and
aligned parallel to the pore alignment. In addition to robust

differentiation, these myotubes secreted their own ECM as revealed
by immunostaining against laminin (Kroehne et al., 2008). The tibialis
anterior (TA) and extensor digitalis longus (EDL) muscles of mice were
removed, and C2C12-seeded sponges were implanted into the injury
site. This scaffold supported the regeneration of both muscle and
tendon and facilitated tissue revascularization (Kroehne et al., 2008).
Porous collagen scaffolds have also been shown to induce
vascularization (Ma et al., 2011) as well as facilitate cell ingrowth
and alignment and subsequent integration with the surrounding
tissue after implantation (Brouwer et al., 2013). The regenerated
tissue in the study by Kroehne et al., however, did not have the
same mechanical strength as uninjured muscle, and the resulting
forces were 5%–20% of the uninjured force values (Kroehne et al.,
2008). These results show that full restoration of force production to
pre-injured or healthy muscle values has not yet been achieved,
highlighting the need for improved tissue engineering strategies.

Gelatin is commonly utilized for the delivery of cells into a
specific defect area and for drug delivery applications (Fischer et al.,
2021). Gelatin has also been shown to facilitate cell adhesion and
proliferation, in addition to being biodegradable and non-
immunogenic (Acevedo et al., 2019). Gelatin scaffolds can be
fabricated with a wide stiffness range (2–75 kPa) based on the
concentration of gelatin used. Gelatin scaffolds can thus be tuned
to have a stiffness value which mimics that of the elastic modulus of
skeletal muscle (~12–16 kPa) (Jana et al., 2016; Chaturvedi et al.,
2017), making it attractive for use in skeletal muscle regeneration
(Gattazzo et al., 2018). Aligned gelatin scaffolds are mainly produced
through electrospinning, however other methods of aligned scaffold
fabrication such as unidirectional freeze-drying (Wu et al., 2010), 3D
printing (Tijore et al., 2018), and centrifugal spinning
(Loordhuswamy et al., 2014) have been employed. Porous gelatin
scaffolds have also been shown to induce satellite cell infiltration and
vascularization, both contributing to skeletal muscle regeneration
(Ju et al., 2014). Gelatin concentration can also affect the
microstructure of the scaffold and thus the behavior of the
seeded cells. Scaffolds made from 7.5% w/v gelatin were
directionally frozen to create aligned pores, and they supported a
uniform distribution of aligned myoblasts throughout the material.
While 7.5% w/v gelatin scaffolds resulted in a structure more like

TABLE 1 Advantages and limitations of natural biomaterials for skeletal muscle regeneration.

Material Definition Advantages Limitations References

Collagen Structural protein found in the ECM
throughout the body

Facilitates myotube formation,
supports revascularization

Mechanical strength Kin et al. (2007), Kinneberg et al.
(2010), Qazi et al. (2015)

Gelatin Denatured form of collagen Superior mechanical properties,
slow degradation rate

Did not recruit SCs in vivo Gattazzo et al. (2018), Haas et al.
(2019), Gupta et al. (2021)

Alginate Naturally occurring polysaccharide
found in seaweed

Sustained release of growth factors,
modulates immune response

Cells express lower levels of myogenic
genes when seeded on alginate scaffold

Baniasadi et al. (2016), Yi et al.
(2017), Pollot et al. (2018)

Chitosan Polysaccharide harvested from
crustaceans

Antimicrobial properties Mechanical strength may be too high Jana et al. (2013), Kheradmandi
et al. (2016), Tonda-Turo et al.
(2017)

Fibrin ECM protein involved in the
coagulation cascade for hemostasis

Induce high levels of skeletal
muscle gene expression

Rapid degradation rate Huang et al. (2005), Fischer et al.
(2021), Genovese et al. (2021)

dECM Material remaining after the cellular
components of a tissue have been
removed

Biocompatibility and structural
support

Lack of precision in manufacturing Sicari et al. (2014), Sarrafian et al.
(2018), Urciuolo and De Coppi
(2018)
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that of connective muscle tissue, scaffolds made from lower
concentrations of gelatin (2.5% and 5% w/v) exhibited a lamellar-
like structure, and scaffolds made from higher concentrations (10%
and 12.5% w/v) exhibited irregular tubular structures (Hu et al.,
2022). In a study conducted by Haas et al., the authors fabricated
composite scaffolds with a gelatin to collagen ratio of 100:0 (only
gelatin), 90:10, or 70:30. Scaffolds containing a higher ratio of gelatin
(90:10) had a higher compressive modulus and a larger average pore
size than scaffolds with a lower gelatin ratio (70:30). Scaffolds made
with higher gelatin concentrations (100:0 or 90:10) had higher peak
load and peak stress values than the 70:30 scaffolds. Despite this
improvement in mechanical properties, composite sponges with
higher gelatin concentrations supported less cell proliferation than
sponges with higher concentrations of collagen (Haas et al., 2019).
The use of gelatin in biomaterial scaffolds may also be somewhat
limited by its high sensitivity to enzymatic degradation (Afewerki
et al., 2019) and lack of thermostability (Lukin et al., 2022), although
these concerns can be addressed through crosslinking (Gupta et al.,
2021).

