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Background: Enhancing knee protection for individuals who are overweight and
obese is crucial. Cushioning insoles may improve knee biomechanics and play a
significant protective role. However, the impact of insoles with varying cushioning
properties on knee joints in individuals with different body mass index (BMI)
categories remains unknown. Our aim was to investigate the biomechanical
effects of insoles with different cushioning properties on knee joints across
different BMI grades.

Methods: Gravity-driven impact tests were used to characterize the cushioning
properties of three types of Artificial Cartilage Foam (ACF18, 28, and 38) and
ethylene-vinyl acetate (EVA) insoles. Knee joint sagittal, coronal, and vertical axis
angles and moments were collected from healthy-weight (BMI 18.5–23.9 kg/m2,
n = 15), overweight (BMI 24.0–27.9 kg/m2, n = 16), and obese (BMI ≥28.0 kg/m2,
n = 15) individuals randomly assigned four different insoles during a drop
jump. The Kruskal–Wallis test and mixed model repeated measures analysis of
variancewere used to compare differences among cushioning and biomechanical
data across various insoles, respectively.

Results: ACF showed higher cushioning than EVA, and ACF38 was the highest
among the three types of ACF (all p < 0.001). During the drop jump, the knee
flexion angles and moments of the ACF insoles were lower than those of the EVA
insoles, the knee adduction angles of the ACF18 and ACF28 insoles were lower
than those of the EVA insoles, and ACF18 insoles increased the first cushion time
(all p < 0.05) for all participants in whombiomechanical variables demonstrated no
interactions between insoles and BMI. Regarding the BMI-dependent
biomechanical variables, compared with the EVA insoles, ACF28 insoles
decreased the knee flexion angle and ACF38 insoles decreased the knee
adduction and rotation moment in the healthy-weight group; ACF18 insoles
decreased the knee flexion angle and ACF38 insoles decreased the knee
moment in the overweight group; ACF28 insoles decreased the knee flexion
and adduction moment, and ACF38 insoles decreased the knee flexion angle and
rotation moment in the obese group (all p < 0.05).

Conclusion: Insoles with higher cushioning properties could improve knee
biomechanics and provide better knee joint protection in people across
different BMI ranges.
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1 Introduction

The worldwide prevalence of obesity has become a major health
concern (Heymsfield and Wadden, 2017). Obesity has been
identified as a significant risk factor for musculoskeletal
disorders, particularly knee osteoarthritis (Jiang et al., 2021).
Increased body mass may produce biomechanical alterations of
the knee joint and augment the risk of knee injury with
repetitive loading during weightbearing activities (Kanthawang
et al., 2021). Sibella et al., 2003 found that obese individuals
showed higher knee joint torque and angle during the sit-to-
stand motion, leading to abnormal changes in the contact
position of the articular cartilage and increased articular cartilage
wear and knee joint swelling (Runhaar et al., 2011). Obese adults also
demonstrated a higher knee adduction moment which is associated
with knee pain and function loss (Pereira et al., 2021). Abnormal
knee angle and moment may ultimately favor the development of
osteoarthritis over time, since any minor alteration in the kinematics
or kinetics of the joint can lead to a clinically relevant change in the
musculoskeletal system (Capodaglio et al., 2021). Therefore, it is
important to enhance knee protection for obese people and delay the
onset and progression of knee osteoarthritis.

Using the lateral wedge insole is a conservative management
strategy for knee osteoarthritis, which can improve femorotibial
angle to reduce pain and optimize function (Rodriguez-Merchan
and De La Corte-Rodriguez, 1995; Zhang et al., 2018). The wedged
insoles only involved the structure factor of insoles. As another
material factor, the cushioning property is also important. In theory,
reducing the vertical impact force of the ground may decrease the
load to protect the knee joints, however, the effect of cushioning
insoles on knee protection is controversial. Turpin et al., 2012
reported that cushioning insoles significantly reduce physical
dysfunction in patients with knee osteoarthritis. Lewinson and
Stefanyshyn, 2019 also found that cushioning insoles could
improve biomechanical indicators such as knee abduction
angular impulses to relieve knee pain for runners. In contrast, a
randomized controlled trial showed that cushioning shoes might not
decrease the injury risk in overweight runners (Malisoux et al.,
2020). To address this controversy, we hypothesized that the
different cushioning properties of the insoles used in published
studies may have affected the results; few studies have explored the
effects of cushioning insoles on knee joint protection in individuals
with different BMI grades. Confirming the effect of cushioning
insoles and choosing the appropriate insole cushioning property
for overweight and obese people may prevent early knee
abnormalities during exercise.

