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Background: Flat foot deformity is a prevalent and challenging condition often
leading to various clinical complications. Accurate identification of abnormal foot
types is essential for appropriate interventions.

Method: A dataset consisting of 1573 plantar pressure images from 125 individuals
was collected. The performance of the You Only Look Once v5 (YOLO-v5) model,
improved YOLO-v5 model, and multi-label classification model was evaluated for
foot type identification using the collected images. A new dataset was also
collected to verify and compare the models.

Results: The multi-label classification algorithm based on ResNet-50
outperformed other algorithms. The improved YOLO-v5 model with Squeeze-
and-Excitation (SE), the improved YOLO-v5 model with Convolutional Block
Attention Module (CBAM), and the multilabel classification model based on
ResNet-50 achieved an accuracy of 0.652, 0.717, and 0.826, respectively,
which is significantly higher than those obtained using the ordinary plantar-
pressure system and the standard YOLO-v5 model.

Conclusion: These results indicate that the proposed DL-based multilabel
classification model based on ResNet-50 is superior in flat foot type detection
and can be used to evaluate the clinical rehabilitation status of patients with
abnormal foot types and various foot pathologies when more data on patients
with various diseases are available for training.
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Introduction

The feet comprise bones, muscles, and ligaments and enable seamless movement and
direct contact with the ground during walking. However, congenital foot shape problems or
walking with an uncomfortable gait, such as in-toeing and out-toeing gait, can result in
concentrated ground pressure on specific parts of the foot, resulting in permanent
deformation of the foot and may cause knee joint or back pain (Arunakul et al., 2013;
Izraelski, 2013). The feet may get easily deformed due to wrong walking postures; moreover,
foot deformations not only pose a threat to foot health but also cause fatigue and pain while
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walking and can even result in spine deformation. Therefore,
accurate diagnosis of foot deformations is crucial.

Flatfoot is a common orthopedic condition characterized by the
collapse of the medial longitudinal arch (MLA) and is often
accompanied by calcaneal valgus and talonavicular joint
abduction. It may cause plantar pain or fatigue after exercise
(Arunakul et al., 2013; Carr et al., 2016). In children,
developmental flat foot can be caused by many factors and may
be symptomatic or asymptomatic and flexible or rigid. For example,
the cause may be abnormal bone and joint development, such as
with a tarsal coalition, a congenital vertical talus, or an accessory
navicular bone. The soft tissue of generalized ligamentous laxity
fromMarfan’s or Ehlers–Danlos can also result in flat foot deformity
(McCormack et al., 2001; Flores et al., 2019). Adult flat foot can be
categorized as either residual flat foot deformity from a
developmental cause or as an acquired flat foot. Acquired flat
foot is associated with a tight triceps surae or isolated
gastrocnemius tightness, posterior tibial tendon dysfunction,
midfoot laxity, abduction of the forefoot, external rotation of the
hindfoot, subluxation of the talus, traumatic deformities, ruptured
plantar fascia, Charcot’s foot, and neuromuscular imbalance (polio,
cerebral palsy, closed head injury, or following a cerebrovascular
accident) (McCormack et al., 2001; O’Leary et al., 2013).

Flat foot deformity is often overlooked due to difficulties in
accurate diagnosis, often leading to severe consequences. Attempts
have been made to diagnose flat foot deformity by using the
footprint index, MLA, and arch height index (Adoración
Villarroya et al., 2008; Chang et al., 2014; Drefus et al., 2017).
Nikolaidou and Boudolos, (2006) proposed a classification method
based on static footprints to distinguish different foot types;
however, these classifications are subjective, imprecise, and
cannot quantify the changes before and after treatment. The 3D
measurement system based on the footprint index has drawbacks,
including variations caused by observer bias, equipment costs, and
instrument calibration disparities. Although two-dimensional
plantar image detection is user-friendly, it has low sensitivity (Su
et al., 2017).