Fibrin acts as the provisional wound healing matrix which
facilitates tissue repair and has been utilized as a biomaterial. In a
study exploring the formation of ECMby smoothmuscle cells (SMCs)
within a fibrin gel construct, SMCs were reported to fabricate their
own ECM to replace the degrading fibrin in as soon as 2–4 weeks
(Ross and Tranquillo, 2003; Marcinczyk et al., 2017). Fibrin can be
used for growth factor delivery and combined with other proteins to
make a more bioactive scaffold, as it has several heparin-binding
domains and multiple binding sites for growth factors and bioactive
ECM molecules, such as fibronectin (Marcinczyk et al., 2017). Fibrin
has been fabricated into hydrogels (Huang et al., 2005; Marcinczyk
et al., 2017; Fischer et al., 2021; Genovese et al., 2021; Ziemkiewicz
et al., 2022), microthreads (Page et al., 2011; Grasman et al., 2012;
Grasman et al., 2015a; Grasman et al., 2017; Carnes and Pins, 2020a),
and electrospun matrices (Gilbert-Honick et al., 2018a; Gilbert-
Honick et al., 2018b) for use in skeletal muscle regeneration.
Porous, electrospun fibrin scaffolds with aligned fiber topography
were implanted into a TA VML defect model in mice, either with or
without pre-seeding with C2C12s (Gilbert-Honick et al., 2018b).
Functional recovery was assessed by measuring the maximum
isometric torque of the treated muscle at 2 and 4 weeks post-
implantation, and treatment with either cellular or acellular
scaffolds exhibited maximum isometric torque values equal to
those of uninjured controls (Gilbert-Honick et al., 2018b). Fibrin
microthreads are an anisotropic cylindrical scaffold along which
myoblasts can proliferate and differentiate into myofibers
(Grasman et al., 2017). These scaffolds have been implanted into a
mouse TAmodel of VML either pre-seeded withmyoblasts and (Page
et al., 2011) or loaded with growth factors to encourage endogenous
skeletal muscle repair (Grasman et al., 2015a). Both of these studies
support the use of fibrin-based materials for skeletal muscle repair,
as numerous new myofibers formed in the wound site after
implantation, resulting in significant functional improvements. The
application of mechanical strain to cell-seeded fibrin scaffolds prior to
implantation makes these scaffolds even more effective at inducing
aligned myofiber formation (Heher et al., 2015). Fibrin is therefore a
promising biomaterial for use in regenerating VML injuries.

Decellularized extracellular matrix (dECM) has shown promise
as a scaffold for skeletal muscle regeneration. dECM is porous and

aligned based on the orientation and geometry of the original tissue.
The preparation of these scaffolds is predominately done with
standardized protocols, leading to wide use and commercial
availability. Sources for dECM can vary, such as small intestinal
submucosa (SIS), urinary bladder matrix (UBM), dermis, or various
skeletal muscles. SIS and UBM scaffolds specifically have been
clinically approved and shown success in use within humans as
well. The sources of the ECM may cause the resulting scaffolds to
have varying characteristics; for example, SIS and UBM scaffolds are
similarly effective, while dermal ECM has better mechanical stability
and higher potential to induce myogenesis in vitro than UBM
scaffolds (Wolf et al., 2012; Sarrafian et al., 2018). These ECM-
based scaffolds are beneficial because they are biocompatible, and
upon degradation they can release chemoattractant and
antimicrobial peptides, as well as growth factors and extracellular
vesicles which help to attract stem cells. dECM scaffolds can induce
an immune response which is beneficial for constructive remodeling
of the tissue (Mase et al., 2010; Sicari et al., 2012; Dziki et al., 2017a;
Dziki et al., 2017b). Research has demonstrated that porous dECM
scaffolds can facilitate cell growth, alignment, and myotube
formation (Smoak et al., 2021). Porous dECM scaffolds also
promote vasculature formation and can integrate with the host
tissue (Hogan et al., 2022). A study was conducted with patients who
had experienced VML, resulting in three out of five of them
regaining muscular function after the addition of a SIS hydrogel
scaffold (Sicari et al., 2014). A 13-patient study showed that after
6 months, patients who received implantation of a dECM scaffold as
a treatment for VML had an average of 37.3% improvement in
strength as compared to pre-operative values (Dziki et al., 2016).
Unfortunately, dECM scaffolds present some disadvantages as well.
The manufacturing process of dECM is much less precise compared
to polymeric biomaterials, leading to variability in the shape,
mechanical properties, and structural properties of the material.
Beyond this, the manufacturing of various dECM skeletal muscle
scaffolds can be much more difficult due to the complexity of the
tissue used (Urciuolo and De Coppi, 2018).

Alginate is also biocompatible, has low toxicity, and has been
shown to restrain the maturation of dendritic cells, which can
diminish an inflammatory immune response to the material
(Baniasadi et al., 2016). Methods such as unidirectional freezing
(Francis et al., 2013; Almeida et al., 2017), fiber extrusion methods
(Kang et al., 2012), microfluidics (Lee et al., 2009), and
electrospinning (Tonsomboon and Oyen, 2013) have been used
to induce alignment in alginate-based scaffolds. Aligned alginate
scaffolds have been shown to support C2C12 cell viability (Yeo and
Kim, 2018), as well as myogenic differentiation (Yeo and Kim, 2019).
In a study by Pumberger et al., alginate solution was mixed with
IGF-1 and vascular endothelial growth factor (VEGF), frozen, and
lyophilized to form porous, isotropic scaffolds (Pumberger et al.,
2016). The scaffolds were transplanted into the left soleus muscle of
rats, which had undergone a blunt crush trauma. Results showed
that these alginate materials were able to provide sustained release of
the growth factors to an injury site and, in combination with pre-
seeding with mesenchymal stromal cells, resulted in improved fast
twitch muscle force 56 days post-transplantation when compared to
alginate scaffolds lacking the growth factors and cells. These porous
scaffolds also increased muscle fiber density and vascularization in
the wound site (Pumberger et al., 2016). Separately, an injectable
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form of alginate was used to deliver VEGF, IGF-1, and myoblasts to
a muscle injury, which facilitated an increase in weight of the
recovered muscle, blood vessel density, and force output (Borselli
et al., 2011). Cells seeded on alginate scaffolds expressed higher
levels of desmin and myosin than cells seeded on scaffolds made of
other materials such as Matrigel, suggesting that scaffolds made
from alginate can support and enhance all stages of myoblast
differentiation (Yi et al., 2017). Despite the clear ability to load
and deliver varying growth factors, supporting in vivo regeneration
of injured skeletal muscle, and enhancing in vitro culture and
differentiation of myoblasts, some drawbacks still exist. An
undesirable characteristic of alginate is that non-modified
alginate is non-degradable and can cause a foreign body response
(Balakrishnan et al., 2014). Alginate also does not contain cell-
binding motifs, potentially limiting its biocompatibility and ability
to direct cell functions (Datta et al., 2018).

