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Introduction: Triply periodic minimal surface (TPMS) is widely used in the design of
bone scaffolds due to its structural advantages. However, the current approach to
designing bone scaffolds using TPMS structures is limited to a forward process from
microstructure to mechanical properties. Developing an inverse bone scaffold design
method based on the mechanical properties of bone structures is crucial.

Methods: Using the machine learning and genetic algorithm, a new inverse design
model was proposed in this research. The anisotropy of bone was matched by
changing the number of cells in different directions. The finite element (FE) method
was used to calculate the TPMS configuration and generate a back propagation neural
network (BPNN) data set. Neural networks were used to establish the relationship
between microstructural parameters and the elastic matrix of bone. This relationship
was then used with regenerative genetic algorithm (RGA) in inverse design.

Results: The accuracy of the BPNN-RGA model was confirmed by comparing the
elasticitymatrixof the inverse-designed structurewith thatof theactual bone.The results
indicated that the average error was below 3.00% for three mechanical performance
parameters as design targets, and approximately 5.00% for six design targets.

Discussion: The present study demonstrated the potential of combining machine
learning with traditional optimization method to inversely design anisotropic
TPMS bone scaffolds with target mechanical properties. The BPNN-RGA model
achieves higher design efficiency, compared to traditional optimization methods.
The entire design process is easily controlled.
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1 Introduction

Bone is a crucial part of the human body, serving various functions such as body support,
protection of internal organs, and mineral storage. With the increasing aging population, the
number of people suffering from joint diseases is also rising, leading to a greater demand for
external repair techniques for bone defects (Gruskin et al., 2012; Li et al., 2015; Lin et al., 2020).
Currently, the most important treatment method for repairing bone defects is bone tissue
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engineering scaffolds that can guide bone tissue regeneration (Henkel
et al., 2013; Tang et al., 2016; Zhu et al., 2021). The triply periodic
minimal surface (TPMS) is an ideal model for designing scaffolds in
bone tissue engineering due to its zero mean curvature and high specific
surface area, which is similar to natural bone (Yan et al., 2015; Bobbert
et al., 2017). However, it should be noted that different parts of bone
tissue have varyingmechanical properties, and themechanical properties
of the same bone tissue may differ in different directions. Therefore, it is
crucial to develop an inverse design method for bone scaffolds based on
the mechanical properties of bone structures.

The current research on TPMS bone scaffold mainly focuses on
optimizing its structure to achieve the target performance. For example,
(Yánez et al., 2018), systematically investigated stress conditions under
compression and torsion of different types of Gyroid porous structures
with varying porosity models (Rajagopalan and Robb, 2006). Proposed
two bracket models, the P-type bracket and the regular voxel bracket in
the TPMS unit. They found that the stress distribution of the P-unit
bracket was better than that of other units with smaller strains (Wieding
et al., 2014). Optimized the configuration parameters of titanium alloy
scaffolds with opening characteristics, making the scaffolds have
similarly elastic to human bone and satisfactory pore size. Overall,
the research on TPMS bone scaffolds still needs to be improved,
focusing on optimizing their structures to improve their performance.
Unlike the previous uniform arrangement, the anisotropic TPMS
structure is introduced in this article. This structure is more in line
with the real structure of bone, which is also anisotropic.

To realize the inverse design, the machine learning (ML) based
method is resorted due to its low computational cost, high adaptability to
various physical problems, and good independence from physical
models. ML-based method is a data-driven method, and its
effectiveness depends on the amount of prepared data and the
algorithm employed (Wang et al., 2021). Besides, the use of ML for
inverse design has matured in metamaterials. For example, the artificial
neural network (ANN) was employed by (Peurifoy et al., 2018) to
approximate the inverse design of photonic crystals. The deep-learning-
based model comprising two bidirectional ANN was established to
design and optimize the chiroptical metamaterials at specific

wavelengths (Ma et al., 2018). Recently, the Gauss-Bayesian model
involving Bayesian optimization using Gaussian kernel was proposed
to realize the inverse design of various acoustic metamaterials for
predesignated functionality (Zheng et al., 2020). While ML methods
have been effectively utilized in the inverse design of metamaterials, their
application in bone implants is still limited and requires further
investigation.

The present study aimed to inversely design complex bone scaffolds
using anisotropic TPMS structures. The target for inverse design was the
partial elasticity matrix of bone. A mapping relationship between
structural parameters and mechanical properties using the back
propagation neural network (BPNN) neural network was established
in our designmethod. Then, a regenerative genetic algorithm (RGA)was
embedded in machine learning for inverse search to obtain the desired
structure (Figure 1). Finally, several sets of design targets and high-
precision finite element (FE) simulations were used to demonstrate the
validity and generalizability of the BPNN-RGA model.