The cushioning property of insole materials is considered to be
key for knee protection (Kermen andMohammadi, 2021). Ethylene-
vinyl acetate (EVA) foam is commonly used as the traditional
cushioning material in insole manufacturing (Anggoro et al.,
2021). Fu et al., 2022 designed special structures with a heel-to-
toe drop of 16 mm using EVA to improve the cushioning effect;
however, the stability was uncertain, and maintaining excellent
cushioning in long exercises was difficult due to EVA structural
collapse (Wang et al., 2012). To enhance the cushioning properties

of insoles, Artificial Cartilage Foam (ACF) was discovered. ACF,
whose matrix is a molecular structure specially designed viscoelastic
polyurethane, is a novel mixed cellular material and a biomimetic
metamaterial with a three-dimensional ultrastructure similar to
human cartilaginous tissue (Wang B. et al., 2020). Electron and
atomic forcemicroscopic scanning showed that the surface of ACF is
distributed with connective micron-sized pores with a shape close to
circular and nanoscale bumps (Chen S. et al., 2022). It can absorb up
to 97.1% of the impact energy, and the energy-absorbing capacity
only decreases by 0.4% after five impacts (Chen S. et al., 2022). Its
cushioning and energy absorption performance significantly exceeds
those of ordinary cushioning materials (Wang B. et al., 2020).
However, the biomechanical effects of insoles with higher
cushioning properties on the knee joints of people with different
body mass index (BMI) grades remains unknown.

This study investigated the effects of insoles with different
cushioning properties on the knee joints of people with different
BMI grades based on the analysis of different insole cushioning
properties and knee kinematic and kinetic variables. We
hypothesized that insoles with higher cushioning properties could
decrease the knee angle and moment with different BMI grades.

2 Materials and methods

2.1 Materials

Four different insoles were selected for this study: EVA
(hardness of 35 Shore C), ACF18 (hardness of 25 Shore C),
ACF28 (hardness of 30 Shore C), and ACF38 (hardness of
35 Shore C). The four insoles are identical, with a heel-to-toe
drop of 2 mm, and all are made of flat material. The three types
of ACF insoles were named based on their density: ACF18 (0.18 g/
cm3), ACF28 (0.28 g/cm3), and ACF38 (0.38 g/cm3). The density of
EVA insoles that were used as the control condition was 0.11 g/cm3.

According to ASTM-F1976-13 (American Society for Testing
and Materials, 2013), gravity-driven impact tests were used to
characterize the cushioning properties of the four insoles at the
heel using a material testing machine (Instron, United States). Each
insole at the rear-part was subjected to a series of 30 impacts per
minute, consisted of a 50-mm free fall of 8.5-kg gravity-driven
missile, with a minimal interval of 2.0 s (Malisoux et al., 2023).

2.2 Participants

The study included 46 healthy adult participants (21 women and
25 men) aged 20–36 years old who had no lower extremity
deformities or injuries within the previous 6 months. Exclusion
criteria were neuromuscular, psychological, and/or
cardiopulmonary conditions that could significantly affect athletic
abilities. All participants were divided into three groups according to
the BMI classification criteria of China, including a healthy weight
group (HW, BMI of 18.5–23.9 kg/m2), overweight group (OW, BMI
of 24.0–27.9 kg/m2) and obesity group (OB, BMI of 28.0 kg/m2 or
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higher) (Chen et al., 2004). This study was approved by the Ethics
Committee (2022–0001). Each participant received a full study
description and signed an informed consent form. Sample size
calculation was performed using the PASS software (NCSS,
United States), based on the Geisser-Greenhouse F-test
algorithm. The number of participants required in each group
was 14.

