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Human transcriptome can undergo RNA mis-splicing due to spliceopathies
contributing to the increasing number of genetic diseases including muscular
dystrophy (MD), Alzheimer disease (AD), Huntington disease (HD), myelodysplastic
syndromes (MDS). Intron retention (IR) is a major inducer of spliceopathies where
two or more introns remain in the final mature mRNA and account for many
intronic expansion diseases. Potential removal of such introns for therapeutic
purposes can be feasible when utilizing bioinformatics, catalytic RNAs, and nano-
drug delivery systems. Overcoming delivery challenges of catalytic RNAs was
discussed in this review as a future perspective highlighting the significance of
utilizing synthetic biology in addition to high throughput deep sequencing and
computational approaches for the treatment of mis-spliced transcripts.
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Introduction

Various pathogenesis could result from spliceopathies, in which pre-mRNA undergoes a
dysregulated-splicing process. Spliceosomes are the largest ribonucleoproteins that assemble
around newly synthesized RNA transcripts in order to perform two distinctive trans-
esterification reactions, which contribute to the precise removal of the intervening non-
coding sequences (introns) followed by joining the coding regions (exons) during the
transcription maturation step (Valadkhan and Manley, 2001). Along with the two-post
transcriptional modification; 5′ capping and 3′ poly A tailing, splicing occurs in a highly
coordinated manner to produce a fully functional messenger RNA (mRNA) ready to be
translated into the protein of interest via the cytoplasmic ribosomes. Mammalian
spliceosomes consist of five essential uridine-rich small nuclear RNAs (U1, U2, U4,
U5 and U6 snRNAs), which recruit a massive number of auxiliary splicing factors
(~200 proteins) needed for initiating the splicing reaction (Rappsilber et al., 2002;
Valadkhan et al., 2009; Suñé-Pou et al., 2020). Spliceosomes drive the alternative splicing
(AS), which is a critical regulatory process contributing to the vast diversity of translated
proteins in mammalian cells. For a given transcript, there are five major AS events that might
take place; constitutive splicing, exon skipping pattern, mutually exclusive exons, alternative
5′ or 3′ splice site events (Graveley, 2001; Modrek and Lee, 2002; Yeo et al., 2005) and intron
retention (IR) (Galante et al., 2004; Edwards et al., 2016; Rekosh and Hammarskjold, 2018).

Within the IR event, transcripts harbor two or more introns that failed to be spliced out
from the mature mRNA due to spliceosomal dysfunction leading to spliceopathies (Monteuuis
et al., 2019). Among all AS events, IR received a minimal attention and considered to be a rare
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event in which hydrolysis often occurs via the cellular degradation
pathway. However, growing number of reports suggest that IR could
affect 80% of the coding genes (Middleton et al., 2017), especially those
involved in cell differentiation (Llorian et al., 2016) and cell cycling
(Braunschweig et al., 2014; Llorian et al., 2016; Middleton et al., 2017).
Per the cancer genomic atlas (TSGA) and the transcriptomic cancer
studies, IR is considered the common ASmode among all cancer types
as it accounts for the wide diversities in cancer transcriptomes (Supek
et al., 2014; Dvinge and Bradley, 2015).

Interestingly, spliceosomal dysfunction is often caused by errors
in the transesterification reactions of the cis-acting elements and/or
trans-acting factors during the spliceosomal assembly. Chemically,
transesterification is a type of SN2 nucleophilic substitution
reactions where synchronously one of the ester bonds is broken
and another ester bond is formed. In a typical splicing reaction, two
consecutive reaction takes place in the nucleus (nuclear splicing) as
follows: first, nucleophilic attack of the hydroxyl group at 2′ carbon
atom of the branched adenosine located in the introns will results in
releasing the first free 5′exon and 2′-5′ unusual phosphodiester
bond formation between the hydroxyl group of the branched
adenosine and 5′ phosphoryl group of the 5′ end of intron to
form partial lariat structure in step commonly known as branching.
Second step known as ligation which involves the cleavage at 3′
splice site done by the attack of the 3′ hydroxyl group of the 5′ exon
and leads to joining of the exons together and release the intron
(Horowitz and Abelson, 1993; Shi et al., 2018).

