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Introduction: Inflammatory bowel disease (IBD) is a chronic relapsing and
remitting disease with a rising incidence globally. Circulating exosomes play
great roles in IBD pathogenesis through exosomal cargoes, especially
impacting the function of endothelial barriers. Transendothelial electrical
resistance (TEER) measurement is a widely used non-invasive and label-free
strategy to monitor endothelial barrier function in vitro. This study established
a well-designed microfluidic device to monitor the TEER changes of endothelial
cellular barrier on-chip after treated with exosome derived from IBD serum.

Methods: The chip comprised two layers of microfluidic chambers with top layer
for the perfusion of medium to maintain the nutrition and pressure during cell
culture, and bottom layer for the extracellular matrix mimic using hydrogel, which
are separated by a semipermeable membrane that permitted the formation of
endothelial cell barrier. Four electrodes independent from the outlets were
integrated to the chip for TEER detection. In vivo mouse models mouse
models and proteome profiling were performed to finding relevant regulators.

Results: With this platform, significant decrease of TEER was detected, indicating
that IBD serum exosome impact the endothelial cellular barrier on-chip. In vivo
mouse models, IBD serum exosome treated group showed great higher DAI
scores, shorter colons, more severe histological features, and higher levers of
S100A8 expression, promoting the disease progress. Proteome profiling showed
that TFRC and ANXA5 have great potentials as novel regulators in IBD.

Discussion: This in-house customized microfluidic chip emulates the endothelial
barrier microenvironment and enables the TEER monitoring, and can be used to
investigate endothelial barrier function in vitro. IBD serum exosome promote the
severity of disease.
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1 Introduction

Inflammatory bowel disease (IBD) is a chronic relapsing and
remitting disease, including ulcerative colitis (UC) and Crohn’s
disease (CD), with a rising incidence globally (Kaplan, 2015;
Kaplan and Ng, 2017). UC is characterized by relapsing and
remitting mucosal inflammation, initiating in the rectum, and
extending continuously to proximal segments of the colon. The
most common symptom is bloody diarrhea, the condition diagnosed
by colonoscopy and histological examination (Ungaro et al., 2017).
In CD, all segments of the gastrointestinal tract can be affected, most
commonly the terminal ileum and colon (Torres et al., 2017).
Multiple factors, including genetic predisposition, environmental
factors, epithelial barrier defects, and mucosal immune
dysregulation, contribute to IBD pathogenesis (Xavier and
Podolsky, 2007; Eisenstein, 2018). However, its exact
pathogenesis is currently still unknown. New findings to
delineate the etiology of IBD are necessary for the development
of new treatments and, ultimately, achieving disease cure.

The intestinal vascular endothelium is an important barrier in
the intestine by regulating the movement of fluid, solutes, and
proteins across the endothelium, including blood supply, nutrient
transport, tissue fluid homeostasis and immune cell migration, and
blocking bacteria penetration (Cromer et al., 2011; Spadoni et al.,
2015). Under normal circumstances, no gap exists between
endothelial cells, and permeability and leakage are stable and
low. In acute inflammation, focal endothelial gaps form
temporarily; as a result, the permeability rapidly increases and
leakage occurs. In chronic inflammation, blood vessels undergo
structural remodeling, manifested as dilation, proliferation
(angiogenesis), increased sensitivity to mediators, and continuous
gap formation and leakage (Claesson-Welsh et al., 2021). The loss of
endothelial barrier function and the resulting activation of
angiogenesis, enhancement of vascular permeability, and increase
in vascular density and pathological tissue edema promote the
recruitment of white blood cells, leading to inflammation and
IBD progression (Alkim et al., 2015; Claesson-Welsh et al., 2021).
Exosomes are a subset of extracellular vesicles with diameters
ranging from 40 to 160 nm; they are made by most cell types
and can be detected in almost all biological fluids (Kalluri and
LeBleu, 2020; Jeppesen et al., 2023). Increasing numbers of studies
indicate that circulating exosomes have great potential in the
diagnosis and treatment of IBD and can induce IBD pathogenesis
(Zhang et al., 2019; Larabi et al., 2020; Ocansey et al., 2020; Shao
et al., 2021). However, the regulatory functions of exosomes on
endothelial barriers in IBD are not clear.