2.3 Procedures

To avoid a confounding factor, each participant wore the same
type of ordinary sports shoes without special structure on the
market, United Kingdom size 5.0–8.0, mass 270–285 g, offset
6 mm, with EVA as the midsole material. Thirty-six reflective
marker points were placed bilaterally on the lower extremities.
The location of the marker points was chosen based on the CAST
lower-body model (Cappozzo et al., 1995). The motion of the
markers was captured with infrared motion capture cameras
(Qualisys, Sweden) and ground reaction forces were acquired
by two force platforms (Kistler, Switzerland), which both
collection frequency were 100 Hz. All participants were
organized to learn the drop jump (DJ); they watched a
standard DJ video, as well as a demonstration by a
professional; afterward, they practiced three to five times until
the researcher ensured that their DJ met the criteria. The standard
DJ involved a jump from the front of a box 30 cm high with arms
swinging naturally at the sides of the body, landing with both feet
on the center of two separate force plates, and an immediate
vertical jump as high as possible (Figure 1). Participants were
given a 20 min warm-up and habituated to insoles and shoes.
Participants were tested with four insoles in a random order by
using a random number generator. In order to ensure that the
participants were blinded, a researcher was responsible for
inserting the insoles into each shoe. The participants
completed the DJ three successful trials with each insole.
Participants were given 5 min of recovery at the end of each
DJ, and 30 min of recovery guaranteed between each type of insole
(Vercruyssen et al., 2016).

2.4 Data collection

The DJ was divided into four phases (Figure 1): the first
cushioning phase (the time that the participants’ feet touched the
force platforms until the time of maximum knee flexion), the
propulsion phase (the time from maximum knee flexion until the
time that the participants’ feet left the force platforms), off-
ground phase (the time that the participants’ feet left the force
platforms until the time that their feet touched the force
platforms again), and second cushioning phase (the time that
the participants’ feet touched the force platforms again until the
time of maximum knee flexion). The temporal variables included
the time of each phase.

Kinematic and kinetic data were analyzed using Visual 3D
analysis software (C-Motion Inc., United States). A fourth-order
low-pass Butterworth filter was used with cut-off frequencies of
100 Hz (kinetic) and 10 Hz (kinematic). The variables were the
knee joint X-Y-Z-axis angles and moments at the foot contact
with the force platforms and the peak vertical ground reaction
force during the DJ. The X-axis represents the frontal axis
(positive direction indicates knee flexion), the Y-axis
represents the sagittal axis (positive direction indicates knee
abduction), and the Z-axis represents the vertical axis
(positive direction indicates internal knee rotation). Moments
were normalized to the participant’s body mass. All
biomechanical variables were obtained from the participants’
dominant side. Limb dominance was determined by asking
participants which limb they would prefer to kick a ball
(Carcia et al., 2019). The average of all three successful trials
for any particular insole was used for statistical analysis.

2.5 Statistics

Insole cushioning parameters and biomechanical data were
analyzed using the statistical package SPSS (SPSS Inc.,
United States). The Shapiro-Wilk test was used to verify the
possible normal distribution of all parameters. Independent
samples nonparametric tests were used to compare differences

FIGURE 1
The standardized process of the drop jump (DJ).
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among the four cushioning insole parameters, and the
Kruskal–Wallis test was used for pairwise comparisons because
these data did not satisfy the normality distribution. Because the
biomechanical estimated parameters satisfied the normality
distribution, mixed model repeated measures analysis of variance
was used to compare the means among the test conditions, followed
by multiple statistical comparisons. For all statistical tests, the
significance level was set at p < 0.05.

3 Results

3.1 Cushioning properties

The cushioning properties of the four insoles are presented
in Table 1. The time to the point where the maximum
displacement occurred (Tm) was the same for the four
insoles. Differences in maximum displacement (MD) were
found among all insoles (p < 0.001). The ACF38 (p < 0.001)
and ACF28 (p < 0.001) were less than the EVA, and the
ACF38 was less than the ACF18 (p < 0.001) for maximum
impact acceleration (MIA). The absorption energy (AE) in
ACF38 (p < 0.001) and ACF28 (p < 0.001) was higher than
that in EVA, whereas that in ACF38 (p = 0.002) and ACF28 (p =
0.004) was higher than that in ACF18.