Consequently, mutations in both cis-acting elements and trans-
acting factors could inevitably influence the functionality of
spliceosome machinery leading to spliceosomopathies. For
instance, alteration in the cis-acting elements such as enhancers
and silencers significantly affects the catalytic reaction leading to
mis-splicing (Scotti and Swanson, 2016; Anna and Monika, 2018). IR
that results from mutations in the trans-acting factors can disrupt the
activity of spliceosomes as well. For example, mutations occur in the
most important component factors expressed in spliceosome
(PRPF31, PRPF3 and PRPF8) lead to hereditary disease in the eye
called retinitis pigmentosa (RP) that dramatically delayed the
spliceosome assembly affecting the pre-mRNA splicing. Such
mutations decreased the removal of ~9% of the introns from
coding genes not only from the retina of the eye, but other tissues
such as lymphoblast (Tanackovic et al., 2011). Other mutations
affecting multiple E/A splicing complex, namely, U2AF35, ZRSR2,
SRSF2 and SF3B1, lead to myelodysplastic syndromes, which is a
heterogeneous group of myeloid neoplasms that manifests bone
marrow failure leading to acute myeloid leukemia (Yoshida et al.,
2011). Another example ofmutations in three important spliceosomal
maintenance proteins (TDP-43, FUS/TLS, and SMN) cause profound
loss of the spliceosomal integrity and lead to amyotrophic lateral
sclerosis (ALS) and spinal muscular atrophy (SMA) (Tsuiji et al.,
2013). Even though it is widely accepted that exons skipping during
the splicing process is considered the most common patterns of AS
and account for ~60% of spliced transcripts (Sugnet et al., 2003;
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Dvinge and Bradley, 2015) it was reported in multiple cancer genomic
studies that IRs were predominant in all analyzed cancer transcripts
(Dvinge and Bradley, 2015). Four decades ago, when IR is discovered,
it revealed new insights of its role in regulation of gene expression,
pathogenesis, and treatment approaches (Kumari et al., 2022).
Researchers have been captivated in carrying out pre-clinical and
clinical trials on new drugmolecules to either interfere, inhibit, or alter
the spliceosome itself or the splicing reactions to treat various
spliceopathies (Rupaimoole and Slack, 2017; Bonnal et al., 2020;
Desterro et al., 2020; Steensma et al., 2021; Childs-Disney et al.,
2022; Murphy et al., 2022; Qin et al., 2022; Suresh et al., 2022; Zhu
et al., 2022; Velema and Lu, 2023). It is worth noting that IR can be
used as a diagnostic biomarker for the intronic expansion disorders in
addition to its applications for therapeutic purposes (Sznajder et al.,
2018). Yet, the field of IR is still emerging and there is more to explore
(Vanichkina et al., 2018).

The fate of intron containing transcripts

Mammalian systems exert diverse regulatory processes to
control the fate of IR-containing mRNA transcripts (IR-mRNAs)
(Figure 1), which are often subjected to nuclear retention

accompanied with nuclear degradation via the exosomal
degradation pathway (Gudipati et al., 2012). However, a novel
class of introns termed Detained Introns (DIs) was discovered
recently in which introns are retained within the nucleus and
protected from degradation, yet exhibiting a slower splicing
process than other introns within the same gene (Figure 1)
(Boutz et al., 2015; Mauger et al., 2016; Naro et al., 2017).
Interestingly, incomplete transcripts might be coupled with
exporting proteins and translocated to the cytoplasm to form the
Cytoplasmic Intron Retaining Transcripts (CIRTs) (Figure 1) (Yap
et al., 2012; Buckley et al., 2014). CIRTs can be degraded in the
cytoplasm via the mRNA surveillance pathways and considered to
be important check points to remove mis-spliced mRNAs (Powers
et al., 2020). Surveillance pathways include 1) the non-sense
mediated decay (NMD) pathway, which is triggered by the
presence of the premature termination codon (PTC) in CIRTs
(Lejeune and Maquat, 2005; Jaillon et al., 2008; Wong et al.,
2013; Rekosh and Hammarskjold, 2018), 2) the no-go decay
pathway activated in the presence of stalled ribosomes (Passos
et al., 2009), and 3) the non-stop decay pathway targeting the
degradation of transcripts that lack PTC (Van Hoof et al., 2002;
Vasudevan et al., 2002). Evidently, CIRTs can escape these mRNA
surveillance pathways and proceed to produce novel protein

