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In recent years, bone tissue engineering (BTE) has played an essential role in the
repair of bone tissue defects. Although bioactive factors as one component of BTE
have great potential to effectively promote cell differentiation and bone
regeneration, they are usually not used alone due to their short effective half-
lives, high concentrations, etc. The release rate of bioactive factors could be
controlled by loading them into scaffolds, and the scaffold microstructure has
been shown to significantly influence release rates of bioactive factors. Therefore,
this review attempted to investigate how the scaffold microstructure affected the
release rate of bioactive factors, in which the variables included pore size, pore
shape and porosity. The loading nature and the releasing mechanism of bioactive
factors were also summarized. The main conclusions were achieved as follows: i)
The pore shapes in the scaffold may have had no apparent effect on the release of
bioactive factors but significantly affected mechanical properties of the scaffolds;
ii) The pore size of about 400 μm in the scaffold may be more conducive to
controlling the release of bioactive factors to promote bone formation; iii) The
porosity of scaffolds may be positively correlated with the release rate, and the
porosity of 70%–80% may be better to control the release rate. This review
indicates that a slow-release system with proper scaffold microstructure
control could be a tremendous inspiration for developing new treatment
strategies for bone disease. It is anticipated to eventually be developed into
clinical applications to tackle treatment-related issues effectively.
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1 Introduction

Bone defects are common diseases caused by infection, trauma, or congenital physical
problems. In the case of mild bone damage, bone defects can be cured by the regenerative
ability of bone tissue. But when the bone defects exceed the critical-size defects (CSDs), bone
transplants are usually required, which include autografts, allografts, and synthetic
biomaterials (Bishop and Einhorn, 2007; García-Gareta et al., 2015; Tozzi et al., 2016;
El-Rashidy et al., 2017; Xu et al., 2017). Autografts have been considered the “gold standard”
of bone treatment due to their excellent biocompatibility, osteoinduction, and exemption of
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immune responses. Nevertheless, autografts might lead to some
complications because of the secondary surgery (Myeroff and
Archdeacon, 2011; Amini et al., 2012). Allografts are widely
accessible, but are subject to immunological rejection that
requires a long time to resolve. Additionally, synthetic
biomaterials are readily available, but they might be corroded in
the body, leading to toxic phenomena (Ding et al., 2016; Chu et al.,
2018). A brand-new field of research called BTE appears to be an
effective way to treat bone defects (El-Rashidy et al., 2017).

BTE constructs tissues or organs in vitro or in vivo, combining
cell biology and biomaterials. For BTE, scaffolds, cells and bioactive
factors are the three important elements to promote bone repair and
regeneration, as shown in Figure 1. The ideal scaffolds should be
biocompatible and biodegradable, have superior mechanical
properties similar to those of bone transplant sites, and provide a
stable three-dimensional environment to enhance cell adhesion and
proliferation (Ratner et al., 2004; Meyers et al., 2008; Khaled et al.,
2011). Stem cells are characterized by their ability to renew
themselves and differentiate into various cell types. The presence
of undifferentiated stem cells, which replace damaged differentiated
cells, is essential for the success of osteoinduction (Heydarkhan-
Hagvall et al., 2012; Palm et al., 2013). Bioactive factors are mostly
peptides such as bone morphogenetic proteins (BMPs) which can
bind to cell membrane receptors to enhance cell proliferation and
differentiation (Castro et al., 2015; Ding et al., 2016; Ghorbani et al.,
2021).

However, there are some limitations on bioactive factors: i) They
are water-soluble signaling molecules, which cannot exist stably in
aqueous solution; ii) It is challenging to maintain bioactivities over
an extended period since the intrinsic half-life is short in the
physiological environment; iii) The inappropriate concentration
could bring various degrees of effects. The sudden release
resulted in the localized high-concentration killing of cells, and
the ossification was not evident at low concentrations (Srouji et al.,
2011; Bhakta et al., 2012; Vo et al., 2012; Perez et al., 2014). In
response to these shortcomings, a slow-release system composed of

scaffolds and bioactive factors should be produced to precisely
release bioactive factors to the sites of local defects and control
the release sequence and release rate (Vo et al., 2012; Perez et al.,
2014). By controlling the release of bioactive factors, the slow-release
system could stimulate cell differentiation, enhance blood vessel
formation and promote bone repair efficiently. Schliephake et al.
(Schliephake et al., 2007) investigated a slow-release system of
polylactic acid and bone morphogenetic protein-2 (rhBMP-2).
They indicated that the slow release was possible, and the system
had significant osteoinduction. Additionally, modification of the
scaffold microstructure could alter the release characteristics to
influence the performance of slow-release systems for bone repair.