Foot deformity detection involves a classification process;
therefore, improving the accuracy of classification is crucial. Deep
learning (DL) methods are machine learning (ML) techniques that
enable the computer to learn from data by extracting features from
the data without human intervention, which is beneficial for
professional data analysis applications (LeCun et al., 2015). Deep
neural networks can extract features and identify and locate targets
through backpropagation and parameter tuning (Deng et al., 2020;
Lin et al., 2020). Region-based convolutional neural network
(R-CNN) is a typical DL target recognition model and employs a
multiscale feature pyramid and sliding window method for region
proposal and bounding box detection. This two-stage pipeline
greatly improves recognition accuracy (Redmon et al., 2016). You
Only Look Once (YOLO) is a novel DL target detection model that
uses anchors to concurrently localize and classify targets during
convolutional feature extraction. Anchors leverage prior knowledge
to design multiscale fixed reference boxes covering all positions and
scales in an image. Each anchor predicts targets by using intersection
over union (IoU) as a measure of detection accuracy; if the IoU
exceeds a threshold, the number of learnable parameters reduces,
and the efficiency improves (Albahli et al., 2020). Region-based

convolutional neural network (R-CNN) and YOLO have been used
in various fields; for example, in real-time vehicle recognition,
R-CNN identifies and locates vehicles separately in an image,
whereas YOLO performs one-stage target detection, concurrently
localizing, classifying, and detecting vehicles. Although static
footprint images can be used to detect foot morphology and
pressure patterns (Yu et al., 2019), existing image classification
methods rely on individual features and lack consistency,
resulting in reduced precision and sensitivity. Therefore, we
proposed a DL model for predicting foot type based on pressure
distribution of the foot to more accurately and efficiently identify flat
foot deformity and provide guidance for clinical diagnosis,
treatment, and prognosis.

Material and methods

Data preparation

We retrospectively collected plantar pressure images and clinical
data from flat foot patients and healthy volunteers during June
2021–June 2022. In case two physiotherapists disagreed on the
diagnosis, a third researcher (Chen J) was consulted. The
FeetMappingⓇ Plantar Pressure Plate system (NeuCognic,
Jiangsu, China) was used to obtain the plantar pressure images
(Yu et al., 2019). This system comprises a pressure board with an
effective area of 0.11 m2, a power interface, a network interface, a
power switch, and an indicator light. During the test, subjects stood
naturally for 30 s, and the tester collected raw data based on the
plantar pressure distribution and stored it on a computer (Figure 1).
An arch score of 20%–26% was considered normal. This research
was conducted in accordance with the Declaration of Helsinki and
was approved by the Ethics Committee of Zhongshan Hospital,
which is affiliated to Xiamen University.

Diagnostic criteria

MLA collapse, physical examination, and X-ray examination were
used to diagnose flat foot (Meehan and Brage, 2003). The midpoint of
the calcaneus, the midpoint of the inner and outer malleolus, and the
midpoint of the lower third of the calf were traced and connected. The
normal range of the Angle obtained was −5° to +5°, and the angle less
than −5° was the deformity of foot varus (Flores et al., 2019).
Moreover, A drop of 10 mm or more of the navicular bone will be
interpreted as a flat foot (Persiane et al., 2021). Therefore, further
X-rays are taken. The X-ray film is made from the lowest point of the
calcaneus to the lowest point of the talar bone in a straight line, and
then from the lowest point of the talar bone to the lowest point of the
first metatarsal head in a straight line, the normal range of the Angle
between the two lines is 113°–130°, more than 130° will be diagnosed
as flat foot (Ueki et al., 2019; Caravaggi et al., 2021).

Inclusion and exclusion criteria

Inclusion criteria: 1) age range: 5–60 years; 2) patients with a
normal gait and no motor system diseases; 3) no history of foot
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trauma or operation; 4) all arches were determined by X-ray
examination.

Exclusion criteria: 1) obvious foot deformity; 2) presence of high
arches; 3) a history of lower limb and foot fractures or ankle sprain
resulting in ligament damage or articular cartilage damage; 4) leg
length discrepancy >2 cm (Vogt et al., 2020); 5) patients with
cognitive dysfunction who are unable to cooperate with the test;
6) missing data.

For healthy subjects, the inclusion and exclusion criteria were
consistent, except for not meeting the diagnostic criteria for flat feet.

Image dataset processing and classification

After anonymizing the collected plantar pressure images, two
professionally trained rehabilitation therapists labeled them;
labelImg(1.8.6) was used to select the midfoot of the images for
labeling classification (Figure 2). A text file containing the category,
target center coordinates, target boundary frame, and aspect ratio
information of the overall image corresponding to the original image
was generated. Images were labeled as flat foot (class 0) or healthy
foot (class 1), denoted by values of 0 and 1, respectively. The four
corners of the middle foot region were selected as the center points
in each image and recorded in the txt file by using (x,y) coordinates.
A random seed 0) was used to divide the total dataset into a training
set and a test set in the ratio of 8:2.