FIGURE 1
Different Fates of Pre-mRNA transcripts. A). Nuclear degradation B). Detained Introns (DIs) C). Cytoplasmic intron retaining transcripts (CIRTs).
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isoforms (Gontijo et al., 2011; Yap et al., 2012; Nasif et al., 2018).
Experimental validation showed that miR-128 has the ability to
suppress the NMD factors (UPF1 and MLN51) leading to IR-
mRNAs escape followed by the production of protein isoforms
(Bruno et al., 2011). Strikingly, the ability of CIRTs to avoid the
NMD pathway depends on the cellular micro-environmental
conditions such as hypoxia, infection, and the lack of nutrients
(Karam et al., 2013; Hug et al., 2015; Li et al., 2017; Nasif et al., 2018).
Those conditions of cellular microenvironment are well-established
hallmarks for a wide range of inflammatory-based diseases ranging
from cancer to neuropathies, which emphasize the significance of IR
in pathological states (Brady et al., 2017; Farina et al., 2020;
Massonneau et al., 2020; Tan et al., 2020).

The survival of IR-mRNAs from the cellular regulatory control
becomes more apparent due to the advancement in IR-mRNA
detection methods such as deep sequencing (Zheng et al., 2020).
In a similar manner, the biological role of IR-mRNAs in both
physiological and pathological states appears of high importance
owing to the advancement of computational analyses (Jacob and
Smith, 2017; Grabski et al., 2021). The power of computational
technology and bioinformatics has been employed to develop
programs capable to spot the intron retaining transcripts with
high speed, accuracy, and sensitivity while building a huge IR
library database that could be used as a reference for future IR

studies as summarized in Table 1 (Bai et al., 2015; Middleton et al.,
2017; Li et al., 2020). Apparently, current algorithms that detect AS
in general might be tweaked to specifically detect IR (Zheng et al.,
2020). Recent evolution of the deep tech and artificial intelligence
have enormously improved the outcome for the precise and accurate
detection of intronic sequences among transcripts to assist in the
diagnosis of intronic abnormalities and aberrant splicing events
(Zheng et al., 2020). For instance, Sun et al. (2023) employ the Intron
Retention Index (IRI), an IRtools that provides IR analysis reads
from RNA sequences collected from patients with systemic lupus
erythematosus (SLE). The study reported dysregulation in IR as a
hallmark of SLE disorder, which can be incorporate to enhance the
accuracy of the IR detection. DeepRetention has the ability to predict
the depth in intronic regions through pattern modelling, take the
sequence depth into account as its main input to provide more
detailed and accurate detection data like the intron length and the
likelihood of retained introns (Wu et al., 2023).

In fact, the current algorithms lack the ability to annotate IR-
containing mRNAs hindering the build up of a database parallel to
that of intron-containing genomic DNAs, along with eliminating the
differential expressions of IR-containing mRNAs. To overcome
such limitations, advanced in vivo cell-imaging techniques have
been successfully implemented to detect the presence and the
expression levels of IR-containing mRNAs where non-invasive

TABLE 1 Current IR detection tool.