To comprehend how the scaffold microstructure affected a slow-
release system, we expounded and summarized the requirements of
ideal scaffolds, preparation methods of the scaffolds, and especially
some characteristics of scaffold microstructure. Next, we outlined
the incorporation strategies between scaffolds and bioactive factors
and the releasing mechanism of bioactive factors. Finally, we
primarily elucidated the impacts of scaffold microstructure with
pore shape, pore size and porosity on the release of bioactive factors.

2 Bone tissue engineering scaffolds

As is well known, bioactive factors need to reach the damaged
sites with the appropriate bioactivity within a certain time to
stimulate bone regeneration. However, this process can be
unsuccessfully due to the disadvantages of bioactive factors. A
legitimate way to reduce these defects is by incorporating
bioactive factors into scaffolds to form a slow-release system.
Furthermore, the scaffold microstructure could be modified to
obtain the ideal controlled-release performance (Vo et al., 2012).
The scaffold carriers should meet the following requirements (Vo
et al., 2012; Arafat et al., 2014): i) superior biocompatibility and
mechanical properties without physical damage; ii) appropriate
biodegradability so that the scaffolds degrade with the process of

FIGURE 1
Schematic diagram of bone tissue engineering.
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bone regeneration; iii) delivery of bioactive factors to the site of the
defects for controlled release.

The scaffold biomaterials include four types (Sehgal et al., 2017;
Weißmann et al., 2017; Zhao S. et al., 2018; Zaharin et al., 2018; El-
Habashy et al., 2021): i) biomedical metal materials (Weißmann
et al., 2017; Zhao S. et al., 2018; Zaharin et al., 2018) such as stainless
steel and titanium alloy; ii) bioceramics like bioactive glass,
hydroxyapatite and tricalcium phosphate; iii) polymers including
natural polymers like silk fibroin and chitosan, and synthetic
polymers like polylactic acid, polycaprolactone and tricalcium
phosphate; iv) composites such as polylactic acid-hydroxyapatite.
Scaffolds are developed by combining one or more biomaterials,
including nano-biomaterials, to achieve the desired performance
(Al-Munajjed et al., 2008; Sicchieri et al., 2012; Zhao H. et al., 2018;
Zaharin et al., 2018; Lee et al., 2019). Scaffolds are manufactured by
using conventional techniques such as solvent casting,
electrospinning and freeze-drying (Ferrand et al., 2014;
Weißmann et al., 2017), and 3D printing technologies like
stereolithography, selective laser melting and fused deposition
modeling (Zhao H. et al., 2018; Lee et al., 2019). A summary of
scaffold materials and techniques for BTE is provided in Table 1.

Some scaffolds are designed to mimic bone tissue’s mechanical
properties and microstructures (Wu et al., 2020). Researchers have
fabricated a variety of scaffolds to investigate the impact caused by
microstructures like pore shape, pore size and porosity (Moroni
et al., 2006; Van Bael et al., 2012; Liu et al., 2013; Prochor and Gryko,
2020; Li et al., 2021). Among them, Bael et al. (Van Bael et al., 2012)
designed six Ti6Al4V scaffolds with three distinct pore shapes

(triangular, hexagonal and rectangular) and pore sizes of 500 μm
and 1,000 μm. The research indicated that the differentiation of
human periosteum-derived cells (hPDC) was reliant on both pore
shapes and pore sizes, and hPDC proliferation was related to pore
sizes. Analogously, Prochor and Gryko (2020) investigated scaffolds
with five different pore shapes to evaluate the effect on osteogenic
cell diffusion. There have been numerous studies done on the pore
sizes of scaffolds (Liu et al., 2013; Zhao et al., 2017; De Witte et al.,
2018; Diao et al., 2018; Zaharin et al., 2018; Luo C. et al., 2021;
Ghorbani et al., 2021; Sun et al., 2021). Luo et al. (Luo C. et al., 2021)
demonstrated that porous tantalum scaffolds with pore sizes of
400–600 μm were more appropriate to promote cell adhesion, cell
proliferation and bone regeneration compared to the other porous
tantalum scaffolds with pore sizes of 100–200, 200–400, and
600–800 μm. Another critical component of the scaffold
microstructure is porosity (Peng et al., 2012; Wo et al., 2020;
Mohammadi et al., 2021; Foroughi and Razavi, 2022; Isaacson
et al., 2022; Jeyachandran et al., 2022; Wang et al., 2022).
Isaacson (Isaacson et al., 2022) examined hydroxyapatite gyroid
scaffolds with 60%, 70% and 80% porosities. They considered the
mechanical properties of scaffolds with 60% and 70% porosities
comparable to those of cancellous bone.