Chitosan is most commonly used as a wound dressing for
hemostatic stabilization, and has been used as a scaffold because
of its intrinsic antimicrobial properties (Jana et al., 2013). Chitosan is
beneficial because it exhibits antibacterial, antifungal, and
antitumorigenic properties, and it has also been shown to reduce
clotting time (de Sousa Victor et al., 2020). Porous and aligned
chitosan sponges have been produced through freeze drying
(Madihally and Matthew, 1999; Jana et al., 2013) and
electrospinning (Tonda-Turo et al., 2017). In a study by Jana
et al., chitosan was freeze-dried to form porous scaffolds with
aligned pores, which were approximately 50 µm in diameter
(Jana et al., 2013). Changing the chitosan concentration altered
the resulting pore size: increasing the chitosan concentration caused
the pore size to decrease. C2C12 myoblasts were seeded on these
scaffolds to assess myotube formation, and myotubes on the
scaffolds with the highest chitosan concentration had the largest
diameter (Jana et al., 2013). Tonda-Turo et al. electrospun chitosan
to produce aligned, porous scaffolds. C2C12s that were seeded on
these aligned scaffolds showed favorable viability and enhanced
myofiber alignment and elongation (Tonda-Turo et al., 2017). In a
study determining the effects of modifying the ratio of alginate:
chitosan in a freeze-dried scaffold, it was shown that a pure chitosan
scaffold had limited cell retention capabilities as compared to
scaffolds made with a mix of alginate and chitosan; cell number
on these scaffolds was shown to decrease over a 2-week period
(Bushkalova et al., 2019). While chitosan has shown promising
results in in vitro studies, potential limitations of chitosan are that it
has low solubility and a lack of long-term stability, which may
impact its ability to direct functional regeneration after VML injury
(Drewnowska et al., 2013).

4.2 Synthetic polymers for skeletal muscle
regeneration

Synthetic polymers have become key materials of study in the
search for an effective and compatible scaffold for muscle
regeneration after VML. The lack of complete control over
chemical moiety and protein sequence, along with the more
rapid degradation rate of natural materials are some limitations
of these materials (Grasman et al., 2015b), which have spurred
further investigation into synthetic polymers as biomaterial scaffolds

for skeletal muscle tissue engineering. Synthetic polymers including
polyurethane, poly-L-lactic acid (PLLA), PCL, and their copolymers
are common alternatives to organically derived scaffolds (Table 2)
(Guo et al., 2013). These are aliphatic polyesters and possess useful
qualities such as biocompatibility, biodegradability, suitable
mechanical properties, and non-toxicity (Place et al., 2009; Guo
et al., 2013). In addition to acting as scaffolds themselves, these can
be combined with conductive polymers and biological materials to
create composite materials which can possess the mechanical,
conductive, and biocompatible properties necessary to regenerate
skeletal muscle tissue.

PCL is a synthetic aliphatic, biodegradable polymer (Nevoralová
et al., 2020). In a study by Qian et al., porous PCL scaffolds were
made using microneedles. These scaffolds were implanted into the
sciatic nerve of rats to act as a nerve conduit and facilitated the growth
of largermuscle fibers than untreated nerve injuries (Qian et al., 2020).
Electrospun, porous PCL scaffolds, supplemented with 5-azacytidine,
have been shown to support the differentiation of human
mesenchymal stem cells into mature myofibers (Fasolino et al.,
2017). Porous PCL scaffolds which were coated with a nitrogen-
functionalized hydrocarbon coating supported the formation of
myofibers using C2C12 myoblasts (Giraud et al., 2007). Fused
deposition modeling has been used to create scaffolds with aligned
PCL fibers (Zein et al., 2002), as well as electrospinning (Koepsell et al.,
2011). C2C12s seeded on an aligned PCL scaffold showed elongated
morphology, while C2C12s seeded on a non-aligned PCL scaffold
showed circular morphology. The elongated cells differentiated to
form aligned myotubes, while the cells on the non-aligned scaffold
formed randomly oriented myotubes (Yang et al., 2019). PCL,
however, is hydrophobic, and it has been shown that pure PCL
(i.e., with no additions or coatings) does not sufficiently support
skeletal muscle proliferation or differentiation (Sundelacruz and
Kaplan, 2009; Kim et al., 2010; Woodruff and Hutmacher, 2010;
Qazi et al., 2015; Perez-Puyana et al., 2021). Therefore, proteins and
natural polymers such as gelatin and collagen have been attached
to its surface to improve cell adhesion and compatibility
(Sundelacruz and Kaplan, 2009; Woodruff and Hutmacher,
2010). The addition of gelatin significantly increased myogenic
gene expression (Kim et al., 2010; Perez-Puyana et al., 2021);
however, the mechanical properties of these composite
materials were generally reduced compared to pure PCL, with
both a lower Young’s modulus and lower ultimate tensile strength
(Perez-Puyana et al., 2021). The addition of 2% elastin to PCL
scaffolds increased the Young’s modulus and maximum stress, but
further increases in elastin concentration led to a sharp
deterioration in these mechanical properties (Sánchez-Cid et al.,
2021). Muscle dECM incorporated into porous PCL, which was
fabricated through salt leaching, induced de novo muscle growth,
did not induce an inflammatory response, and resulted in a higher
MHC-collagen ratio when implanted into a murine VML model
(Lu et al., 2009; Jin et al., 2021b). Therefore, PCL-biological
mixtures have high potential to reduce the formation of fibrous
scar tissue and support muscle growth in injury sites. PCL has
some limitations, however, in that it is hydrophobic and has low
wettability, leading to poor cell attachment. The solvents used with
PCL are also somewhat toxic (Ilyas et al., 2022). Additionally, PCL
has a very slow degradation rate; it can take 2 years for this material
to fully degrade (Arif et al., 2022), and it seems to be most
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promising as a biomaterial for skeletal muscle tissue engineering
when natural materials are combined with it, suggesting that it may
not be an ideal choice to repair this tissue.