2 Materials and methods

2.1 Anisotropic TPMS structures

Arrangement anisotropy refers to the fact that the number of TPMS
unit cells arranged in each direction is different while the length of the
structure in each direction remains constant. The whole structure had
different mechanical properties, such as Young’s modulus, in different
directions. As shown in Figure 2A, the unit cell structure, normal
arrangement structure, and anisotropic arrangement structure of four
types of TPMS required for inverse design are displayed. As shown in
Figure 2B, the change in compressive modulus in different directions of
the structure varies with the number of units in the y-direction of the
given coordinate system in Figure 2A. It should be noted that when only
themodulus in the y-direction is changed, themoduli in the x-direction
and z-direction were the same (the number in x and z directions is kept
“2”). A more complicated structural design can be made if the numbers
in the three directions are different.

FIGURE 1
Flow chart of forward prediction and inverse design.
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Anisotropic TPMS structures can be generated by controlling
the parameters of the surface equations. The anisotropic Primitive
scaffold was characterized using the following equation:

US � cos
2πm
L

x( ) + cos
2πn
L

y( ) + cos
2πl
L

z( ) − t

where m, n, and l are the arrangement numbers of the
anisotropic Primitive unit cell in the x, y, and z directions,

respectively; t is the surface control coefficient, which is related
to porosity φ; L is the dimension of the design structure in the x,
y, and z directions.

The FE method was used to calculate the equivalent stiffness
matrix of the human bone from computed tomography (CT)
images (Figure 3). The 2D image is re-established as a 3D model
by superposition, and then the finite element method is utilized
to solve the Cij, with 1,2,3 in the parameters corresponding to the
x, y, and z directions, respectively, as detailed in the literature

FIGURE 2
Schematic diagram of structure and their performance. (A) Structures of various arrangements (B) Variation of compression modulus with the
number of arrangements.

FIGURE 3
CT images of bone structure and its stiffness matrix.
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(Xiao et al., 2021; Lu et al., 2022). The stiffness matrix was then
compared with those in the existing literature to verify its
rationality (Kalouche et al., 2010; Wang et al., 2016). The
analysis of the equivalent elastic matrix data shows that it is
difficult to achieve inverse design of the elastic matrix if the
TPMS was uniformly arranged in space. A previous study has
shown that, in a specific direction, the mechanical properties of
TPMS scaffolds can be significantly improved by adjusting
structural anisotropy (Peng et al., 2022). This feature was used
to create structures with various mechanical properties in all
directions.

2.2 Establishment of machine learning
database

The ML method is largely database dependent, so enough
data are required to perform the inverse design. To generate the
data set for ML to predict the equivalent stiffness matrix of
TPMS, we obtained the 3D scatter plot from the TPMS surface
equation and used the scatter plot to generate the unit node
information. The range of variation of the number of structural
arrangements is set to 3–8. The range of variation of porosity is
set to 50%–75%. The element node information was imported
into ANSYS (v.18.0, Ansys Inc., Canonsburg, PA, United States)
to generate the FE model. Moreover, FE calculations were
performed according to different boundary conditions. TPMS
surface parameters and the results of FE calculation were used as
the training set of neural networks.

As shown in the Figure 4, the compression and shear terms in
the stiffness matrix were solved using the unidirectional
compression and pure shear conditions. The lower surface of the
TPMS structure was completely fixed and a displacement load of
0.1 was applied to the upper edge face. The length L was 10.00 mm,
and the elements were first-order hexahedral solid elements
(Solid185). The Young’s modulus for the component material
was 10.00 GPa, and the Poisson ratio was 0.30 (Hak et al., 2014;
Wu et al., 2018). It should be noted that Young’s modulus of the
designed configuration was changed to 100 GPa for the low porosity
bone due to the significant difference between the two bone moduli
(Collins et al., 2021).

2.3 Forward prediction using BPNN

ML can be used to quickly predict problems that are previously
difficult to solve (Yan et al., 2018; Chen et al., 2019). The BPNN is a
representative ML algorithm inspired by the biological neural
network of the human brain (Lu et al., 2019). BPNN could be
regarded as a non-linear operator, which takes an input vector X and
returns the hypothesis value of the output vector y, as given in
equation:

y � BPNN X( ) � BPNN c,φ, t, m, n, l( )
where c is a label used to distinguish different TPMS structures, and
c is an integer, the value of which is between 1 and 4 (Figure 5).