Tool name Abbreviation Detection method Advantages Limitation References

Intron Retention
call

IRcall Uses ranking strategy to calculate IR
score

- Reduce false positive results - It depends on the quality of the
used alignment tool to collect data

Bai et al. (2015)

Intron Retention
classifier

IRclassifier Uses machine learning technology to
build up random forest to detect IR
events

- High precision

- Identification of both known
and novel IR events

Intron Retention
Finder

IRFinder It detects IR events using IR ratio via
measuring the intronic abundance and
splicing level

fast and sensitive detection Possible overlapping between
introns and exons from other
transcripts

Middleton et al.
(2017)

High Accuracy and precision Calculating IR based on junction
reads not on the expression level of
intron

Free available database for
over 2000 IR human samples

Multiple position reads from the
genome produces noise in the
results

Efficient detecting of low
coverage. IR events

Intron REtention
Analysis and
Detector

iREAD Employs the entropy score to determine
the distribution of intronic reads across
the intron region

Limited exon-intron
overlapping during read

It has no differential analysis Li et al. (2020)

Analyze both splice junction
reads and intron expression
level

Flexible running operating
system

Sensitive

Keep Me Around KMA R packaging tool to quantify IR in RNA
data

Reduced false positive results
by combining replicates

The IR analysis and quantification
are performed in different software

Pimentel et al.
(2015)

The common feature of retained
intron which is flat distribution is
not identified

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Khalifah et al. 10.3389/fbioe.2023.1244377

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1244377


bioluminescence reporters are used to screen the IR splicing events
while offering real time quantification (Shi et al., 2018; Zheng et al.,
2019; Xie et al., 2020). Combining in silico computational methods
with in vivo imaging techniques could provide accurate and reliable
outcomes to ensure greater impacts in terms of detection and
visualization. While detection techniques can bring the scientific
community one step closer to rescuing patients from the deleterious
effects of IR mis-spliced transcripts, they need to be coupled with
therapeutic interventions to strengthen the battle against the intron-
causing diseases. The field of manipulating and treating IR is still in
its infancy since the number of related studies is limited, which
warrants the need for extensive investigations.

Protein-free snRNAs as catalytic RNAs

The increased demands to treat spliceopathies have ignited the
development of innovative therapeutic approaches such as
spliceosome-mediated RNA trans-splicing (SMaRT) (Wally et al.,
2012), splice switching oligonucleotides (SSO) (Havens and
Hastings, 2016), CRISPR/Cas9 (Yuan et al., 2018) and
nanomedicine (Garcia-Blanco, 2003; Havens et al., 2013; Suñé-
Pou et al., 2017; Suñé-Pou et al., 2020). For decades, scientists
have been in route to develop treatments for mis-spliced transcripts

using different re-engineered genetic tools such as group I introns
ribozymes. In vitro studies showed that these ribozymes can be re-
engineered to employ the trans-splicing type of reaction in order to
repair the mis-spliced transcripts and generate a functioning protein
having high specificity and fidelity (Sullenger and Cech, 1994;
Watanabe and Sullenger, 2000; Ryu et al., 2003; Song and Lee,
2006). Nonetheless, ribozymes can recognize one splicing site and
replace the defective part at either 5′ or 3’ ends. Amini et al
investigated the development of a ribozyme that resembles
human spliceosomes in recognizing two splicing sites, excising
introns, and joining the two flanking exons. This novel
spliceozyme showed a significant removal of 100 nucleotides
from the intron of interest followed by the production of a
functioning protein with high accuracy (Amini et al., 2014;
Amini and Müller, 2015), which is potentially feasible for a wide
range of therapeutic applications.

Valadkhan et al. developed a small spliceozyme to perform
splicing reactions by using the mammalian catalytic core of the
spliceosomes, U2 and U6 snRNA, to efficiently catalyze an in vitro
intron removal via resembling the first two trans-esterification
splicing reactions in the nucleus. The results showed the
successful removal of introns and subsequent ligation of exons
from synthetic oligonucleotides constructs forming IR-free RNA
products (Valadkhan and Manley, 2001; Valadkhan et al., 2009).