Measurement of transendothelial or transepithelial electrical
resistance (TEER) is a widely used non-invasive and label-free
strategy to monitor the tightness of the endothelial barrier in vitro.
Currently, both conventional Transwell culture systems and organs-on-
chips are used to mimic the endothelial barrier to detect TEER using
specific electrodes (Odijk et al., 2015; Srinivasan et al., 2015). As one
advantage of microfluidic technologies, organs-on-chips provide a
controlled environment to culture cellular barriers, which are more
relevant to the in vivo microenvironment than traditional in vitro
culture systems (van der Meer and van den Berg, 2012; Bhatia and
Ingber, 2014). Generally, TEER detection chips comprise two layers of
microfluidic chambers that are separated by a porous membrane for

cellular barrier formation (Douville et al., 2010; Ferrell et al., 2010;Maoz
et al., 2017; Wei et al., 2023). To measure the TEER on chip, the
integration of electrodes on either side of the porousmembrane has also
been discussed. For example, to avoid the loss of visual inspection of the
cells due to electrodes close to the cellular barrier and improve the
reliability and stability, Marinke et al. proposed a direct on-chip TEER
measurement method using four electrodes inserted into the two
channels without the need to be close to the cells (van der Helm
et al., 2016). Ben et al. integrated multi-electrode arrays and TEER
measurement electrodes to achieve a dual channel, endothelialized,
heart-on-a-chip device for the simultaneous detection of cellular
electrical activity and tissue barrier function (Maoz et al., 2017).
These engineered systems facilitated the feasible and convenient
integration of electrodes for TEER detection.

In this study, we used a well-designed microfluidic chip
integrated with four electrodes independent from the outlets to
detect the function of the endothelial cellular barrier after treatment
with exosomes derived from the serum of patients with IBD. The
decrease in TEER indicated that these exosomes significantly
impacted the endothelial cell barrier. Moreover, data from the
mouse models supported that IBD serum exosomes promote the
severity of disease in vivo. Proteome profiling was also performed to
analyze the exosomal protein cargoes and explore the novel
regulators.

2 Materials and methods

2.1 Device design and fabrication

The two-layer (upper and bottom) microfluidic chip used in this
study was designed using LayoutEditor on a chrome mask. The sizes
and shapes of the chip on the two layers were identical, and one was
bonded to the opposite one with a polyester, porous, semipermeable
membrane (Corning) in between. The master mold (silicon wafer)
was created by the standard photolithography process. The
polydimethylsiloxane (PDMS, Dow Corning) elastomer was
fabricated by replica molding from the SU-8 (SU8-2010,
MicroChem)/silicon master based on a ratio of 10:1 with the
curing agent. After pouring PDMS on the mold, the mixture was
degassed in a vacuum chamber for air bubble removal and cured at
80°C for 1 h in the oven. The microfluidic chip was cut out by razor
blade, punched for the fluidic connection ports, and then bonded to
a glass slide (24 mm × 60 mm) by oxygen plasma. Ag/AgCl
electrodes were produced by immersing platinum wire and silver
wire into potassium chloride electrolyte and inserted into the
designed electrode side of the chip.

2.2 Clinical sample collections

Patients with IBD and healthy control individuals were enrolled
from the First Affiliated Hospital of Zhengzhou University from
December 2021 to March 2022. The inclusion criteria were patients
with moderate to severe active IBD who met the diagnostic criteria
for IBD. The exclusion criteria were patients with other intestinal
organic diseases, other infectious diseases, and pregnant and
lactating women. This study was approved by the Ethics
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Committee of the First Affiliated Hospital of Zhengzhou University
(approval number: L2018-Y150), and the patients signed an
informed consent form. We collected 5 mL of peripheral blood
from each participant into individual serum collection tubes. Serum
samples were obtained by centrifuging at 4°C and 3000 rpm for
10 min after coagulation.