The scaffold was a significant component of a slow-release
system. Interconnected pores were more conducive to bone
regeneration, especially when the pore size for angiogenesis was
greater than 50 μm (Huang et al., 2022). Previous studies have
shown that the pore shapes impacted the characteristics of cells,
and scaffolds with elliptic pores had tremendous potential for bone

TABLE 1 Summary of materials and techniques for BTE scaffolds.

Scaffold
materials

Examples Technique Features References

Metals Titanium alloy magnesium alloy
tantalum

3D printing plasma
spraying

High young’s modulus high
compressive strength

Wauthle et al. (2015); Agarwal et al.
(2016); Peng et al. (2016); Liu et al.
(2017); Tamaddon et al. (2017);

Zaharin et al. (2018)sintered metal powders Low biocompatibility non-
degradability

electron beam melting corrosivity

Bioceramics Bioglass silicate alumina 3D printing co-
precipitation method

Excellent biocompatibility convenient
osteoinductivity

Sha et al. (2011); Eckel et al. (2016);
Elsayed et al. (2017); Tang et al.

(2018), Fu et al. (2019); Zhao et al.
(2020)selective laser sintering High brittleness poor mechanical

properties

Natural polymers Collagen silk fibroin 3D printing
electrospinning

Excellent biocompatibility and
osteoinductivity low immune response

Castro et al. (2015); Loessner et al.
(2016); Lee et al. (2019); Luo et al.

(2021b)
chitosan Poor mechanical properties

hyaluronic acid

Synthetic polymers Polylactic acid polyglycolic acid 3D printing
electrospinning

Good biocompatibility and
degradability high mechanical strength

Aragon et al. (2017); Sruthi et al.
(2020); Awasthi et al. (2021);

Rachmiel et al. (2021)
polycaprolactone Fast degradation of some materials

inflammatory response

Composites Polylactic-co-glycolic acid silk-
hydroxyapatite hydroxyapatite-

polycaprolactone

3D printing freeze drying Excellent comprehensive performance
wide range of materials

Ding et al. (2016); Xu et al. (2017);
Zhou et al. (2017); Marins et al.

(2019); Chen et al. (2020); El-Habashy
et al. (2021)chemical precipitation Complicated preparation process

electrospinning
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regeneration (Boccaccio et al., 2016). Hence, developing scaffolds
with balanced performance is equally challenging.

3 The mechanism of bioactive factors
on slow-release system

Bone repair encompasses three categories of bioactive factors:
inflammatory factors (such as fibroblast growth factors (FGF-II),
transforming growth factor-β1 (TGF-β1), vascular endothelial
growth factor (VEGF)), angiogenic factors (such as platelet-
derived growth factor (PDGF) and VEGF), and osteogenic
factors (such as BMPs and FGF). These bioactive factors were
incorporated into scaffolds using various strategies to achieve
specific release effects. Understanding bioactive factors’ releasing
mechanism was crucial to the design of sustained delivery systems.

This section predominantly addressed the loading nature and
releasing mechanisms of bioactive factors.

3.1 The loading nature of bioactive factors

The release of bioactive factors can be controlled by
incorporating them into scaffolds through non-covalent bonding,
covalent bonding and particulate encapsulation (Figure 2). Non-
covalent bonding is achieved via physical adsorption, affinity
interaction, electrostatic interaction, hydrogen bonding, etc.
(Ziegler et al., 2008; Chen et al., 2009). Covalent bonding is
achieved by coupled chemical reactions with scaffold biomaterials
(Schliephake, 2010; Bouyer et al., 2016). In addition, the factors were
loaded into scaffolds after they had been encapsulated in
nanoparticles or microspheres to control the sequence and

FIGURE 2
The loading nature of bioactive factors. (A) Non-covalent delivery. (B) Covalent delivery. (C) Encapsulated delivery.

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Pei et al. 10.3389/fbioe.2023.1230682

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1230682


concentration of release of growth factors (Ehrbar et al., 2007;
Balasubramanian et al., 2010; Bhakta et al., 2012).