PLLA is a synthetic polymer which has shown promise as a
biomaterial due to its versatility for use in various tissue types,
namely because its characteristics such as porosity, rigidity, and
degradability can be tuned for various purposes. It has often been
fabricated into aligned scaffolds through electrospinning (Dai
et al., 2022). Aligned poly lactic acid scaffolds, produced by
electrospinning, were cultured with C2C12 cells and motor
neurons, and it was found that mature, densely packed
myofibers formed on these scaffolds. In a long-term co-culture
of these 2 cell types, it was found that these scaffolds facilitated the
formation of neuromuscular junctions (Luo et al., 2018). Porous,
PLLA-based scaffolds have also shown some promise in the ability
to recruit native SCs to regrow muscle tissue when implanted in
vivo (Lee et al., 2012; Ju et al., 2014; Wolf et al., 2015). The
degradation rate of PLLA, however, is relatively slow (Fitzgerald
et al., 2018). Additionally, microfibrous polylactic acid scaffolds
have exhibited promising results in directing myofiber orientation
in a uniform direction, but remain limited by their high tensile
modulus (in the range of GPa), which can negatively affect
skeletal muscle regeneration (Riboldi et al., 2005). PLLA has
thus been combined with other materials to form more
effective scaffolds for skeletal muscle regeneration. PLLA
scaffolds incorporating gelatin were more successful than
virgin PLLA scaffolds because the addition of gelatin aided
myoblast attachment (Cronin et al., 2004). Additionally,
porous PLLA scaffolds, fabricated into sponge-like materials,
show potential to address revascularization, a major challenge
for skeletal muscle regeneration. PLLA scaffolds have been seeded

with myoblasts and endothelial cells to increase vascularization
after implantation (Levenberg et al., 2005; Landau et al., 2017).
PLLA fibers, when coated with ECM proteins such as laminin or
fibronectin, have been shown to increase the growth and
differentiation of skeletal muscle myoblasts into multinucleated
myofibers, combining the fibrous architecture of the PLLA
scaffold to direct parallel growth of myofibers and the
biological signals of the dECM to grow functional muscle
(Cronin et al., 2004; Scime et al., 2009). PLLA is a polymer
with much precedent for growing skeletal muscle in vivo but
may be more successful with the incorporation of natural
biomaterials.

Polyglycolic acid (PGA) is an aliphatic polyester that is
hydrophilic and biodegradable, but also possesses high
mechanical strength (Niaounakis, 2015). It can be fabricated into
porous scaffolds which degrade over time (Qazi et al., 2015). The
major method of producing aligned PGA scaffolds is through
electrospinning (Boland et al., 2001; Barnes et al., 2007). A study
by Kamelger et al. showed that myoblast-seeded PGA constructs
supported vascularization and myotube formation (Kamelger et al.,
2004; Qazi et al., 2015). Research by Pedrotty et al. shows PGA
meshes supported the proliferation of myoblasts, but did not greatly
affect their differentiation (Pedrotty et al., 2005; Nakayama et al.,
2019). Other studies show that PGA meshes seeded with myoblasts
have induced the formation of well-vascularized structures and
tissue very similar to new muscle when implanted into the
omentum in the peritoneal cavity (Saxena et al., 2001; Scime
et al., 2009). This may be because acellular PGA cannot induce
host myofiber formation; pre-seeding the scaffold with myogenic
cells may be useful for facilitating new tissue formation. Another
potential concern with PGA is its rapid degradation in vivo—this

TABLE 2 Advantages and limitations of synthetic biomaterials for skeletal muscle regeneration.

Synthetic
polymers

Advantages Disadvantages Citations

PCL High Young’s modulus, stiffness Does not support cell proliferation or
differentiation alone

Sundelacruz and Kaplan (2009), Kim et al. (2010),
Sánchez-Cid et al. (2021)New muscle growth when coated with

natural biomaterials Long degradation times

PLGA Mild support of differentiation Lower elastic modulus when combined with
natural biomaterials

Boateng et al. (2005), Aviss et al. (2010), Shin et al.
(2015), Wang et al. (2021)Good differentiation when coated with

natural materials Acidic degradation products

PEG Hydrophilic Does not support proliferation or
differentiation alone

Fuoco et al. (2015), Kutikov and Song (2015), Wang
et al. (2019)New muscle growth when coated with

biomaterials Requires functionalization to degrade
Addition of PEG has plasticizing effect on
hard polymers

PLLA Grows functional muscle in combination
with other biomaterials

More successful with protein coating Scime et al. (2009), Lee et al. (2012), Wolf et al. (2015),
Fitzgerald et al. (2018)

Recruits native SCs
Acidic degradation products

Supports vascularization
Long degradation times

PGA Hydrophilic Does not induce vascularization Saxena et al. (2001), Fuchs et al. (2003), Kamelger et al.
(2004), Miranda et al. (2021)Rapid degradation

Acidic degradation products

PDMS Grows 2D skeletal muscle films Ineffective without combining with other
natural materials

Fujita et al. (2009), Shen et al. (2013), Mueller et al.
(2021)Useful as a mold or patterned surface

Little in vivo research
Does not degrade in vivo
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timeframe is usually only a few weeks (Kamelger et al., 2004;
Niaounakis, 2015; Nakayama et al., 2019). Zhang et al. quantified
the in vivo degradation of porous PGA foams using fluorescence
intensity. Results showed that the fluorescence intensity of PGA
foams dropped to 20% of their original intensity after 3 weeks,
indicating rapid degradation. Additionally, this rapid degradation
created an acidic environment, which recruited M1 macrophages to
the implantation site, thus prolonging inflammation (Zhang et al.,
2020). PGA scaffolds have the potential to develop vascularized and
aligned new muscle tissue but should be combined with a more
slowly degrading material, such as PCL or PLA, to produce optimal
results (Kumar et al., 2021).