Target detection algorithms can be classified as two-stage
detectors with region proposal networks and one-stage detectors.
Although two-stage detectors yield high accuracy, their size makes
deployment on embedded devices difficult. To improve abnormal
foot-type screening using plantar pressure systems, we explored the
use of YOLO, a one-stage detector, for its performance and
efficiency. The YOLOv5 model has four variants, namely,
YOLOv5s, YOLOv5 m, YOLOv5 l, and YOLOv5x; among these,
YOLOv5s has a relatively small model size and is thus suitable for
embedded applications. The model architecture can be divided into
three parts: CSPDarkNet53 for feature extraction (Bochkovskiy
et al., 2020), FPN module and PAN module for feature fusion
and transmission, and the category and position prediction module.
By utilizing YOLOv5s, we aimed to achieve real-time foot type
detection on low-power devices. During inference, when there is a
target in the specified cell, the IoU between the bounding box and
the true target can be calculated using Eq. 1:

IoUtruth
pred � ground truth box ∩ predicted bounding box

ground truth box ∪ predicted bounding box
(1)

Predicted category information and target box confidence are
multiplied to obtain the category confidence score for each target
box (Eq. 2):

Class specific confidence score � Pr classi|object( )× Pr object( ) × IOUtruth
pred .

(2)

FIGURE 1
Collection of subjects’ plantar pressure and proportional distribution. (A) FeetMappingⓇ Plantar Pressure Plate system. (B) Plantar pressure image. (C)
Image pressure distribution ratio. (D) Proportional distribution of pressure in each area of plantar.
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However, YOLOv5s has limited learning capacity. Attention
mechanisms enhance object detection models by improving their
capability to learn representations. Attention modules require very
few additional parameters, thereby enhancing capabilities without
substantially increasing model complexity.

Improved YOLOv5s algorithm

Squeeze-and-Excitation Networks (SENet) (Hu et al., 2018) and
Convolutional Block Attention Module (CBAM) (Woo et al., 2018)
are commonly used attention mechanism modules. SENet improves
feature learning by modeling channel relationships, whereas CBAM
focuses on informative regions and suppresses irrelevant regions by
sequentially inferring spatial and channel attention. The simple and
efficient designs of SE, CBAM, and other attention modules enable
easy integration into different layers of YOLOv5s, thereby yielding
considerable performance gains. Incorporating attention
mechanisms into the C3 module (the third residual block of the
CSPDarknet53 backbone network) enhances feature representation.
Therefore, in this study, we incorporated SE, CBAM, and other
attention modules into the C3 module. The SE module involves
squeeze and excitation operations. The squeeze operation performs
global average pooling to reduce the output feature map of the
C3 block with size H × W × C to a feature map Z of size 1 × 1 × C
(Eq. 3):

Z � 1
H × W

∑H

i�1∑
W

j�1uC i, j( ) (3)

The excitation operation learns a channel weight vector S. σ
denotes the sigmoid activation function, W1 and W2 are learnable
parameter matrices, and δ denotes the ReLU activation function for
channel recalibration. Channel recalibration is performed using the
excitation operation (Eq. 4):

S � σ W1δW2 Z( )( ) (4)
After processing using the SE module, channel attention

improves important features while suppressing irrelevant ones.
The CBAM module contains channel attention and spatial

attention branches. We denoted the output feature map of the
C3 block as U with size H × W × C. The channel attention
branch comprises global max pooling and average pooling
operations, which transform U into two one-dimensional
descriptor vectors. These vectors are processed by respective
multilayer perceptrons and combined. Next, a sigmoid activation
generates channel weights from 0 to 1. Finally, the learned channel
weight coefficients are multiplied by the input feature map uX to
obtain the channel-wise attended output feature map ZC (Eq. 5):

ZC � σ MLP F( max uX( )( ) +MLP F( avg uX( ))) × uX (5)