2.3 Exosome extraction and identification

Serum exosomes were extracted using an exosome extraction kit
(KGPE001-10, KeyGEN BioTECH), in which 250 μL of extracellular
vesicle separation reagent was added to the serum, gently mixed well,
and allowed to stand for 2 h at 4°C. Next, the samples were
centrifuged 12,000×g at 4°C for 20 min. The supernatant was
discarded to obtain the extracted exosomes, which were stored
at −80°C until use. The exosomes were identified through particle
size analysis using a nanoparticle tracking analyzer (NTA,
ZetaView®, Particle Metrix) and image observation using
transmission electron microscopy (TEM, HT7700, HITACHI).
Biomarkers for exosomes including TSG101, CD63, and Alix
proteins were also detected by Western blot.

2.4 Cell line and culture conditions

Human umbilical vein endothelial cells (HUVECs) were ordered
from Procell Life Sciences Co., Ltd. (Wuhan, Hubei, China) and
were cultured in Ham’s F-12K medium complemented with 0.1 mg/
mL heparin, 0.03–0.05 mg/mL ECGs, and 10% FBS at 37°C in a
humidified atmosphere with 5% (v/v) CO2.

2.5 TEER measurement

TEER was measured using a lock-in amplifier (HF2LI, Zurich
Instruments, Switzerland) operated by a customized LabVIEW
program. Before each measurement, the medium inside the chip
was refreshed to reach room temperature to minimize measurement
errors caused by the changes in temperature and medium
conductivity. In the microfluidic chip, two electrodes were
located above and below the PC membrane, respectively. The
impedance values between any two electrodes were recorded with
an AC signal of ~0.8 V applied to one terminal and the other
terminal grounded. The response current was amplified by a
current amplifier (HF2TA, Zurich Instruments, Switzerland) with
an amplification of 108. Afterward, the amplified signals were fed to
the HF2LI for demodulation, with the oscillator frequency set to
10 kHz and the signal sampling rate set to 7K Sa/s. Based on the
equivalent resistive circuit and the Gaussian elimination, the TEER
value was calculated using Eq. 1, discussed in Section 3.1.

2.6 IBD mouse model

An IBD mouse model was induced by DSS (Mw
36,000–50000) treatment. Male C57BL/6 J mice (6–8 weeks,
20–25 g) were ordered from the Experimental Animal Center

of Zhengzhou University (Experimental Animal Use License No.
SCXK (Yu) 2020 0008) and housed in a specific pathogen-free
(SPF) environment at 22°C–26°C and a relative humidity of 40%–

70%. All the experiments were performed in strict accordance
with good animal practice. The experimental mice were
randomly assigned to four groups (n = 6 per group): Control,
a negative control group; IBD model, DSS-induced colitis group;
IBD model + HC-exos, DSS-induced colitis group treated with
exosomes derived from human control; and IBD model + IBD-
exos, DSS-induced colitis group treated with exosomes derived
from patients with IBD. Mice in IBD model drank 2% DSS water,
and those in the control group drank normal water freely.
On days 3, 5, and 7, mice in IBD model + HC-exos and IBD
model + IBD-exos groups were injected through the tail vein with
total protein from 1 mg of exosomes derived from human
controls and from patients with IBD. Daily diarrhea, bloody
stools, and weight were monitored to calculate the Disease
Activity Index (DAI) scores. The experimental mice were
euthanized when they showed significant weight loss, with
symptoms of curling up, erect hair, slow movement, decreased
appetite, and loose stools. The lengths of the colons of these mice
were measured. Hematoxylin–eosin (HE) staining was used to
identify the severity of the disease, and immunohistochemistry
(IHC) was used to detect the corresponding protein changes in
the colon tissues.

2.7 LC-MS/MS identification and
bioinformatic analysis

Exosomal proteins were extracted using SDT buffer lysis (4%
SDS, 100 mM Tris HCl, 1 mM DTT, pH7.6), and the protein
concentration was determined using the BCA protein
quantification kit (Bio-Rad, USA). The proteins were digested
with pancreatin and processed using the ultrafiltration-assisted
sample preparation (FASP) method. The peptide segments
obtained after treatment were desalinated using a
C18 chromatographic column, concentrated by vacuum
centrifugation, and dissolved in 40 µL 0.1% formic acid.