FIGURE 2
Different route to deliver catalytic RNAs.
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This could unleash the potential of protein-free catalytic RNAs as
artificial spliceozymes in hopes to expedite their translation into
clinics via acquiring engineered delivery systems to enhance their
efficacy in vivo. Many pitfalls and challenges will need to be
overcome prior to the in vivo testing of spliceozymes including
preserving the stability of the protein-free catalytic RNAs against the
degradative enzymes present in serum, minimizing
immunogenicity, overcoming biological membranes, and
maximizing the efficacy of the splicing reaction upon
introduction to the target cells carrying mis-spliced transcripts.

Overcoming delivery challenges of
catalytic RNAs

Synthetic biology has served the scientific community via
enabling the construction of RNA riboswitches and aptamers to
treat splicing mutations, regulate mammalian gene expression, or
interfere with the splicing process as reported in the literature (An
et al., 2006; Beilstein et al., 2015; Berens et al., 2015; Mathur et al.,
2017; Vogel et al., 2018; Mol et al., 2019; Spöring et al., 2020).
Alternatively, targeting the spliceosomes, their components, and/or
their mechanisms of action can be a potential treatment approach
(Eymin, 2020). Designing various types of synthetic RNA-based
nanodevices along with their current progression and applications as
post-transcriptional modulators were discussed in a recent review
(Kawasaki et al., 2020). However, these studies collectively dealt with
different types of splicing patterns while neglecting the significance
and complexity of the IR defects.

RNA-based therapeutic platforms offer great potential in the
treatment of various diseases including cancer (Lin et al., 2020).
However, such platforms are still falling behind as clinical trials
remain pending owing to the short life span of RNAs, their
sensitivity to enzymatic degradation, and obstructed cellular
internalization as a result of having a highly negatively charged
backbone (Reischl and Zimmer, 2009). Scientists have extensively
investigated possible routes to tackle those challenges and enhance
the delivery of such therapies (Figure 2). Viral vectors are one of the
potential carrier systems to deliver nucleic acid therapies providing
both accuracy and protection against any enzymatic degradation of
the loaded genetic materials. Despite their great properties, there are
major drawbacks associated with the use of viral-based systems
including their insufficiency in delivering the therapeutic agents to
specific organs, which might provoke the immune system and
possibly cause carcinogenesis among many other safety concerns
(Lukashev and Zamyatnin, 2016; Zhou et al., 2020).

Alternatively, a more biologically feasible and safer route utilizing
non-viral vectors has been used to overcome such drawbacks. Diverse
types of non-viral vectors like lipid-based nanocarriers (Tagami et al.,
2011; Xue et al., 2015), plasmid DNAs (Charoenphol and Bermudez,
2014; Hu et al., 2018), scaffolds (Chen et al., 2018; Kelly et al., 2019) and
AuNPs (Guo et al., 2015) have been extensively studied to load and
deliver RNA to the desired tissues. Lipid-based nanocarriers have
numerous types but the most studied one is liposomes owing to their
advantageous properties like biocompatibility, simple preparation, ease
of surface modification to increase tissue targeting, and high RNA
encapsulation efficiency when employing positively charged lipids.
Inoh et al. (2011) successfully loaded siRNA into liposomes containing

vectors and observed rapid and direct delivery to cytosol, minimal
cytotoxicity, effective gene silencing, and less risk in triggering the
immune response. Polymers have also attained a great attention as
candidate carriers for RNA therapeutics due to their interesting
properties in terms of biodegradation, cellular internalization, and
the ability to control the release of loaded materials. Potential RNA
polymeric carriers are countless and fully discussed in a recently
published review (Ulkoski et al., 2019). Interestingly, DNA
nanostructures such as DNA origami have emerged as a promising
technology for delivering various bioactive molecules owing to their
disintegrated internal aqueous nature allowing the delivery of different
hydrophilic cargos like RNA molecules with reduced immune
response and increased cellular accumulation. Lee et al. (2012) were
able to construct DNA tetrahedra loaded with therapeutic siRNA
allowing for ultimate and efficient therapeutic delivery. When
incubated with human cervical cancer HeLa cells, gene silencing
and tumor size reduction were both observed.