3.2 Participants

Forty-six participants were enrolled in this study, including
15 HW participants, 16 OW participants, and 15 OB
participants. All participants were reported to be right-leg-
dominant. The participant demographics are shown in Table 2.

3.3 Biomechanical outcomes

The biomechanical variables that demonstrated no interactions
between insoles and BMI are presented in Table 3. The knee flexion
angle at the time of peak vertical ground reaction force during the
second jump for the ACF18 (p = 0.025), ACF28 (p = 0.014) and
ACF38 (p = 0.002) insoles was lower than that for the EVA insoles.
The knee adduction angle at the second contact in the ACF18 insoles
and ACF28 insoles was lower than that in the EVA and
ACF38 insoles (all p < 0.05). The knee flexion moment at the
time of peak vertical ground reaction force during the first jump for
the ACF38 was lower than that for the ACF18 insoles (p = 0.007).
Regarding the knee flexion moment at the time of peak vertical
ground reaction force during the second jump, significant
differences were observed between EVA and ACF28 insoles (p =
0.001), ACF18 and ACF28 insoles (p = 0.001), as well as ACF38 and
ACF28 insoles (p < 0.001). The first cushion time in the

TABLE 1 Comparison of the four types of insoles regarding cushioning properties.

EVA ACF18 ACF28 ACF38 P

Tm (s) 1.03 1.03 1.03 1.03

MD (mm) 10.43 (10.48–10.42)*b 9.51 ± 0.03a 8.74 (8.75–8.68)*ab 6.85 (−6.94-6.84)*abc <0.001#

MIA (mm/s2) 493,943.12 (493,682.88–497480.20)* 492,831.25 ± 448.78 450,106.93 ± 1280.92a 394,925.60 ± 1190.24ab <0.001#

AE (J) 1.43 ± 0.006 2.01 (1.96–2.04)* 2.33 ± 0.02ab 2.33 (2.32–2.45)*ab <0.001#

a, Significant difference among the ACF38, ACF28, ACF18, and EVA insoles.
b, Significant difference among the ACF38, ACF28, EVA, and ACF18 insoles.
c, Significant difference between the ACF38 and ACF28 insoles.

Values other than Tm are expressed as mean ± standard deviation except where the data did not satisfy the normality distribution, where these data are presented as median (interquartile range).

*, Non-normally distributed data.

Tm, time to the point where maximum displacement occurred; MD, maximum displacement; MIA, maximum impact acceleration; AE, absorption energy; ACF, artificial cartilage foam; EVA,

ethylene-vinyl acetate.

#, p-value <0.05.

TABLE 2 Participant information.

HW (n = 15) OW (n = 16) OB (n = 15) P

Sex (Male/Female) 8/7 8/8 9/6

Age (Years) 25.94 ± 2.29 23.50 (22.00–26.75)* 23.55 ± 2.38 0.114

Height (cm) 164.94 ± 7.08 173.05 ± 10.26b 167.73 ± 8.24 0.027#

Body mass (kg) 60.22 ± 7.09 79.05 ± 9.96b 83.00 (78.50–92.00)*a <0.001#

BMI (kg/m2) 22.06 ± 1.37 26.60 (25.53–27.18)*b 30.90 ± 2.77ac <0.001#

a, Significant difference between the OB and HW groups.
b, Significant difference between the OW and HW groups.
c, Significant difference between the OB and OW groups.

Values other than sex are expressed as mean ± standard deviation, except where the data are non-normally distributed, where these data are presented as median (interquartile range).

*, Non-normally distributed data.
#, p-value <0.05. BMI, body mass index; HW, healthy weight; OB, obese; OW, overweight.
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ACF18 insoles was longer than that in the ACF38 (p = 0.006),
ACF28 (p = 0.019), and EVA (p = 0.003) insoles.

The biomechanical variables that demonstrated an interaction
between insoles and BMI are presented in different groups based on
BMI (Table 4). In the HW group, the knee flexion angle at the
second contact was significantly lower for the ACF28 insoles
compared with the EVA insoles (p = 0.046). The knee adduction
moment at initial contact for the ACF38 insoles was lower than that
for the EVA insoles (p < 0.001). The knee rotation moment at the
time of peak vertical ground reaction force during the second jump

for the ACF18, ACF28, and ACF38 insoles was lower than that for
the EVA insoles (all p < 0.05).