First, the spatial attention branch compresses the input uX along
the channel dimension by applying global max pooling and average
pooling across the channels to generate two 2D feature maps. Next,
these feature maps are concatenated channel-wise to form a tensor
with two channels, which is further convolved using a 7 × 7 kernel to
reduce to a single channel. A sigmoid activation then generates
spatial attention coefficients. Finally, the input uX is multiplied by

FIGURE 2
Visual plantar pressure image obtained by plantar pressure plate system. (A) flat feet, (C) healthy feet, (E) patients with one flat foot. The red dashed
boxes refer to the ground truth. The three images below are visualized results of manual labeling by the physician using labelImg. (B) flat feet, (D) healthy
feet, (F) patients with one flat foot.
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these coefficients to obtain the spatially attended output feature map
ZX (Eq. 6):

ZX � σ Conv7×7 F( max′ uX( )( ), Conv7×7 F( avg′ uX( ))) × uX (6)

Two attention mechanisms are added to the
CSPDarkNet53 module, as shown in Figure 3.

Other strategies

For data augmentation, we randomly cropped the training set to
images of size 640 × 640 × 3. The sizes of nine prior boxes were obtained
through K-means clustering: 10 × 13, 16 × 30, 33 × 23, 30 × 61, 62 × 45,
59 × 119, 116 × 90, 156 × 198, and 373 × 326. For training, we divided the
feature map into grids of the same size as the prior box. When the target
center was within a grid, that specific grid unit was responsible for target
detection. It outputted a prediction box based on the initial anchor box
and then compared it with the real box, calculated the discrepancy
between the two, and then iteratively updated the network parameters.

In this study, we improved the generalizability by using
enhancement techniques. Previous studies have mainly utilized
random rotation, scaling, panning, flipping, and illumination to
augment data. However, such techniques have limitations, such as

poor generalization, information loss, and noise interference.
Therefore, to maximize algorithm performance, we adopted
mosaic data augmentation following YOLOv4 and YOLOX
(Zheng et al., 2022), random affine transformation, mixup
augmentation (Zhang et al., 2018), and HSV enhancement
(Redmon et al., 2016). Experimental results demonstrated that
these enhancement methods improved detection accuracy and
enhanced model generalization in the YOLOV5 framework. The
augmentation results are shown in Figure 4.

Multilabel classification

Studies have demonstrated the importance of the midfoot region in
flatfoot recognition (Welte et al., 2023). However, Buldt et al. (2018)
studied the difference in the ratio of plantar pressure distribution between
normal and flat feet and found that the ratio of plantar pressure
distribution between the two foot types differs in different regions.
Therefore, to determine whether these additional regions aid flatfoot
identification, we employed a multilabel classification model to extract
features and categorize plantar pressure images. We used ResNet-50 in
the backbone network because it is a dynamic convolution neural
network architecture with good performance. We resized the image

FIGURE 3
YOLO-v5 and improved YOLO-v5 base modules. (A) YOLO-v5 core network. It is composed of two 6 × 6 convolutions and three
CSPDarkNet53 network modules. For each CSP module, the feature graph size is reduced to half of the original size, and the feature channel is doubled.
(B) The Neck part of YOLO-v5. Using the classic structure of feature pyramid, from top to bottom, all scales are connected and fused to construct a high-
level semantic feature map. (C)Multiscale prediction head for YOLO-v5. It predicts three kinds of prediction charts with different aspect ratios. Each
scale prediction picture will predict three kinds of target anchor frames at the same time. The target anchor frame needs to predict four positions,
confidence and classification information of anchor frames. (D) SE attention structure. Through squeeze global pooling operation, the spatial dimensions
can be compressed into feature graphs with the size of 1 × 1×C, and global and weight information can be extracted. (E) CBAM attention structure. It can
not only learn the importance of each feature channel independently, but also add the maximum scaling operation which can obtain important
information about each feature channel and feature space at the same time.
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size of the dataset to 256 × 256 pixels, assigned two labels to the single
original image, namely flat foot and healthy foot, and then performed
one-hot encoding. Healthy feet were assigned the code (0,0), whereas flat
feet were assigned (1,1). In cases where only one arch collapsed, the
coding label was set as 0, 1 (or 1, 0), and trainingwas conducted for a total
of 100 epochs, as depicted in Figure 5.

Statistical analysis

We used SPSS 26.0 for the statistical analysis of participants’ general
information and expressed the measurement data as Mean ± Standard

Deviation. In addition, we used independent sample’s t-test to verify the
differences between groups, with statistically significance set at p < 0.05.