PLGA is a biocompatible and biodegradable synthetic polymer
that has been used in biomedical applications for decades
(Makadia and Siegel, 2011). This copolymer is composed of
PLLA and PGA, and changing the final ratio of these
monomers can impact the final material properties. For
example, solubility of PLGA and its melting temperature
decreases with increasing PGA content, and its degradation rate
decreases as the PLLA:PGA ratio increases (Jin et al., 2021a).
Aligned PLGA scaffolds can be produced through
electrospinning; in a study comparing aligned and non-aligned
PLGA scaffolds and their effect on PC12 cells, it was found that the
PC12 cells formed more clusters and exhibited a more elongated
morphology when seeded upon aligned scaffolds, suggesting the
ability to support aligned growth along the scaffold (Mehrasa et al.,
2015). Aviss et al. created aligned, porous PLGA scaffolds through
electrospinning, and reported that 13% more myotubes formed on
pure PLGA scaffolds over 14 days, which was significantly higher
than the control (Aviss et al., 2010). In a study by Levy-Mishali
et al., porous scaffolds were made from pure PLLA, pure PLGA, or
PLLA and PLGA at ratios of 75/25, 50/50, or 25/75 PLLA/PLGA.
Porosity was achieved using salt leaching. Interestingly, pure
PLGA scaffolds, when cultured with muscle myoblasts,
supported the lowest levels of cell viability as well as the largest
levels of shrinkage, as caused by cell contraction (Levy-Mishali
et al., 2009). To further improve cell adhesion or function, PLGA
scaffolds can be functionalized with peptide sequences, such as
RGD. The functionalization of PLGA with RGD enhanced the
growth and differentiation of C2C12 myoblasts (Wang et al.,
2013). Electrospun, porous PLGA has also been combined with
dECM, which increased myotube width, multinucleation, and
formation as compared to pure PLGA materials (Aviss et al.,
2010). However, dECM-PLGA composite scaffolds had a much
lower Young’s modulus than the pure PLGA scaffolds, showing a
decrease in mechanical properties when biological materials are
added. PLGA has also been fabricated into microspheres for drug
delivery and regenerative medicine (Bae et al., 2009). This idea has
recently been used in VML therapy investigation: Wang et al.
found that injection of PLGA microspheres with polyethylene
glycol (PEG) microrods into a murine VML model improved in
situ muscle regeneration, as demonstrated by proliferation of
myoblasts at the injection site (Wang et al., 2021). PLGA thus
has positive results when combined with natural materials.
However, the mechanical properties of these composite
materials are often lacking. Additionally, PLGA materials may
produce acidic byproducts upon degradation, which can result in
inflammation (Ko et al., 2021).

PEG is a synthetic polyether that is unlike many other synthetic
biomaterials because of its hydrophilicity, as most are generally
hydrophobic (Wang et al., 2019). As a scaffold biomaterial, PEG has
exhibited non-toxicity, good biocompatibility, and low
immunogenicity (Kong et al., 2017). PEG hydrogels can be
formed with aligned architecture using molds and
photolithographic patterning techniques (Zhang et al., 2015).
PEG has also been chemically tethered to other biomaterials and
unidirectionally frozen (Yang et al., 2020) or electrospun (Jiang et al.,
2015; Karahaliloğlu, 2017) to form aligned scaffolds. However, its
lack of biological signaling capability means that the incorporation
of biological proteins or peptide sequences is necessary. Dong et al.
found that myotubes did not form on PEG films when they were
seeded with myoblasts, showing that PEG does not support
myoblast differentiation (Dong et al., 2017). Different methods
have been employed to mitigate this lack of bioactivity, such as
coating the porous PEG scaffold in collagen to induce the
attachment of skeletal myoblasts (LaNasa et al., 2011), or adding
peptide sequences such as YRGDS to the scaffold to facilitate
regeneration (Chiu et al., 2011). PEG scaffolds functionalized
with RGD were fabricated into hydrogels containing aligned
channels. These scaffolds were able to support a high density of
skeletal muscle myoblasts, which formed three-dimensional
alignment and ultimately formed myotubes (Hume et al., 2012).
PEG hydrogels containing fibrinogen were able to support the
growth and differentiation of C2C12 myoblasts, but the
myotubes produced were thinner than those grown on collagen
and fibrin hydrogels. These findings suggest that there is a reduced
ability of myoblasts to adhere to synthetic matrices (Fuoco et al.,
2015; Prüller et al., 2018). Studies therefore reveal the use of PEG in
biomaterial scaffolds is limited by its lack of ability to support
skeletal muscle cell adhesion.

Polydimethylsiloxane (PDMS) is a hydrophobic elastomer with
good optical, electrical, and mechanical properties as well as
biocompatibility (Ionescu et al., 2012; Miranda et al., 2021).
PDMS can be fabricated into porous scaffolds by pouring PDMS
into 3D printed molds, and by modulating the polymerization
process the resulting Young’s modulus of the scaffolds can be
tuned to a wide range of values (52–1,038 kPa) (Montazerian
et al., 2019). Another common use for PDMS in skeletal muscle
tissue engineering is as a micro-grooving stamp for biological
hydrogels, especially gelatin-based, resulting in the formation of
long, well-aligned myotubes of a uniform diameter (Hosseini et al.,
2012; Bettadapur et al., 2016; Ostrovidov et al., 2017; Alheib et al.,
2021). PDMS has been used effectively for the growth of 2D skeletal
muscle films (Shen et al., 2013; Alarcin et al., 2021). Aligned
topography can be formed in PDMS through micropatterning
(Lam et al., 2006; Huang et al., 2010). Patterned pure PDMS
surfaces, which were seeded with myoblasts and endothelial cells,
resulted in myofiber formation and production of ECM components
such as collagen and laminin, suggesting that PDMS supports the
growth of new muscle tissue. Increased laminin production was
found on PDMS surfaces with directional topography, as opposed to
flat PDMS (Almonacid Suarez et al., 2020). Coating PDMS with
materials such as PGA, collagen, and laminin enhances its ability to
support muscle tissue growth, which can generate active tension
upon electrical stimulation (Fujita et al., 2009; Mueller et al., 2021).
To our knowledge, however, PDMS has been usedmainly in vitro for
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skeletal muscle regeneration applications and not in vivo. PDMS is
mainly as a template material for the fabrication of scaffolds or for
cell culture and in vitromyofiber formation (Bian and Bursac, 2009;
Huang et al., 2010).