In the OW group, the knee flexion angle at the second contact in
the ACF18 insoles was lower than that in the EVA insoles (p =
0.017). The knee flexion moment at the second contact for the
ACF38 insoles was lower than that for the EVA insoles (p = 0.024).
The knee adduction moment at initial contact for the ACF38 insoles
and ACF18 insoles was lower than that in the EVA insoles (all p <
0.05); Furthermore, the same value for the ACF38 insoles was lower
than that for the ACF18 insoles (p < 0.05). Regarding the knee

TABLE 3 Descriptive statistics for the biomechanical variables that do not demonstrate an interaction between insoles and body mass index in four insole
conditions.

EVA ACF18 ACF28 ACF38 P (interaction) P

Knee joint motion (°)

Flexion angle at peak VGRF2 51.54 ± 8.20 48.58 ± 9.76a 48.60 ± 11.14a 48.40 ± 8.64a 0.456 0.002#

Adduction angle at second contact −3.36 ± 3.57 −2.52 ± 3.45a −2.54 ± 3.51a −3.18 ± 3.55bc 0.281 0.008#

Flexion moment at peak VGRF1 1.55 ± 0.69 1.70 ± 0.56a 1.59 ± 0.54 1.48 ± 0.55b 0.764 0.034#

Flexion moment at peak VGRF2 1.28 ± 0.48 1.31 ± 0.48 1.57 ± 0.47ab 1.22 ± 0.25c 0.090 <0.001#

First cushion time (s) 0.27 ± 0.09 0.35 ± 0.18a 0.29 ± 0.10b 0.27 ± 0.09b 0.058 0.006#

#, p-value <0.05.
a, Significant difference among the ACF38, ACF28, ACF18, and EVA groups.
b, Significant difference among the ACF38, ACF28, and ACF18 groups.
c, Significant difference among the ACF38 and ACF28 groups.

Values are expressed as mean ± SD.

ACF, artificial cartilage foam; EVA, ethylene-vinyl acetate; Peak VGRF1, peak vertical ground reaction force during the first jump; Peak VGRF2, peak vertical ground reaction force during the

second jump.

TABLE 4 Descriptive statistics for the biomechanical variables that demonstrates an interaction between insoles and body mass index in four insole conditions of
the healthy weight, overweight, and obesity groups.

EVA ACF18 ACF28 ACF38 P (interaction) P

HW

Flexion angle at second contact (°) 26.94 ± 6.35 25.09 ± 6.54 24.67 ± 5.36a 26.14 ± 8.16 0.001# <0.001#

Adduction moment at initial contact (Nm/kg) −0.10 ± 0.05 −0.08 ± 0.07 −0.07 ± 0.11 −0.04 ± 0.03a 0.017# <0.001#

Rotation moment at peak VGRF2 (Nm/kg) −0.17 ± 0.09 −0.12 ± 0.11 a −0.12 ± 0.09a −0.12 ± 0.10a 0.019# 0.017#

OW

Flexion angle at second contact (°) 27.73 ± 11.02 23.07 ± 9.47a 26.45 ± 8.24 24.55 ± 5.86 0.001# <0.001#

Flexion moment at second contact (Nm/kg) 0.04 ± 0.11 −0.05 ± 0.13 0.03 ± 0.14 −0.0001 ± 0.14a 0.006# 0.024#

Adduction moment at initial contact (Nm/kg) −0.10 ± 0.07 −0.05 ± 0.06a −0.04 ± 0.13 −0.01 ± 0.06ab 0.017# <0.001#

Rotation moment at second contact (Nm/kg) −0.02 ± 0.01 −0.01 ± 0.01 −0.01 ± 0.01 −0.005 ± 0.02a 0.001# 0.025#

OB

Flexion angle at second contact (°) 26.95 ± 5.41 25.38 ± 6.56 21.75 ± 6.93ab 20.12 ± 3.29ab 0.001# <0.001#

Flexion moment at second contact (Nm/kg) −0.06 ± 0.07 0.04 ± 0.13 −0.001 ± 0.12a 0.02 ± 0.19 0.006# 0.017#

Adduction moment at initial contact (Nm/kg) −0.11 ± 0.09 −0.07 ± 0.10 −0.03 ± 0.03a −0.09 ± 0.12 0.017# <0.001#

Rotation moment at peak VGRF2 (Nm/kg) −0.12 ± 0.18 −0.06 ± 0.09 −0.05 ± 0.11 −0.02 ± 0.10ab 0.019# 0.023#

#, p-value <0.05.
a, Significant difference among the ACF38, ACF28, ACF18, and EVA groups.