Results

The inclusion criteria yielded 125 subjects: 61 with normal feet,
61 with flat feet, and 3 with single flat foot. Each person underwent
the tests 13 times. A total of 1,573 plantar pressure images were
obtained: 748 flat feet, 51 single flat foot, and 774 normal feet. Basic
information is presented in Table 1, revealing no statistical
difference between the two groups (p > 0.05).

FIGURE 4
The results of the data enhancement. We randomly alter the hue, saturation and value of images by 15%, 70% and 40% respectively. Horizontal with
50% probability mosaic augmentation with 100% probability and mixup augmentation with 10% probability are used to images.
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Experimental environment

The laboratory setup comprised Ubuntu 20.04.1 LTS, an Intel
Xeon E5–2,620 v4 2.10 GHz processor, and four NVIDIA TITAN
Xp-12 GB GPUs. Python 3.7.5 was the development environment,
and PyTorch 1.12.1 was the DL framework, and CUDA 11.3/
CUDNN 8.2 was used for image processing.

Evaluation indicators

We used accuracy, precision, recall, F1-score, average precision (AP),
andmeanaverageprecision (mAP) to evaluate themerits ofmodels (Eq. 7):

Accuracy � TP + TN
TP + FN + FP + TN

Precision � TP
TP + FP

Recall � TP
TP + FN

F1 − score � 2 ×
Precision × Recall
Precision + Recall

AP � ∫
1

0
Precision Recall( )dRecall

mAP � 1
C
∑ cϵC∫AP c( ) (7)

True positives (TPs) are correctly classified positive samples,
false positives (FPs) are incorrectly classified positives, and false

negatives (FNs) are incorrectly classified negatives. Accuracy is the
proportion of correctly classified samples. Precision is the ratio of
TPs to total predicted positives. Recall is the ratio of TPs to total
actual positives. F1-score is the harmonic mean of precision and
recall. AP and mAP are commonly used in target detection to assess
a model’s detection effectiveness and performance (Zhao et al.,
2022). AP integrates the precision P at each discrete recall R
point from 0 to 1 by calculating the area under the precision-
recall curve. A higher AP value indicates better detection
performance for a certain class. Let C denote the total number of
classes in the detection model, c denote each class, and AP(c) denote
the AP for each class c. mAP is computed by first calculating the AP
for each class and then averaging over the AP across all classes,
resulting in a comprehensive evaluation metric that reflects the
model’s detection effectiveness for all categories.

Model training

Training of attention-enhanced YOLOv5s

The following steps are performed to train the model. To obtain
better training results, we initialized the YOLOv5s model by using
weights pretrained on the COCO train 2017 dataset and optimally
trained the model by using adaptive weight (AdaW) (Loshchilov and
Hutter, 2019). Next, we resized the input images to 640 × 640 pixels.
We employed AdamW for parameter optimization and adopted a
maximum learning rate of 0.1, with a batch size of 16 images per

FIGURE 5
Pipeline of the proposed method for multilabel classification task.

TABLE 1 General information of subjects.

Normal foot (n = 61) Flat foot (n = 64) P

Female, n 37 37

Age, y 32.64 ± 14.85 29.56 ± 17.09 0.286

Body mass (kg) 55.83 ± 12.94 54.00 ± 17.44 0.508

Body mass index (kg/m2) 20.92 ± 2.86 21.72 ± 4.40 0.231
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iteration. The first three epochs employed frozen training, where the
weights of the feature extraction layers were maintained constant.
This was followed by 97 epochs of unfrozen training for fine-tuning
all layers in the model. The IoU threshold and momentum were set
as 0.2 and 0.937, respectively. We used the same training method for
the other versions of YOLOv5s in this study.

Training of multilabel classification

To fit the dataset, we adopted a fine-tuning approach by
modifying the last fully-connected layer of ResNet-50. We loaded
the model on the GPU for training by using binary cross-entropy
loss. Furthermore, we utilized the stochastic gradient descent
optimizer with differentiated learning rates, where the newly
added classifier layers assume a 10× larger rate of 0.001 for rapid
adaptation. The learning rates were reduced by 10× every 5 epochs
by using step decay scheduling. The model was trained for
100 epochs to obtain an adapted network suited for the specific
dataset.