Identification and analysis were conducted using liquid
chromatography tandem mass spectrometry (LC-MS/MS). Each
peptide sample was separated using a nanoliter flow rate high-
performance liquid chromatography system, with mobile phase
buffer A containing 0.1% formic acid aqueous solution and B
containing 0.1% formic acid acetonitrile aqueous solution (84%
acetonitrile). Using a 95% A-liquid equilibrium chromatographic
column, each sample was loaded into a C18 chromatographic
column using an automatic sampler and separated by a C18-A2
analytical column at a flow rate of 300 nL/min. After
chromatographic separation, each sample was subjected to mass
spectrometry analysis on a timsTOF Pro mass spectrometer. The
detection method was positive ions, the ion source voltage was set to
1.5 kV, and TOF was used for detection and analysis in both mass
spectrometry and tandemmass spectrometry. The scanning range of
the mass spectrometry was set to 100–1700 m/z. The data parallel
accumulation serial fragmentation (PASEF) mode was used to data
collection. After collection, the mother ions were collected in
10 PASEF modes, with a cycle window time of 1.17 s and
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secondary mass spectrometry with a charge number of 0–5. The
dynamic exclusion time of tandem mass spectrometry scanning was
set to 24 s to avoid repeated scanning of the parent ions and generate
original mass spectrometry detection data. The mass spectrometry
raw data were identified and quantitatively analyzed using the LFQ
(label-free quantification) algorithm in MaxQuant software (version
1.6.14).

Subcellular localization was analyzed using CELLO (http://cello.
life.nctu.edu.tw/). The structural domain prediction used
InterProScan software. Gene Ontology (GO) annotation passed
through the GO database, and Blast2Go was used (https://www.
blast2go.com/). The software annotates the GO function of all
differentially expressed proteins. Cytoscape (http://www.
cytoscape.org/Version 3.2.1) was used for visualization.

2.8 Statistical analysis

T-tests were used for inter-group differences, and Fisher’s exact
tests were used for functional enrichment analysis.
P-values <0.05 indicated statistically significant differences.

3 Results and discussion

3.1 Microfluidic chip fabrication and
characterization

This work developed an in-house customized microfluidic chip
that emulated the endothelial barrier microenvironment and
enabled TEER monitoring. The chip was designed to comprise a
semipermeable membrane that permitted the formation of an
endothelial cell barrier and four electrodes to realize the
calculation of resistances (Figure 1A). The circular central
chamber was 5 mm in diameter and 140 μm in depth, with
separate inlets and outlets for the top and bottom layers. The
device consisted of three layers, including the top layer for the

perfusion of medium to maintain nutrition and pressure during cell
culture, the PCmembrane for endothelial cellular barrier formation,
and the bottom layer to mimic the extracellular matrix using
hydrogel. This chip allowed easy real-time imaging and facilitated
the performance of immunocytochemistry in situ and cell retrieval
after the experiments for further analysis.

In this device, it was possible to directly measure the
transendothelial or transepithelial electrical resistance
(TEER), a strategy widely used for non-invasive and label-free
monitoring of the tightness of the endothelial barrier in vitro. In
the chip, four electrodes were inserted into the two channels,
with two on each side of the PC membrane. In six different
measurement configurations, we can directly derive isolated
TEERs independent of the channel characteristics. The four
electrodes were inserted into top and bottom channels some
distance from the cellular barrier to avoid hampering the visual
inspection of the cells, while the prestored medium in the
electrode channels independent from the inlets and outlets
reduced the influence of medium composition changes on the
apparent TEER. From the equivalent circuit shown in Figure 1B,
resistance can be determined by Gaussian elimination, including
the resistance of the cellular barrier and membrane (Rm). The
TEER (Ωcm2) is determined by the normalization of the
resistance of the Rm (Ω) to the culture area Acult (cm2) using
Eq. 1. The TEER of the system prior to cell seeding was regarded
as the baseline, which should be subtracted.