A typical BPNN is shown in Figure 6. The first layer of the
BPNN was the input layer, the last layer was the output layer, and
two hidden layers were introduced between them. When the input
information X was transferred into a neuron node in the hidden
layer, as shown in Figure 6, the neuron node would give an
approximation adjusted by a nonlinear activation function. The
nonlinear relationship between the input variables and the medium
approximation hj was captured in hidden layer 1.

hj � f ∑6

i�1w
1( )

ij xi( ) + b 1( )
j[ ], j � 1 → m

where w(1)
ij is the weight connecting the input variable i and the

neuron node j , b(1)j is the related bias, and f is the nonlinear
activation function which is continuous and differentiable.

Through two hidden layers, this approximation is mapped into
the output variable ~yj corresponding to the neuron node j by a
linear transfer function ϕ.

~y � ∑6

j�1 ~yj � ∑6

j�1ϕ w 3( )
j hj + b 3( )( )

where w(3)
j is the weight connecting the neuron j and the output

variable b(3) is the related bias. If the actual output ~y is different to
the target output y, a back propagation of error based on gradient
error theory is required to iteratively adjust the weight coefficients in
the network to minimize the difference through the mean square
error (MSE) function.

Two neural networks, BPNN1 and BPNN2, were trained after
determining the optimal structure of the neural network. The

FIGURE 4
Two loading conditions of the TPMS structure.
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BPNN1 was used to train the mapping relationship between the
structure and the compressive modulus, and BPNN2 was used to
train the mapping relationship between the structure and the shear
modulus.

2.4 Inverse design using BPNN-RGA

The RGA was employed to search for the TPMS configuration,
of which the equivalent stiffness matrix was closest to the objective
one, as illustrated in Figure 7. The individuals of the RGA were
TPMS configurations, and chromosomes were surface equation
parameters. A ML model was used to map the relationship
between the surface parameters and the equivalent stiffness. The
model’s fitness was determined by comparing the absolute value of
the difference between the fitting stiffness and the target stiffness.
The smaller the absolute value, the better the fitness. A single output

was used to ensure the neural network’s accuracy. Moreover, a
regeneration step based on the traditional genetic algorithm was
incorporated in this article. Regenerating two structures with the
same design parameters but different x, y, and z arrangements was
involved in this step. This step aimed to change the direction of load
application and obtain the compression or shear properties of the
same structure in different directions. Without adding new neural
networks, the accuracy of multi-output neural networks was
improved in this approach.

TPMS structures with different porosities, arrangement
numbers, and cell types were generated as the initial population.
The first step in the genetic algorithm was to evaluate the fitness of
the individuals in the population. Individuals with lower fitness
scores were more likely to undergo cross-mutation, while those with
higher fitness scores may also undergo cross-mutation but with a
lower probability. After completing the mutations and crossovers,
the parents and children were sorted together. The top

FIGURE 5
Machine learning label of TPMS structures.

FIGURE 6
The structure of the BPNN neural network.
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2,000 individuals with the highest fitness were selected as the new
population, and the next round of mutation and crossover sorting
was carried out. The best-adapted individual was recorded each

time, and if the error did not decrease after 20 consecutive iterations,
it was considered that the best individual had been found. At this
point, the outputs were the structural design parameters.

FIGURE 7
Flow chart of the inverse search using genetic algorithm.

FIGURE 8
Comparison of the neural network errors with different structures.
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3 Result

3.1 Optimization of the neural network
model

We generated 8,000 TPMS configurations and computed their
equivalent stiffness matrixes using the FE method, among which
7,000 configurations were used in the training set and
1,000 configurations in the test set. Once the database was
established, it was crucial to determine the optimal BPNN
structure, including the number of hidden layers and neurons in
each layer. The quality of the neural network structure was evaluated
based on the mean absolute percentage error (MAPE). The MAPE
for the stiffness of each architecture is shown in Figure 8. It can be
seen that the BPNN architecture with two hidden layers and
48 neurons in each hidden layer has the minimal error.
Therefore, the neural network structure was used to predict the
modulus.

The convergent behavior of the selected BPNN architecture is
shown in Figure 9A. It was also indicated that there was no
overfitting phenomenon because the established BPNN model
performed well with training and test datasets. In order to verify
the reliability of the neural network, the trained network was loaded,
the newly generated input data was given, and the comparison
between the fitted output data and that of the FE calculation was
made. The result is shown in Figure 9B. It can be seen that the BPNN
has a high predictive accuracy even when it is used to predict

untrained data. A sensitivity analysis of the number of trainings was
also conducted and the results are shown in Table 1. The time
consumed to compute the samples was also labeled.