3.1.1 Non-covalent immobilization of bioactive
factors

Physical adsorption is the simplest non-covalent bondingmethod,
in which scaffolds are immersed in the bioactive factor solution to
diffuse bioactive factors into scaffolds (Ziegler et al., 2008; Chen et al.,
2009). For example, Sundaray et al. (Sundaray et al., 2011) prepared
the nanofibrous scaffold loading the nerve growth factor through
physical adsorption to direct the growth of neurites. Mehnath et al.
(Mehnath et al., 2021) produced the mesoporous bioactive glass
(MBG) scaffold to treat bone metastasis cancer. The hyaluronic
acid-alendronate (HA-ALN) components (bone-targeting
components) enclosed the MBG nanoparticles to form a stable
structure to control the drug escape. The doxorubicin (DOX) was
adsorbed into the nanoparticles via Van Der Waals force, which the
pores can keep the sustained release of DOX. Lee et al. (Lee et al.,
2012) prepared the heparin-conjugated electrospun poly (ε-
caprolactone) (PCL)/gelatin scaffolds loading platelet-derived
growth factor-BB (PDGF-BB). They discovered that the non-
heparinized scaffold led to the burst release of PDGF-BB because
of the physical adsorption. But the heparin-conjugated scaffold had
the sustained release of PDGF-BB. Bioactive factors could also be
incorporated into scaffolds through intermolecular hydrogen
bonding, affinity interaction, etc. Song et al. (Song et al., 2021)
developed a nanofibrous composite-coated titanium implant via
electrospinning to enhance bone regeneration. They prepared the
electrospun fiber composites using minerals (Zn, Mg, Si) substituted
hydroxyapatite (MHAP), Polyethylene Glycol (PEG)/Cissus
quadrangularis (CQ) extract. Cissus quadrangularis can be used to
treat various ailments such as catagma, osteoarthritis, etc. CQ extract
and polymers were bonded by hydrogen bonding, and they could
promote cell differentiation.

Due to their independence from scaffolds, the bioactive factors
have higher bioactivity and are released by diffusion and scaffold
degradation (Figure 2A). The release of bioactive factors is influenced
by pore size, porosity, interconnectivity, etc. (Izadifar et al., 2014). For
example, Yang et al. (Yang et al., 2023) developed a hydrogel-based
scaffold combined with nanofibrous. The 3D scaffold with porous
architecture and interconnected pores accelerated osteanagenesis, cell
proliferation, and controlled chemical release. When the pore size of
the scaffold is larger than the size of the growth factor, the growth
factor could spontaneously diffuse. Otherwise, the bioactive factors
diffused after the degradation of scaffolds (Censi et al., 2012). The
limitations are the low loading rates and the abrupt release of bioactive
factors in a preliminary period. Surface roughness, wettability, and
microstructure of scaffolds can control the release and improve the
loading rates of bioactive factors.

3.1.2 Covalent immobilization of bioactive factors
The second delivery strategy is incorporating bioactive factors

into scaffolds in a covalent method (Figure 2B) (Kashiwagi et al.,
2009; Kang et al., 2010; Schliephake, 2010; Tsurushima et al., 2010;
Ehlert et al., 2011). The bioactive factors are incorporated into
scaffolds covalently, or the bioactive factors are covalently loaded
onto the modified scaffold surfaces via functional groups like
primary amine, carboxyl, etc. The chemical binding between

bioactive factors and scaffolds influenced the release of factors.
The covalent delivery systems are more stable and have a longer
extended-release time than non-covalent delivery systems owing to
the covalent loading. Capsaicin (CAP) could kill cancer cells and
promote cell proliferation. Murugan et al. (Murugan et al., 2018)
loaded the capsaicin into the HAP/PXS scaffold (nano-
hydroxyapatite with poly (xylitol sebacate) PXS co-polymer) to
deal with osteosarcoma disease. The capsaicin was incorporated
with HAP/PXS composite via intra-molecular forces of the hydroxyl
group to keep the sustained release to develop bone regeneration.
Prabakaran et al. (Prabakaran et al., 2021) prepared the substituted
hydroxyapatite-starch-clay bio-composite and deposited it on the Ti
plate. The ability of cell differentiation and Ca mineralization was
more impressive due to the presence of Mg2+ and Gd3+. The research
carried out by Arjama et al. (Arjama et al., 2021) demonstrates that
the biomaterial of silk fibroin conjugated hyaluronic acid-
hydroxyapatite hydrogel can be considered as the natural
hydrogel to improve osteogenesis. The hydrogel is beneficial to
entrap bioactive factors because of its exceptional mechanical
properties. The anticancer drug DOX was covalently linked to
polyphosphazene polymer to form the stable structure, and an
amide bond was created through a chemical reaction between the
secondary amine of DOX and carboxylic acid groups of polymers.
The system released DOX sustainedly and controllably to inhibit the
growth of bone cancer cells (Chun et al., 2009). Ham et al. (Ham
et al., 2017) found a method for site-specific covalent
immobilization. They immobilized azide-tagged engineered
interferon-γ to control the differentiation of neural stem cells.
The covalent delivery strategy improves the loading efficiency
and reduces the burst release. But, the chemical binding and the
mechanism of hydrolysis or enzymolysis might impair the biological
activity of bioactive factors, leading to a bioactive decline. (Cross
et al., 2003; Kashiwagi et al., 2009; Schliephake, 2010; Vo et al., 2012).