TEER � Rm · Acult

� 1
4

R1→2 + R1→3 + R2→4 + R3→4 − R1→4 − R2→3( ) · Acult (1)

Ri→j depicted the resistance between two electrodes, while i and j
referred to the electrode numbers in Figure 1. The culture area on the
membrane is π(52)2 � 6.25π (mm2). This method directly measures
TEER in the microfluidic chip without the need for an integrated
electrode close to the cell barrier. Hence, large variations caused by
non-biological sources in chips filled with culture media were
eliminated.

FIGURE 1
Chip design. (A) Exploded view of the PDMS chip showing the top layer, PC membrane, bottom layer and Ag/AgCl wire electrodes (E1, E2, E3, and
E4). The diameter of the culture area on the membrane is 5 mm. (B) Schematic top view and simplified equivalent circuit of the chip, showing electrodes
E1–E4, resistors representing the top (R1 and R4) and bottom (R2 and R3) channels, and resistor Rm representing the cellular barrier and membrane.
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3.2 Serum exosome identification

The exosomes isolated from patient serum were identified by
particle size analysis, image observation, and biomarker protein
detection. The average particle size was 119.8 ± 63.7 nm, and
94.2% particles were distributed at approximately 101.6 nm
(Figure 2A). TEM image observation showed the intact
exosomes at magnification of 60 k (Figure 2B). The Western
blot results demonstrated the positive detection of biomarkers

for exosomes, including TSG101, CD63, and Alix
proteins (Figure 2C). These data verified the characteristic of
exosomes, which were then used in the subsequent experiments.

3.3 Exosomes from IBD serum reduce TEER

A HUVEC cell line was used in this study to mimic the on-
chip endothelial cellular barrier. As shown in Figure 3A, first,

FIGURE 2
Identification of isolated exosomes. NTA result (A), TEM images (B), and Western blot analysis (C) of exosomes isolated from the serum.

FIGURE 3
Formation of the on-chip HUVEC cellular barrier and treatment with exosomes. (A) Overall operation flow including the formation of the on-chip
HUVEC cellular barrier, exosome treatment, and TEER detection. (B) Confirmation of treatment time for exosomes on the cellular barrier. (C) Relative
TEER normalized to baseline. HC-exos, exosomes derived from healthy control serum; IBD-exos, exosomes derived from IBD serum.
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Matrigel was injected into the bottom chamber and incubated for
4 h for complete gelation to mimic the extracellular matrix. Then,
HUVEC cells were loaded into the top chamber at a density of
10×106 cells/mL and left to attach and grow on the porous
membrane overnight to form the cellular barrier. The cells
were maintained in a perfusion flow regime at a flow rate of
8 uL/hour using culture medium. The following day, medium
containing exosomes was perfused for treatment. To confirm the
treatment time, the exosomes were labeled using PKH67, a green
fluorescent dye that binds to the lipid components of the
membrane structure, to trace the exosomes. In the
conventional culture plate, exosomes (green) were endocytosed
by HUVEC cells (blue) after 24 h (Figure 3B) because the labeled
exosomes were discarded if not endocytosed. The on-chip
endothelial cellular barrier was then exposed to 100 μg of total
exosome protein for 24 h. After that, resistances between the
electrodes were measured to calculate TEER. The exosomes
derived from IBD serum significantly reduced the TEER levels
(p < 0.01), indicating that exosomes derived from IBD serum
impacted the endothelial barrier (Figure 3C).