Values are expressed as mean ± SD.

ACF, artificial cartilage foam; EVA, ethylene-vinyl acetate; Peak VGRF1, peak vertical ground reaction force during the first jump; Peak VGRF2, peak vertical ground reaction force during the

second jump.
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rotation moment at the second contact, the ACF38 insoles and the
EVA insoles were significantly different (p = 0.025).

In the OB group, the knee flexion angle at the second contact in
the ACF28 and ACF38 insoles was lower than that in the EVA and
ACF18 insoles (all p < 0.05). The knee flexion moment at the second
contact for the ACF28 insoles was lower than that for the EVA
insoles (p = 0.017). The knee adductionmoment at the initial contact
for the ACF28 insoles was lower than that for the EVA insoles (p =
0.001). The knee rotation moment at the time of peak vertical
ground reaction force during the second jump for the ACF38 insoles
(all p < 0.05) was lower than that for the EVA and ACF18 insoles.

4 Discussion

This study investigated the effects of insoles with different
cushioning properties on the knee joint in people with different
BMI grades based on insole cushioning properties and knee
biomechanical variable analysis. Insoles with higher cushioning
properties could significantly decrease the angle and moment of
knee flexion and adduction, as well as the moment of rotation; while
prolonging the first cushioning time of the DJ.

Cushioning insoles should provide adequate cushioning while
creating a safe and stable mechanical environment for the lower
extremities (Withnall et al., 2006). They should rapidly absorb
energy and sustain low deformation when the lower extremities
are subjected to large impacts (Yang et al., 2022). This study used a
gravity-driven impact test to quantify the energy absorption and
deformation levels of three types of ACF and EVA materials. The
absorption energy in the ACF38 and ACF28 insoles was greater than
that in the ACF18 and EVA insoles, whereas the maximum
displacement differences were found between all insoles
(ACF38<ACF28<ACF18<EVA). This confirmed that all ACF
insoles had higher cushioning properties than EVA insoles when
the density of EVA insoles was lower than those of ACF insoles in
this study. With the increase of density and hardness, the cushioning
performance of ACF improves accordingly, and the
ACF38 insoles were the highest cushioning among the three
types of ACF insoles.

Some studies have explored the role of protective aids. Malisoux
et al. (Malisoux et al., 2023) and Vercruyssen et al., 2016 studied the
effects of cushioning shoes on reducing lower extremity injuries by
running on a treadmill. However, the results may be affected as
running on a treadmill is different from ground running (Riley et al.,
2008). Ewing et al. (Ewing et al., 2016) investigated changes in lower-
limbmuscle function with prophylactic knee bracing during double-
leg drop landing from heights of 0.30 m and 0.60 m; however, they
found it difficult to evaluate the reactivation level of the
neuromuscular system. A DJ was used to screen for abnormal
movement patterns to identify the risk of knee injury (Kotsifaki
et al., 2022). Not only does a DJ result in a large impact and load of
seven times the body weight in the lower extremities, but it is also a
pre-programmed motor control landing movement as the vertical
jump is performed immediately after landing from a height with
anticipatory pre-activation of the lower extremity muscles (Wang
et al., 2017; Wang et al., 2021). We chose DJ to investigate the effects
of insoles with different cushioning properties on the knee joint in
people with different BMI grades.