Plantar pressure

Compared with normal subjects, subjects with flat feet exhibited
lower pressure in the forefoot (toe andmetatarsal region) and higher
pressure in the middle foot (p < 0.05); in addition, no significant
difference was observed in the heel pressure ratio between the two
groups (p > 0.05) (Table 2).

Model performance evaluation

Comparison between the deep learning
model and traditional machine learning
model

To verify the test performance of the model and the
FeetMappingⓇ plantar pressure measuring system (NeuCognic,
Jiangsu, China), we inputted the test dataset into the improved
trained YOLO-v5 model and the FeetMappingⓇ plantar pressure
measuring system (NeuCognic, Jiangsu, China) for statistical

verification. The prediction accuracy of YOLOv5 model based on
the attention mechanism was higher than that of traditional ML in
both healthy and flat foot patients (Table 3).

Performance comparison between
improved YOLO-v5 and original YOLO-v5

The improved YOLO-v5 model included SE and CBAM
attention mechanisms in the C3 module. We compared the
performance of the original YOLO-v5 model with the improved
YOLO-v5 model by using precision-recall curve (PR curve). PR
curve is commonly used when the distribution of data categories is
uneven. The horizontal axis represents recall, and the vertical axis
represents accuracy. Similar to the ROC curve, when the PR curve is
closer to the upper right, it indicates that the model performance is
better. The PR curve of YOLO-v5 model based on C3CBAM
attention mechanism exhibited the best performance (Figure 6).
The average accuracy and sensitivity of YOLO-v5 based on the
CBAM attention mechanism were 84.7%, 86.4%, respectively, and
the mAP for different IoU thresholds (0.5, 0.55, 0.6, 0.65, 0.7, 0.75,
0.8, 0.85, 0.9, and 0.95) was 91.9%. The average accuracy was 8.5%
higher than that of YOLO-v5 with SE and 4.7% higher than that of
YOLO-v5 without attention mechanism. Furthermore, the
sensitivity was 5.4% lower than that of YOLO-v5 with SE and
2% lower than that of YOLO-v5. The average mAP for different
IoU thresholds was 0.3% higher than that of YOLO-v5 with SE and
1.9% higher than that of YOLO-v5.

Performance evaluation of multilabel
classification tasks

The distribution ratio of the participants’ plantar pressure
regions revealed that the target detection task focused only on
extracting features from the middle foot and overlooked the
features of the toe, metatarsal bone, and hindfoot due to the
specific labels assigned. To investigate the effect of plantar
pressure on foot type detection capability, we generated thermal
maps by using Grad-CAM in a multilabel classification task based
on ResNet-50 (Figure 7). Thermal maps enable backpropagation
through category assignment, obtaining gradient information from

TABLE 2 Ratio of pressure distribution in the plantar area between the two groups (%).

Normal foot (n = 61) Flat foot (n = 64) P

Left toe 6.49 ± 3.06 4.53 ± 1.73 <0.001

Left metatarsal 42.64 ± 6.41 38.13 ± 9.74 0.003

Left mediopodium 12.97 ± 6.69 21.56 ± 7.68 <0.001

Left heel 37.91 ± 7.60 35.79 ± 8.59 0.147

Right toe 6.84 ± 3.00 4.95 ± 2.10 <0.001

Right metatarsal 41.82 ± 7.30 36.97 ± 9.66 0.002

Right mediopodium 13.15 ± 6.02 21.99 ± 7.12 <0.001

Right heel 38.17 ± 9.46 36.11 ± 8.71 0.205
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extracted features, and weighting the elements that significantly
contribute to algorithmic recognition. When the recognition
object was set as a normal foot, the highlighted regions were
concentrated in the metatarsal and middle foot regions. Similarly,
when the recognition object was set as a flat foot, the highlighted
regions were primarily concentrated in the metatarsal and middle
foot areas.

To further assess the accuracy of the multilabel sorting task, we
randomly selected 20% of the dataset as the test set and used the
remaining 80% for training. We employed different DL models for
foot-type recognition of plantar pressure images based on the label
features extracted in this study. We compared the performance of
four models, namely, YOLO-v5, improved YOLO-v5 incorporating

different attention mechanisms (SE and CBAM), and multilabel
classification task based on ResNet-50. The results showed that
although the accuracy, recall rate, and F1-score of the algorithm
improved after adding attention mechanisms in YOLO-v5, the
performance of the multilabel classification algorithm based on
ResNet-50 was significantly superior to other algorithms (Table 4).