3.4 IBD serum exosomes promote disease
progression in vivo

To validate the effect of serum exosomes on the progression of
IBD in vivo, a mouse IBD model induced by DSS was established.
Exosomes derived from control or IBD patients were injected
through the tail vein every other day from the third day after
DSS treatment. Mice in the IBD group, regardless of exosome
treatment or not, showed higher DAI scores than those in the
normal control group at day 5, indicating the effects of DSS
induction. To day 7, mice in the IBD group treated with
exosomes derived from IBD patients showed significantly higher
DAI scores than all the other three groups. The levels continue to
increase until day 8, and the mice showed much more severe illness
(Figure 4A). All the mice were euthanized on day 8, and the lengths
of colons in the IBD group treated with IBD exosomes were
significantly shorter than those of the control group (Figure 4B).
HE staining also showed that the IBD group treated with IBD
exosomes had the most serious disease (Figure 4C). Additionally,
S100A8, which plays an important role in inflammation and

FIGURE 4
IBD serum exosomes promote disease progress in the mouse model. DAI scores (A), length of colons (B), HE staining (C), and IHC detection of
S100A8 protein (D).
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angiogenesis (Li et al., 2012), detected by IHC showed greatly
enhanced expression in the colon tissues of the IBD exosome-
treated group (Figure 4D). These data supported that exosomes
derived from IBD patients significantly promoted disease
progression.

3.5 Proteomic profiling of the exosomal
protein cargoes

Although the impact of serum exosomes on IBD progress was
validated, the corresponding regulatory protein cargoes were still
not clear. Therefore, we further profiled the differential proteome of
IBD serum exosomes. In total, 5765 peptides and 891 proteins were
identified, including transthyroxine (TTR) and ß-2-glycoprotein 1

(APOH), which were consistent with the common proteins in serum
exosomes listed in the ExoCarta (http://www.exocarta.org) public
database. Quantitative analysis screened a total of 55 differential
(38 upregulated and 17 downregulated) proteins in IBD serum
exosomes compared with control (Figure 5A). Meanwhile,
38 proteins were screened as only present in control exosomes
(not identified in IBD), and 42 proteins were screened as only
present in IBD exosomes (not identified in control) (Figure 5B).
Among these identified differential proteins, many
immunoglobulins were significantly upregulated, showing that
immune factors, especially abnormally expressed
immunoglobulins, contributed to IBD pathogenesis. Transferrin
receptor protein 1 (TFRC) was significantly upregulated by more
than five-fold in IBD exosomes. Transferrin receptor levels are
reportedly increased in inflammatory tissues, while HIF a

FIGURE 5
Profiling of IBD serum exosomes. Heat map of differentially expressed proteins (A) and proteins only present in IBD or control serum exosomes (B).
Biological process (BP), cellular component (CC), and molecular function (MF) analysis (C).
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pathway agonists may benefit such patients by increasing non
inflammatory tissue-mediated iron absorption and reducing
mucositis (Fagundes et al., 2022). Annexin A5 (ANXA5), a
calcium and phospholipid-binding protein, was significantly
downregulated in IBD exosomes. ANXA5 reportedly has
potential inhibitory effects on inflammation through binding to
aged red blood cells, activated platelets, endothelial microparticles,
and tumor blood vessels (Domeij et al., 2013), effectively alleviating
TNBS-induced colitis by inhibiting inflammatory cell infiltration
(Zhang et al., 2021), which may be a potential target in the treatment
of IBD.

Analyses of biological processes, cellular components, and
molecular functions were also conducted on the screened
differential proteins. As shown in Figure 5C, these differential
proteins were mainly enriched in biological processes such as
intracellular processes, stimulus responses, biological regulation,
metabolic processes, intracellular component biosynthesis, and
signaling; the cell components included organelles, extracellular
areas, and cell membranes; and the molecular functions involved
binding, catalytic activity, molecular function regulation, structural
molecular activity, transporter activity, molecular transduction
activity, antioxidant activity, and transcriptional regulation.

4 Conclusion

This study presents an on-chip endothelial cellular barrier
integrated with electrodes to detect TEER changes after treatment
with exosomes derived from IBD serum. The IBD serum exosome
significantly reduced TEER values. In the in vivomouse models, the
group exposed to exosomes from IBD serum showed higher DAI
scores, shorter colons, more severe histological features, and higher
levels of S100A8 expression, which promoted disease progression.
The exosomal protein cargoes were further explored using proteome
profiling, in which TFRC and ANXA5 showed great potential as
novel regulators in IBD.
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