4.3 Conductive polymers for skeletal muscle
regeneration

Skeletal muscle functionality relies on electrical stimulation,
typically in the form of action potentials from neurons across the
NMJ, for contraction and force propagation. Therefore, conductive
materials are especially important in the construction of a skeletal
muscle tissue engineering scaffold, as there is increasing evidence
that additional stimulation can assist in muscle maturation
(Langelaan et al., 2011). To fabricate conductive polymers
(CPs), polymers must undergo a “doping” process, which
introduces charge into the polymer and causes it to be
conductive. P-doping is the process of oxidizing a polymer and
thus giving it a positive charge, while n-doping is the process of
reducing a polymer and thus giving it a negative charge. Doping
can be conducted chemically, electrochemically, or though
photodoping (Balint et al., 2014). The dopant molecule used
can also affect the characteristics of the polymer—for example,
larger dopants can greatly affect the material properties (such as
density) of the polymer, and can provide the polymer with greater
electrochemical stability since they do not leach out of the polymer
over time (Balint et al., 2014). CPs have shown low toxicity and
promising results with tissue engineering projects in tissues that
respond to electrical stimulation, including nerve, skeletal muscle,
cardiac muscle, bone, fibroblasts, and others (Ateh et al., 2006a;
Ateh et al., 2006b; Jeong et al., 2008; Quigley et al., 2009; Ghasemi-
Mobarakeh et al., 2011). Yet, the use of CPs poses several
challenges, including poor solubility in organic solvents,
insufficient interaction with cells, and brittleness, which may be
caused by the doping process used (Green et al., 2008; Place et al.,
2009; Guo et al., 2013; Guo and Ma, 2018; Dong et al., 2020).
Another issue with CPs is their non-biodegradability; extended use
of CP-containing scaffolds in vivo has resulted in inflammation
and a second procedure has been required to remove the scaffold
(Guo et al., 2013). However, when combined with copolymers and
biomaterials in the form of composites, CPs have shown beneficial
results that indicate potential for skeletal tissue engineering
(Table 3). In fact, due to their brittleness and non-
biodegradability, CPs have almost entirely used by adding the
CP into another biomaterial.

Polyaniline (PANi) is a conductive polymer that is widely used
in biomedical applications because of its biocompatibility, low
cytotoxicity, low cost, and ease of synthesis (Humpolicek et al.,
2012; Qazi et al., 2014). PANi is often used in conjunction with
other biocompatible materials, including gelatin, collagen, silk
fibroin, PCL, PLLA, and PLGA, particularly for the formation
of 3D structures including bioactive scaffolds (Arteshi et al., 2018).
The addition of PANi to aligned, porous PCL scaffolds, produced
by electrospinning, improved C2C12 proliferation and
differentiation (Chen et al., 2013). Srisuk et al. fabricated
porous, sponge-like gellan gum (GG) scaffolds with and without
PANi, and found that C2C12 myoblasts exhibited an elongated

morphology on the PANi-GG scaffolds within 24 h, while it took
48 h for myoblasts to elongate on the pure GG scaffolds. After
7 days, myotubes formed on the PANi-GG scaffolds, but not on the
GG scaffolds (Srisuk et al., 2018). These findings indicate that
PANi is an effective material to use for skeletal muscle cells,
however, myoblasts exhibited a lower rate of growth on
conductive PANi films during the first 100 h of culture. Acids
such as hydrochloric acid (HCl) and sulfonic acid derivatives are
the most used dopants for PANi. Bidez III et al. found that using
HCl to dope PANi may leave behind small amounts of acid
dopants within the material that leak from the material over
time, thus having a negative impact on cell viability and
proliferation (Bidez et al., 2006). The cytotoxicity caused by
PANi films could be detrimental to the growth of skeletal
muscle tissue in vitro. There were no significant differences in
the growth rates of porcine skeletal muscle myoblasts when
cultured on pure collagen or PANi-collagen composite materials
(Kim et al., 2009a). Interestingly, when PANi-based scaffolds are
designed to have an aligned architecture, they have a beneficial
effect on the behavior of skeletal muscle cells. Ku et al. found that
more myotubes were present on aligned scaffolds, which were
fabricated through electrospinning and thus made to be porous,
with PANi; additionally, expression of myogenin, troponin-T, and
MHC were significantly higher than on scaffolds without PANi
(Ku et al., 2012). Higher concentrations of PANi grafted onto PCL
scaffolds also resulted in longer myotubes. Synthetic composites
containing PANi have also been able to produce mature aligned
and long myotubes (Ku et al., 2012). The ability of PANi-doped
scaffolds to support aligned myotubes, in addition to higher
expression levels of differentiation markers shows that PANi
can aid in skeletal muscle development. However, these positive
attributes of PANi are somewhat tempered by its cytotoxicity
because of the acidic doping process, so its overall impact on
skeletal muscle tissue engineering is unclear.

Polypyrrole (PPy) is a highly conductive polymer that is a
focus of research in several tissue engineering applications (Liang
and Goh, 2020). To our knowledge, it seems that pure PPy has not
been fabricated into a porous structure, but mainly into films.
PPy films aid in myoblast proliferation and differentiation: when
combined with dopants in the form of films, every film was able to
support the adhesion and proliferation of C2C12 myoblasts
(Gilmore et al., 2009). PPy can be doped with biomolecules
such as hyaluronic acid (HA), para-toluenesulfonic acid (pTS),
dextran sulfate (DS), poly (2-methoxyaniline-5-sulfonic acid)
(PMAS), and chondroitin sulfate (CS). It was found that PPy/
PMAS and PPy/CS scaffolds supported skeletal muscle cell
differentiation, while PPy/HA and PPy/pTS scaffolds were not
effective at supporting skeletal muscle cell differentiation (Gelmi
et al., 2010). Gilmore et al. found that on lower-roughness PPy
films, myoblasts were able to both proliferate and differentiate
into myofibers (Gilmore et al., 2009; Tallawi et al., 2016). This
implies that PPy, unlike other conductive polymers studied, does
not have significant cytotoxic effects and is able to support
skeletal muscle differentiation on its own without needing to
be combined with another polymer or biomaterial. However, PPy
is also often used as a part of 3D structures such as scaffolds and
hydrogels alongside copolymers and biomaterials to great effect.
Aligned, porous PCL/PPy scaffolds supported the attachment,
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proliferation, and differentiation of C2C12 myoblasts (Browe
and Freeman, 2019). When PPy nanoparticles were integrated
into a porous collagen scaffold, the resulting structure had 5x the
conductivity of a pure collagen scaffold without interfering with
the metabolic activity of C2C12 myoblasts (Basurto et al., 2021).
Basurto et al. found that PPy/collagen scaffolds also had
increased MHC staining and more multi-nucleated myotubes
as compared to pure collagen (Basurto et al., 2021). These
findings indicate that PPy can greatly enhance myoblast
differentiation and maturation in vitro, making it a highly
promising conductive polymer for skeletal muscle tissue
engineering. Multiple studies support these findings and
suggest that PPy, when used as a biomaterial coating on
scaffolds and in hydrogels, promotes myoblast adhesion,
spread, and differentiation. However, while it reduces the
tensile strength of the biomaterial, it does not seem to impact
material stiffness (Berti et al., 2017; Browe and Freeman, 2019;
Bilge et al., 2021; Zarei et al., 2021). PPy is thus a promising
material due to its favorable effects on muscle cells. However, its
negative impact on tensile strength as well as its brittleness may
require it to be combined with other materials to effectively
regenerate skeletal muscle.