Following the pioneer studies conducted on DNA
nanotechnology, scientists have been attracted to RNA
nanotechnology via designing and building RNA nanostructures
that can be applicable in the field of nanobiomedicine. RNA
scaffolds emerge upon folding RNA strands into desired structures
(Afonin et al., 2010; Afonin et al., 2012; Afonin et al., 2014; Sachdeva
et al., 2014; Myhrvold and Silver, 2015; Bui et al., 2017; Ohno et al.,
2019) as successfully did so Høiberg et al. (2019) with entrapping
intrinsic siRNAs for efficient gene knockdown. Recently, metal-
organic frameworks (MOFs) have been developed as nanoscale
carrier systems for RNA therapies. The conducted study developed
a unique UiO-NMOF exhibiting a characteristic surface morphology
for co-delivering chemotherapeutic agent cisplatin and siRNA, the
results shows a promising MDR gene silencing in ovarian cancer as
well as the enhancement of cisplatin efficacy (He et al., 2014). Among
all nanocarriers, AuNPs have been the stellar candidate for various
biomedical and clinical applications including RNA therapeutics.
They possess distinctive physiochemical, biological, and optical
detection properties. In addition to their unique surface plasmon
resonance, reduced cytotoxicity upon surface modifications with
targeting ligands provides a selective and effective delivery system
(Pissuwan et al., 2011; Conde et al., 2012; Guo et al., 2016; Graczyk
et al., 2020). Intriguingly, developed a novel nanozyme system in
which gold nanoparticles (AuNPs) were coupled with two different
enzymes; natural (ligating) RNA ligase (RtcB) used to join exons after
cleavage and synthetic (cleaving) DNAzyme to recognize the intron
and initiate the splicing reaction. Results showed that the nanozyme
selectively spliced 19 nucleotides out of RNA with 10% yield.
Moreover, increased splicing reaction up to 66% was observed
upon the addition of an excess amount of RNA ligase. However,
the low RtcB copy number on individual AuNPs limits the splicing
efficiency (Petree et al., 2018).

Perspective and discussion

Nanotechnology can be a powerful weapon to secure healthy
aging via repairing DNA and RNA damages. Life extension of
patients suffering from muscular dystrophy (MD), Alzheimer
disease (AD), Huntington disease (HD), or myelodysplastic
syndromes (MDS) can be feasible through nanotechnology by

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Khalifah et al. 10.3389/fbioe.2023.1244377

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1244377


which engineered nanorobots can perform cellular level surgeries
such as splicing with high precision. To the best of our knowledge,
no reports have shown artificial in vivo splicing in humans or even in
animal models despite the advancement in performing in vivo RNA
therapies in humans. Revolutionized gene editing tools like RNAi
modalities (e.g., siRNA and miRNA) and CRISPR-Cas9 were
encapsulated inside nanocarrier systems like lipid, organic, or
inorganic NPs and have been used in humans to inhibit gene
mutation and increase or correct gene expression (Hu et al., 2020).