Increscent knee moment in the sagittal and frontal plane during
the DJ may lead to excessive tibia movement and increase the risk of
knee injury (Wilder et al., 2021). Some studies have reported lower
knee moment in highly cushioned shoes during landing tasks (Xu
et al., 2021; Malisoux et al., 2023). Similarly, lower knee flexion,
adduction, and rotationmoment were also observed in three types of
ACF insoles than in EVA insoles for people with different BMI
grades, suggesting that insoles with higher cushioning properties can
dissipate these loads on the knee and reduce the imbalance of stress
on the knee cartilage (Hewett et al., 2015).We compared knee angles
among four insoles with different cushioning properties and found
that the knee flexion and adduction angles in ACF18, ACF28, and
ACF38 insoles were lower due to increased energy dissipation at the
foot-shoe-ground interfaces, which could reduce leg compression
and center of mass descent during the cushioning phase in higher
cushioning insoles (Kulmala et al., 2018). As individuals with knee
osteoarthritis present altered sagittal and frontal plane knee angles
(Sonoo et al., 2019), ACF insoles may result in improved movement
patterns which could decrease the incidence of knee osteoarthritis;
however, further research is required. Further, the first cushion time
of ACF18 insoles was longer, generally consistent with the result of
in vitro experiments, which state that higher cushioning is
characterized by a longer cushion time (Shorten and Mientjes,
2011). Cushioning insoles were more effective for knee joint
protection because a longer cushioning phase may extend the
time of impact velocity change applied to the lower extremities
and decrease the loading rate for the knee to provide more time to
maintain the stability of knee joints during the phase of foot strike
(Wang I. et al., 2020). Knee-related injuries are linked to a high
vertical ground reaction force during foot striking (Malisoux et al.,
2022). However, no difference in the peak vertical ground reaction
force was observed among the four insoles in this study, consistent
with Fu et al., 2013. This is further supported by Zhang et al., 2005,
which showed that the peak impact force substantially increased
with increasing effective mass and landing velocity but was relatively
insensitive to changes in insole cushioning.

All three types of ACF insoles, which had higher cushioning
properties, decreased certain knee biomechanical variables in people
with different BMI grades. However, it is still unclear what kind of insole
was the most suitable for protecting knee joints in healthy-weight,
overweight, or obese people. Higher cushioning properties do not
necessarily translate to lower risks of injury in people across
different ranges of BMI (Malisoux et al., 2016). There were no
quantitative thresholds used to determine “risky” kinematic and
kinetic measurements in people with different BMI grades (Agresta
et al., 2022) while some studies demonstrated the abnormal motion
pattern by a qualitative description, such as a greater knee angle or
vertical loading rate. Further research is required to determine the
appropriate kinematics and kinetics to offer suitable cushioning insoles
to people with different BMI grades and to prevent knee injuries.

4.1 Study Limitations

Firstly, we only compared the cushioning properties of three
types of ACF insoles and one of EVA insoles with different density.
The cushioning properties may be different if the EVA of higher
density was chosen to compare with the ACF insoles. How density
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affects the cushioning property of insoles of different materials need
further study. Secondly, some confounding factors, such as
experimental shoes, were not considered due to the non-
paramedical data sample, which limited the interpretation of the
results. Thirdly, the ages of the adult participants are 24–28 years;
therefore, caution is necessary when extrapolating these results to all
ages. Furthermore, this study did not analyze muscle reactivation
using surface electromyography (sEMG) during DJ. The reactivation
level of the neuromuscular system is important for knee joint
stability. Musculoskeletal modeling and sEMG should be involved
in exploring the mechanism of knee joint protection in future
research. Finally, this study was cross-sectional and only
considered the immediate cushioning effect of the insoles. A
long-term and stable cushion is also the key to the protective
effect of insoles. Future research should prospectively evaluate
the effect of knee prevention with higher cushioning insoles in
individuals with different BMI grades during endurance sports.

5 Conclusion

During the DJ, insoles with higher cushioning properties
significantly decreased knee angle and moment and extended
cushion time compared. Therefore, insoles with higher cushioning
properties change knee biomechanics, which might provide better
protection for people’s knee joints across different BMI ranges.
Future research should explore the effect of changes in insole
cushioning properties on the knee joint’s internal stress and evaluate
the relationship between insole cushioning and knee injuries more
directly using musculoskeletal finite element analysis as one of the
motion simulations (Chen W. et al., 2022; Song et al., 2023).
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