3.2 Inverse design based on the porous bone

The stiffness matrix of porous bone was calculated from CT
images. However, due to the anisotropy of porous bone, there were
still nine different design goals, even after omitting items close to
zero. The inverse design of the spine bone focused on the structure’s
performance in compression rather than shear. Therefore, the
compressive moduli in three directions (C11, C22, C33) were
considered as the primary design target, while the shear moduli
related to (C44, C55, C66) were the secondary design target. The other
non-diagonal items related to compression (C12, C13, C23) were used
as the verification items, and their errors should not be too large.
Using the regenerative genetic algorithm in inverse design, the two
neural networks BPNN1 and BPNN2, combined with the function
of the regenerative genetic algorithm, we can obtain the structural
design parameters that meet the six design objectives:

Xbest � c,φ, t, m, n, l( ) � 1, 67%, 0.52, 7, 8, 3( )
The corresponding TPMS structure was Gyroid, the structural

porosity was 67%, and the numbers in the x, y, and z directions were
7, 8, and 3, respectively. The stress distribution under compression is
shown in Figure 10. The proposed supporting reaction force can be

FIGURE 9
Error analysis of neural network model. (A) The mean square error (B) The test results of the BPNN network.

TABLE 1 Data sensitivity analysis.

Number of data Data calculation time (h) Network training time (s) Percentage relative error (%)

400 0.36 3 3.5

1,200 1.1 8 2.4

2,000 1.8 8 1.8

4,000 3.6 26 1.4

8,000 7.2 34 1.2
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obtained through formula calculation (Feng et al., 2021; Lu et al.,
2022), and the partial stiffness matrix of the structure was compared
with the target value. The comparison between the results and the
target value is as shown in Figure 11. Error analysis in terms of both
numerical magnitude and relative error percentage (REP).

The results of the simulation demonstrated that the BPNN-RGA
method could achieve the inverse design with a maximum absolute
error of 0.03 GPa and a maximum relative error percentage of
7.00%, when the design targets were the compression and the
shear modulus in three directions. The secondary design target
had the most significant error percentage due to its small magnitude.

When the design targets were reduced to three, such as the
compressive modulus in three directions, the relative error
percentage became almost negligible (Figure 12). Therefore,
achieving indiscriminate prediction of three or fewer design
objectives within the current inverse design domain was possible.
When the design target was only the three-dimensional compressive
modulus, the maximum absolute error was limited to 0.04 GPa, and
the maximum relative error percentage was limited to 2.00%. It can
be concluded that the BPNN-RGA method has the higher design

accuracy for the fewer design targets, as demonstrated by the
decrease in relative error percentage.

3.3 Inverse design based on other porous
bones

The data presented in this article was obtained through the analysis
of porous bone CT images. While its validity had been confirmed
(Kalouche et al., 2010; Wang et al., 2016), it should be noted that it was
served as an illustrative example. Due to the irregular arrangement of
trabecular bone in porous bone, the modulus of different positions can
vary greatly, and the ratio of modulus in each direction may be
inconsistent. The three-dimensional compressive modulus from
existing literature (Wu et al., 2018) was used as the design target to
demonstrate the universality of the inverse design domain of the BPNN-
RGA model (Figure 13).

As shown in Figure 13, the BPNN-RGA model still has good
solutions for different compressive moduli and proportions. The
corresponding TPMS structure was Primitive, the structural
porosity was 52%, and the numbers in the x, y, and z directions
were 3, 6, and 6, respectively. The maximum error of the structure is
less than 3.00%. In addition to the inverse design of porous bone
with a small modulus, low porosity bone with a relatively large
modulus was also inverse designed. Design goals for low porosity
bone from existing literature (Wang et al., 2016).

As shown in Figure 14, the design error of BPNN-RGA for low
porosity bone is still controlled within 3.00%. The corresponding
TPMS structure was Octo, the structural porosity was 58%, and the
numbers in the x, y, and z directions were 4, 5, and 5, respectively. In
addition, the analysis of the historical output data of the RGA
showed that when the control error was around 5.00%, several unit
cell structures can satisfy the design requirements (Figure 15). These
unit cells had different arrangement numbers in three directions and
different porosity levels, providing more options for selecting the
most appropriate porosity and structures for machining based on
machining constraints.