Model verification

To validate the feasibility and accuracy of the proposed model in
clinical practice, we freshly re-collected plantar pressure images of
46 participants from June 2022 to August 2023 as a new dataset,

TABLE 3 Accuracy of deep learning models and traditional machine learning models (%).

YOLO-v5 based on attention mechanism FeetMappingⓇmachine

All 84.7 76.5

Patient 86.5 76.0

Health 82.9 75.8

FIGURE 6
PR curves of three different models. (A) Ordinary YOLO-v5 model. (B) YOLO-v5 model with SE attention mechanism added. (C) YOLO-v5 model
with the CBAM attention mechanism added.
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including 16 children and 30 adults, with the same inclusion and
exclusion criteria as before (Supplementary Table S1). We inputted
the datasets into different DL models and compared the obtained
results with the original ML and clinical diagnosis results. The
accuracy of FeetMappingⓇ plantar pressure measurement system
(NeuCognic, Jiangsu, China), ResNet-50-based multilabel
classification algorithm, improved YOLO-v5 with SE or CBAM
attention mechanism, and original YOLO-v5 were 0.630, 0.826,
0.652, 0.717, and 0.652, respectively (Figure 8).

Discussion

In this study, we aimed to improve the YOLO-v5 DL model
for foot classification based on plantar pressure images. We

extracted middle foot features and incorporated SE and
CBAM attention mechanisms. A comparison of the two
modeling methods revealed that the modified YOLO-v5 model
and the multilabel classification task greatly improved the
performance of the flat foot classification system. Clinical
verification showed that both models performed well, with the
multilabel classification task yielding higher accuracy. Therefore,
the ResNet-50-based multilabel classification algorithm is
suitable for foot diagnosis and treatment prognosis.

This study highlighted the limitations of existing models in
identifying soft tissue health conditions. Although the YOLO model
excels in bone X-ray detection (Jiang et al., 2022; Li et al., 2023), it
cannot identify soft tissue health issues. In this study, we used
plantar pressure image data to conduct early screening for flat feet
because they provide valuable information regarding lower limb
dynamics and foot health.

The YOLO series is a one-stage target detection algorithm.
YOLO-v1 divides the input image into a grid with uniform size;
considers the prediction of the target and the target boundary
box in the grid as a regression problem; and obtains the
location, confidence, and category of the object (Redmon
et al., 2016). However, YOLO-v1 poses challenges in
accurately positioning objects and yields a low recall rate.
Therefore, k-means clustering is incorporated in YOLO-v2,
and the prior anchor frame is used for migration constraint

FIGURE 7
Grad-CAM heatmap based on ResNet-50model. ResNet-50model sets the recognition object to normal foot, (A) the high activation region of pixel
sensitivity of visual prediction images is located in the middle foot region, (B) the high activation area of pixel sensitivity of visual prediction images is
located in the metatarsal region. ResNet-50 model sets the recognition object as flat feet, (C) the high activation region of pixel sensitivity of visual
prediction images is located in the middle foot region, (D) the high activation area of pixel sensitivity of visual prediction images is located in the
metatarsal region.

TABLE 4 Precision comparison of deep learning models.

Model Precision (%) Recall (%) F1-score (%)

YOLO-v5 77.6 83.8 80.6

YOLO-v5_C3SE 76.2 91.8 83.3

YOLO-v5_C3CBAM 84.7 86.4 85.6

Multilabel_ResNet-50 91.8 92.9 92.3
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and confidence prediction of target position; this further
improves the performance of YOLO-v1 (Redmon and
Farhadi, 2017). Nevertheless, during target detection, the
regression parameters of the center position of the prior
anchor frame in YOLO-v2 are not effectively constrained,
which may cause the prediction anchor frame to appear in
any position of the original image, resulting in low prediction
accuracy. Furthermore, SoftMax activation classification is
applicable only to a single target and not for multiple
classifications. As such, logistic regression is incorporated in
YOLO-v3 for parameters in the central location, limiting them
to the range of 0–1, thereby greatly improving the detection
accuracy. Furthermore, multiple independent logistic
regression classifiers are used to replace SoftMax to improve
the accuracy of multiobjective classification (Redmon and
Farhadi, 2018). Based on YOLO-v3, YOLO-v4 incorporates
advanced techniques such as Bag-of-Freebies (data
enhancement, regularization, and loss function
improvement) and Bag-of-Specials (enhancement of model
sensitivity field, introduction of attention mechanism, feature
integration, and post-processing method) methods to further