Polythiophenes (PThs) are another group of conducting
polymers of increasing importance in biomedical applications.
PTh possesses an advantage over other conducting polymers
because of its solubility in organic solvents, allowing it to be used
with a broader range of materials, as well as its amenability to
chemical modifications through add-on functional groups (Roncali,
1992; Collis et al., 2003; Kim et al., 2006). Much like many other CPs,
PTh appears to be non-toxic and is largely biocompatible (Guo et al.,
2013). PTh also supports the differentiation of skeletal muscle
myoblasts through the increased development of myotubes and
overall increases in the fusion index, with around 60%–65% of cells
forming multinucleated myotubes after 3 days of culture on pure
PTh films (Kim et al., 2006). Electrospinning was also used to make
aligned, PTh-based fiber mats, which supported the in vitro
alignment of muscle fibers (Breukers et al., 2010). Although PThs
have been used in scaffolds and porous structures, their study with
skeletal myoblasts has been limited; this may be due to its Young’s
modulus being relatively higher than that of skeletal muscle, which
conflicts with the requirements for skeletal muscle tissue
engineering. A hyperbranched aliphatic polyester (HAP)-PTh-
PCL scaffold was found to have a Young’s modulus of 59.81 kPa

compared to 24.7 kPa for skeletal muscle (Jaymand et al., 2016).
Other studies, however, have shown that the addition of PTh into
another material caused the mechanical properties (such as the
Young’s modulus) to decrease (Dias et al., 2019; Park et al., 2022).
Although PTh suffers from similar issues as other CPs such as
brittleness and reduction in Young’s modulus, these problems have
been resolved by the addition of other biomaterials into the scaffold.
Massoumi et al. found that between an electrospun chitosan-
grafted-PTh scaffold and a chitosan-grafted-PTh/PCL scaffold,
the scaffold with PCL supported increased biocompatibility and
proliferation of HEPG2 liver carcinoma cells (Massoumi et al.,
2021). Although PThs have demonstrated clear compatibility
with biological tissue and skeletal muscle myoblasts and can be
modified to have different functional groups, there is a dearth of
research regarding myofiber alignment and large-scale tissue growth
on PTh scaffolds. Additionally, the inelasticity of PTh scaffolds may
pose problems for skeletal muscle growth.

5 Conclusion

VML is the loss of a significant volume of skeletal muscle that
exceeds the natural regeneration capacity of muscle, and results in a
significant and permanent loss of functionality. VML presents a
significant health and financial concern in the United States. The
current standard treatments include surgical transfer of muscle flaps
and physical therapy. Surgical intervention is difficult and limited,
while physical therapy does not induce significant muscle
regeneration. Therefore, scaffolds for the regeneration of skeletal
muscle are a potential solution. The ideal characteristics in scaffolds
for skeletal muscle tissue engineering are: i) biocompatibility, ii) a
degradation rate which aligns with the rate of tissue regeneration, iii)
a three-dimensional, highly porous structure with controllable pore
size, iv) alignment, and v) a Young’s modulus similar to that of
skeletal muscle to withstand contractile forces, all of which
contribute to the formation of myofibers.

This review highlights several methods of fabricating porous
biomaterial scaffolds, such as electrospinning, porogen leaching, 3D
printing, and freeze drying. Different fabrication methods form
scaffolds which meet different design criteria. Control of pore
size is one of the most important design criteria, as it has a
notable effect on various cell types; for osteogenic cells, pores
which were larger than 300 µm initiated osteogenesis of these

TABLE 3 Advantages/disadvantages of conductive polymers used for skeletal muscle regeneration.

Conductive
polymer

Advantages Disadvantages Citations

Polyaniline (PANi) Better differentiation of tissue when added to copolymers
Improved differentiation
More and longer myotubes in PANi-containing scaffolds

Slightly cytotoxic
No effect on cell adhesion and proliferation
Brittle

Green et al. (2008), Kim et al. (2009a),
Liu et al. (2010), Guo and Ma (2018)

Polypyrrole Supports cell proliferation and differentiation
Increases conductivity of scaffold without decreasing
metabolic activity of cells

Low strength
Brittle

Green et al. (2008), Guo and Ma (2018),
Basurto et al. (2021), Bilge et al. (2021)