Recently, United States Food and Drug Administration
(USFDA) and European Commission (EC) have approved the
first RNAi based therapy for clinical purposes called
ONPATTRO (Patisiran), commercialized as a drug product to
treat patients suffering from polyneuropathy, which is one of the
symptoms associated with transthyretin amyloidosis (ATTR). A
mutation in the gene coding for hereditary transthyretin (TTR),
which is a protein synthesized mainly in the liver and responsible for
carrying vitamin A and Thyroxine, causes protein misfolding and
aggregation leading to the accumulation of formed amyloid at
different locations and hence developing ATTR accompanied
with several manifestations including polyneuropathy.
ONPATTRO is produced using lipid NPs to encapsulate siRNA
and enhance its delivery to the hepatocytes, thereby inhibiting the
gene expression of both wild and mutant types (Huang, 2019).
Similarly, Gillmore and colleagues investigated the effect of CRISPR-
Cas9 as a potential therapeutic agent to knockdown TTR protein.
Clinical and in-vivo results conducted on a small group of ATTR
patients suffering from polyneuropathy showed a durable inhibition
of TTR gene expression ranging from 80%–90% after 28 days of
receiving a single dose (Gillmore et al., 2021). New advancement and
alteration to CRISPER utilized novel base switchers known as base
editing where Cas9 nickase is coupled to deaminase protein to allow
single base conversions. Such advancements can potentially improve
the use of gene editing technologies as treatment interventions for
many alternative splicing defects. Chemello et al. (2021) reported
combined two different strategies; namely, base and prime editing to
developed gene editing tool to modify dystrophin gene where
mutation in the splice donor leads to exon 51 deletion causing
Duchenne muscular dystrophy (DMD). Their finding demonstrates
a successful correction of the exon deletion of DMD gene tested on
human cardiac iPSC models of DMD patients. Interestingly, have
exploited a unique base editing approach to disrupt genes and
minimize the unwanted double stranded breaks that Cas9 usually
rely on to edit genes. They introduced their SpliceR tool to design
base edited sgRNA to target splice site and achieved more reliable
and efficient effect in primary human T cells (Kluesner et al., 2021).
Similarly, investigators have employed CRISPR-cas9 base editing
techniques targeting splice acceptor site to achieve a permanent
exon skipping and improve the compatibility with adeno-associated
viral packaging for in-vivo treatment (Winter et al., 2019).

Givosiran is another example of the developed RNAi based
therapeutic agent loaded in lipid NPs to reduce the expression of
delta aminolevulinic acid synthase 1 (ALAS1) gene and hence
treating acute Intermittent porphyria (AIP). Overexpression of
ALAS1 could lead to the deposition of neurotoxic heme
compounds leading to painful neurovisceral attacks or causing
chronic symptoms. Promising and effective reduction in the level
of porphyria attacks was observed in clinical trials following the

administration of Givosiran to AIP patients (Yasuda et al., 2014;
Balwani et al., 2019; Sardh et al., 2019; Agarwal et al., 2020; Balwani
et al., 2020; de Paula Brandão et al., 2020). Such findings emphasize
the critical role of lipid NPs in accelerating the clinical use of RNA
therapies. During the COVID-19 pandemic, the rapid response from
Pfizer-BioNTech and Moderna by exploiting lipid NPs to
encapsulate mRNA helped in developing the vaccine, which was
granted the emergency authorization by the USFDA to combat
against the emerging SARS-CoV-2 virus (Milane and Amiji, 2021).

Despite the great potency of using RNA therapies, a number of
concerns need to be raised and tackled. For instance, RNAs
degradation by endosomes and lysosomes must be avoided for the
successful translocation to cytoplasm wherein selective targeting
might occur. Wang et al. developed a novel endoplasmic reticulum
membrane-modified hybrid nanoplexes (EhCv/siRNA NPs)
encapsulating siRNA and protecting it from lysosomal degradation
for efficient siRNA transportation to cytoplasm in order to improve
siRNA silencing ability (Qiu et al., 2019). Nanocarriers of lipids and
lipidoids require specific structural design criteria including selected
phospholipids exhibiting two or more hydrophobic tails, tertiary
amines, lipidoid O13 tail, and a pKa value ≥ 5.5, in order to
mediate the selective RNA delivery to target tissues (Whitehead
et al., 2014). Generally, RNA oligonucleotides are known to exhibit
lower stability in cellular environments. Therefore, characteristic
chemical modifications can be used to increase the stability and
efficacy of RNAs. Recent study investigated the addition of (E)-
7 vinyl phosphonate moiety at the 5’ end of the oligonucleotide to
enhance the stability of siRNA (Parmar et al., 2018). Another essential
requirement for the carrier system is the ability to complex with RNAi
material to enhance the payload concentration (Dong et al., 2019).
The recent advancement in self-targeting NPs to selective organs
(Mohammadinejad et al., 2020; Alsudir et al., 2021) could be
advantageous to enhance the delivery of RNA therapies boosting
their medicinal efficacy and accelerating their translation into clinics.
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