FIGURE 10
Verification of the design structure using the FE simulation.

FIGURE 11
Error analysis of six design objectives of porous bone.
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4 Discussion

In the present study, a BPNN-RGA model was developed to
design complex bone scaffolds, and a simulation error analysis was
performed to verify the accuracy of the model. The present study
indicates that complex bone scaffolds can be designed efficiently and
accurately using the BPNN-RGA model.

In some ways, the design method based on neural networks was
more efficient than other optimization methods. A comparative
discussion with other bone scaffold design methods is given below:
The randomization method based on computer aided design has
been proven effective in simulating real bone through the
randomization process (Mullen et al., 2010). However, this
method requires many trials to achieve the expected

performance. The design of unknown design targets could not be
efficient. Although the BPNN-RGA model depends on data, when
the data is accumulated enough, the neural network can find the
internal relationship between the data to predict the unknown data
accurately, which cannot be achieved by traditional randomization
methods.

Except randomization, comparison with topology optimization
methods is also a focus (Guest and Prevost, 2007). Utilized solid
isotropic material with penalization based structural optimization to
develop a topology optimization technique for finding a scaffold
with pores in the shape of a Schwartz primitive structure. The
topology optimization method was also used to match the stiffness
matrix of the scaffold material to the stiffness matrix of anisotropic
natural bone. Although topology optimization can realize the design

FIGURE 12
Error analysis of three design objectives of porous bone.

FIGURE 13
Error analysis of high porous bone based on existing literature.
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of complex bones the designed structure may have gray units that
affect the printing of the structure. It should be noted that although
additive manufacturing (AM) can produce structures in any shape,
the quality of the structures may vary greatly depending on the
design and fabrication parameters (Wang et al., 2013). As the
BPNN-RGA method is designed based on the TPMS structure,
which has been widely used in bone scaffolds, there is no need to
worry about manufacturing. The dimension of the design target is
reduced using the parameters of the surface equation instead of the
three-dimensional structures, which improves the design efficiency.

In addition, the selectivity of the design results are also the
highlights of the BPNN-RGA model. When the design error was set
to approximately 5.00%, we found various unit cells suitable for
inverse design with the same design goals, which provided us with
more options to select. The difference between the different types of
TPMS structures, if they all met the design objectives, was the
porosity. A successful implant must meet mechanical requirements

that match the surrounding tissue to reduce stress shielding and
prevent mechanical failure. However, except these considerations, it
is also important to consider cell attachment and growth, as well as
the transportation of nutrients and metabolic wastes for optimal
biocompatibility (Langer and Vacanti, 1999; Hollister, 2009). Bone
regeneration in porous implants in vivo involves the recruitment and
penetration of cells from the surrounding bone tissue and
vascularization (Karageorgiou and Kaplan, 2005). The porosity of
a structure is linked to nutrient exchange and the size of its specific
surface area. Therefore, when designing structures that meet specific
requirements, we can make a decision based on the porosity of the
structure (Story et al., 1998; Lewandrowski et al., 2000).

The limitation of the BPNN-RGA model is that the design
field is limited to four TPMS structures. When there are more
than six targets in the inverse design, some inaccuracies may
occur due to the design field. To address this issue, one of the
methods is to increase the variety of TPMS structures, and the

FIGURE 14
Error analysis of low porosity bone based on existing literature.

FIGURE 15
Several other structural diagrams that meet the design error.

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Liu et al. 10.3389/fbioe.2023.1241151

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1241151


other method is to increase the number of single-cell arrays.
Furthermore, the efficiency of the BPNN-RGA model is reflected
in its repeated use. The time cost of building the model may be
higher if it is used only once. This is also a common feature of all
machine learning models.

5 Conclusion

In this paper, a new inverse design method BPNN-RGA was
proposed to inversely design anisotropic bone scaffolds. In this
method, anisotropy was introduced into the arrangement of bone
scaffolds based on traditional TPMS structures, and the bone
stiffness matrix calculated from CT images was used as the
inverse design target. The results of the FE calculation were
used in neural network training to find the mapping
relationship between the structural parameters and the elastic
modulus. RGA was used in inverse design to find the structure
meeting the target modulus. Multiple bone data were used to
verify the universality and accuracy of the BPNN-RGA method.
The results showed that the average error was less than 3.00%,
when the design targets was three mechanical performance
parameters and about 5.00% when the design targets was six.
Compared with the traditional optimization method, the
proposed BPNN-RGA model achieves high design efficiency.
Moreover, the results of the design have the characteristics of
stability and selectivity.
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