Polythiophene Easily modifiable
Soluble in organic solvents

Addition of polythiophene reduces
Young’s modulus
Low elasticity
Brittle

Green et al. (2008), Jaymand et al.
(2016), Guo and Ma (2018), Massoumi
et al. (2021)
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cells, while the attachment of mesenchymal stem cells was increased
upon scaffolds with 100 µm pores (Bružauskaitė et al., 2016). To
advance the field of skeletal muscle regeneration, determining the
ideal pore size for this application is essential to maximize myoblast
infiltration and differentiation into myofibers, and to date has not
been fully characterized. Alignment of a scaffold is arguably the most
important criterion to meet for skeletal muscle regeneration, as
skeletal muscle tissue itself is highly aligned to efficiently transmit
mechanical forces. To create an ideal scaffold for VML, therefore, a
fabrication method which can simultaneously be used to tune the
pore size and establish alignment of the scaffold is necessary.
Unfortunately, these parameters are not always explicitly
analyzed, so we recommend future work to report porosity and
fibrillar alignment, when possible. Electrospinning, and 3D printing
are useful methods for creating alignment, while porogen leaching is
useful for creating scaffolds with tunable pore sizes. Freeze drying is
a method which can fulfill both of these characteristics—the pore
size can be tuned, and alignment can be induced by using a constant
cooling rate. 3D printing also allows for the manipulation of both
pore size and alignment within scaffolds. However, care must be
taken to ensure that the bulk material can retain its shape during the
printing process, which can impact feature resolution within scaffolds.
Based on the ability of these two methods to control both of these
extremely important requirements for scaffolds for skeletal muscle
regeneration, the future of scaffolds for muscle tissue engineeringmay
lie in the development of scaffolds using either of these fabrication
methods. Further research should seek to optimize both the pore size
and alignment of scaffolds made using these fabrication methods.

Scaffolds made from synthetic polymers usually degrade into
harmless byproducts, and conductive polymers are also generally
non-toxic. It has generally been accepted that while synthetic
polymers may be useful to generate scaffold architectures
conducive to myofiber alignment, they lack the biological cues
necessary for myoblast attachment and differentiation and
therefore are almost always supplemented with natural
biomaterials or peptide sequences. Although coating a synthetic
scaffold with a natural material can improve bioactivity, some
drawbacks may exist in the formation of this type of composite.
It has been shown that coating a polypropylene mesh with ECM
reduced the size of the pores in the mesh, due to accumulation of the
ECM in the pores (Wolf et al., 2014). Conductive polymers are a
unique and promising group to increase bioactivity of biomaterial
scaffolds. Studies show that their addition to a natural or synthetic
scaffold enhances the differentiation of seeded myoblasts, likely due
to electrical stimulation capabilities. Creating a copolymer from a
conductive and synthetic polymer has shown an increase in
bioactivity as compared to the synthetic polymer alone. The same
outcome has been shown using a natural material scaffold which was
submerged in a conductive polymer solution. Research has shown,
however, that the incorporation of conductive polymers into a
scaffold may have varying effects on the porosity of the scaffold.
While some studies have shown that adding a conductive polymer to
a scaffold decreases overall porosity, other studies have shown that
addition of a conductive polymer increases both the porosity and the
surface area of the scaffold (Alegret et al., 2019). Therefore, although
there are some benefits to creating composite biomaterial scaffolds,
this may have detrimental effects on scaffold architecture. Further
research should thus be conducted to optimize natural material

coatings, potentially by decreasing the thickness of the coating.
Future research should also seek to develop a method of
incorporating conductive polymers into a scaffold which does not
significantly affect the porosity of the scaffold.

Biomaterial sponges formed with natural biomaterials such as
collagen, gelatin, alginate, chitosan, and fibrin have all shown non-
toxicity, ability to support myoblast proliferation and differentiation,
and advanced cell signaling capabilities. Although natural biomaterials
tend to have lower stiffness than synthetic polymers, their stiffness can
be easily increased using crosslinking methods. Crosslinking has been
shown to increase the stiffness of collagen (Yahyouche et al., 2011),
gelatin (Broderick et al., 2005), alginate (Naghieh et al., 2018), chitosan
(Subramanian and Lin, 2005) and fibrin (Grasman et al., 2012)
scaffolds. Therefore, the major limitation of the use of natural
polymers can be overcome by the use of crosslinking. Additionally,
natural biomaterial sponges with an average pore size of 100–200 µm
have been shown to facilitate the formation of myotubes (Beier et al.,
2009; Jana et al., 2013). We therefore suggest that further research
in skeletal muscle regeneration should seek to explore crosslinked
natural biomaterial scaffolds in addition to the development of
natural-conductive polymer composite biomaterial scaffolds with
ideal pore size for myofiber formation.

One component of tissue engineering strategies for skeletal
muscle regeneration which was outside of the scope of this
review is the incorporation of cells into the scaffold. There are a
multitude of cell types that have been investigated for skeletal muscle
tissue engineering, specifically for the treatment of VML. The reader
is referred to the following review articles for discussions of cell
implantation studies (Kang et al., 2020; Shayan and Huang, 2020;
Eugenis et al., 2021) and cell-integrated hydrogels (McCullagh and
Perlingeiro, 2015; Fischer et al., 2021). The following articles can be
referenced to explore the use of cell-laden scaffolds for skeletal
muscle regeneration, using cells such as satellite cells, primary
myoblasts, mesenchymal stromal cells, and C2C12s (Boldrin
et al., 2007; Hached et al., 2017; Gilbert-Honick et al., 2018b; Qiu
et al., 2018; Nakayama et al., 2019; Gilbert-Honick et al., 2020;
Narayanan et al., 2020). Future research should seek to optimize
these cell-based strategies and explore their success in vivo.

The clinical objective for skeletal muscle tissue engineering is
to induce the formation of organized muscle tissue with
contraction force values similar to native muscle; this is
especially important given that losses of only small parts of
the muscle can result in a much larger loss of functionality.
The formation of organized muscle tissue within an implanted
scaffold can be induced through porosity of the scaffold, which
facilitates cell infiltration, and through alignment of the scaffold,
which facilitates the formation of directional myofibers. Based on
current trends in research, it seems that natural biomaterial
scaffolds with porosity and aligned architecture are more
advantageous for muscle regeneration than scaffolds made
from other biomaterial types (i.e., synthetic materials). We
suggest that researchers explicitly analyze and report on pore
size and fibrillar alignment, where possible, to ensure accurate
comparisons across scaffolds and ultimately work to enhance
outcomes for skeletal muscle tissue engineering. Other promising
strategies using synthetic and conductive materials have been
developed, however, and show particular promise in the form of
composite scaffolds that leverage the advantages of different
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polymer types. These strategies should continue to be explored
and optimized for use in treatment of VML.
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