improve detection efficiency (Bochkovskiy et al., 2020). The
prior anchor frame of YOLO-v5 is similar to that of YOLO-v3
and YOLO-v4; however, YOLO-v5 incorporates the training
prediction anchor frame into the network (Wang et al., 2022).
During training, the optimal anchor frame value of different
training sets is calculated adaptively, making the model
applicable to various datasets and greatly improving the
positioning accuracy for different tasks and datasets.

In this study, we also addressed the phenomenon of unilateral
arch collapse observed in some flat feet patients as it can lead to
asymmetrical force distribution and potential complications (Zhu
et al., 2021; Kim and Lee, 2022). To address this issue, we adjusted
the task strategy by focusing on the recognition of the foot arch and
employed multilabel classification using ResNet-50, which yielded
good results. Thermal maps generated using Grad-CAM revealed
the importance of force distribution in the metatarsal region in
addition to the midfoot. This is in agreement with previous studies
(Szczepanowska-Wołowiec et al., 2021).

Common abnormal foot types include flat foot and high-
arched foot. However, Buldt et al. (2018) observed no
significant difference in plantar pressure between high arch feet

FIGURE 8
The confusion matrix of four different models. (A) For the confusion matrix of multilabel task model, the sensitivity and specificity of flatfoot
recognition were 89.5% and 83.3%, respectively, and the specificity of one-foot flat recognition was 97.2%. (B) For the confusion matrix of YOLO-v5_SE,
the sensitivity and specificity of flatfoot recognition were 100% and 68%, respectively, and the specificity of one-foot flat recognition was 96.9%. (C) For
the confusionmatrix of YOLO-v5_CBAM, the sensitivity and specificity of flatfoot recognition were 100% and 73.9%, respectively, and the specificity
of one-foot flat recognition was 97%. (D) For the confusionmatrix of YOLO-v5, the sensitivity and specificity of flatfoot recognition were 100% and 65.4%,
respectively, and the specificity of one-foot flat recognition was 97.2%.
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and normal feet. Therefore, to avoid introducing bias to the model,
we focused on the plantar pressure distribution of flat and normal
feet in this study. Flat feet can lead to various health problems and
affect daily functioning and quality of life (Chou et al., 2021; 2021;
Moon and Jung, 2021). However, the latent early clinical
manifestations of flat feet are often overlooked, and traditional
diagnostic methods such as X-rays are less motivating for patients
due to radiation and cost concerns. The use of plantar pressure
measurement systems provides a simple screening method for flat
feet but has limitations in terms of accuracy and sensitivity. In this
study, we proposed a DL model and a multilabel classification
algorithm as a novel and more accurate approach for foot type
discrimination.

We observed differences in plantar pressure distribution
between flat and healthy feet but no statistically significant
difference in pressure distribution on the heel. This can be
attributed to long-term compensatory or equilibrium mechanisms
in the lower limbs of flat feet patients. The small number of
participants included in this study posed challenges in model
prediction, necessitating the need for further investigations to
explore the relationship between these conditions and the
subjects’ mental or physical health and to improve data collection
methods.

Limitations of the study

Limited datasets: In this study, data collected from a single
healthcare facility by using specific equipment and evaluators
were used. This limits the generalizability of the training model to
datasets from different centers, devices, and evaluators. In
addition, high arched feet were not included in this study, and
a model suitable for high arched feet needs to be developed. To
prevent overfitting and ensure robustness, future studies should
include larger and more diverse datasets from multiple centers
and devices.

Conclusion

In this study, we clinically validated that the multilabel
classification task and the improved YOLO-v5 model improve
the performance of the plantar flat press system in foot
classification. The multilabel classification task achieved higher
accuracy. The pressure ratios of all plantar regions contribute to
foot-type recognition, not limited to the arch of the foot. The
multilabel classification algorithm based on ResNet-50 is suitable
for foot diagnosis and treatment prognosis.
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