3.1.3 Encapsulation of bioactive factors
The particulate encapsulation is the third delivery strategy that

bioactive factors are encapsulated into nanoparticles or
microspheres made of biodegradable materials like gelatin and
chitosan through gas foaming, solvent casting and freeze-drying,
etc. (Meinel et al., 2003; Wenk et al., 2009; Lee et al., 2011) and then
they are incorporated into scaffolds to repair the area of the bone
defect (Figure 2C) (Chu et al., 2007; Kashiwagi et al., 2009). The
release mechanism of this loading strategy involves diffusion of
bioactive factors, degradation of nanoparticles or microspheres, and
scaffold degradation (Lee et al., 2011; Vo et al., 2012). Zhao et al.
(Zhao et al., 2021) formulated a carbon nanotube-reinforced
hydroxyapatite scaffold loading gold nanoparticles. The
hydroxyapatite and gold nanoparticles were bound on the surface
of the carbon nanotube, and dense particles were deposited on the
wired surface. The gold nanoparticles were beneficial in forming the
exceptional osteoimmune microenvironment to enhance cell
multiplication. This structure facilitated the proliferation and
attachment of bone cells. Sumathra et al. (Sumathra et al., 2020)
developed the hydroxyapatite/κ-carrageenan−maleic anhydride/
casein with doxorubicin (HAP/κ-CA-MA-CAS/DOX) composite.
Then the composite was deposited on the titanium (Ti) plate. The
DOX could induce cell regeneration and inhibition of cancer cells.
The composite increased ALP’s activity, owning to DOX’s presence.
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The release system could provide enduring assistance in the self-
repair and regeneration of bone affected by cancer cells due to the
sustained release of the anticancer drug (DOX). Cells could not
proliferate continuously because of the short half-life of growth
factors. So, Jiang et al. (Jiang et al., 2018) use polycaprolactone (PCL)
nanofibers and VEGF-encapsulated gelatin particles to prepare the
sustained-release system. The system can release the growth factors
stably to induce the differentiation of mesenchymal stem cells to
endothelial cells.

The use of nanoparticles or microspheres in scaffolds has several
advantages: i) nanoparticles or microspheres with small size, large
specific surface area, and high porosity are more favorable to cell
adhesion and proliferation and enormously improve loading rates of
bioactive factor; ii) reduce bioactive factor degradation by enzymes
and improve bone regeneration efficacy; iii) the strategy can load
multiple types of bioactive factors simultaneously and regulate their
release (Vo et al., 2012). In recent years, a growing number of
scientists have focused on the indirect delivery systems in bone
tissue engineering attributable to these evident benefits (Kim and
Tabata, 2015; Wang et al., 2015; Li et al., 2020).

3.2 The releasing mechanism of bioactive
factors

The bioactive factors were loaded into scaffolds via non-covalent
bonding, covalent bonding and particulate encapsulation, and they
were released through diffusion, degradation, etc. In order to promote
bone regeneration, understanding the release mechanisms of bioactive
factors are essential for preparing and optimizing sustained-release
systems. The release mechanism mainly included diffusion,

degradation and stimulus responsiveness involving pH, temperature
and enzymes (Figure 3). I would introduce these mechanisms in detail.

3.2.1 pH-responsive mechanism
The pH-responsive mechanism was important in controlling the

release of factors (Figure 3A). Different acidic or alkaline
environments can influence the release of bioactive factors due to
the different environments of organs, tissues, and cells (Shi et al., 2019;
Lavanya et al., 2020; Zhang et al., 2021). This response was achieved by
absorbing or releasing protons to change biomaterials’ deswelling,
contraction, and other characteristics (Zhu and Chen, 2015). The
weak polyelectrolyte poly (allylamine hydrochloride) can increase
osmotic pressure when the pH decreases, leading to the diffusion of
bioactive factors. The pH-responsive sustained release system was
developed by Porta-i-Batalla et al. (Porta-i-Batalla et al., 2016) that
tubular nanoporous anodic alumina membranes coated with
polyelectrolytes. The burst release of DOX loading into scaffolds at
pH 5.2 was faster than that at pH 7.4. The DOX released 90% within
24 h at PH 5.2, while the DOX released 30%–40% within 24 h at
pH 7.4. Some sustained systems could alter the release rate of bioactive
factors via PH variation. Matsusaki et al. organized the pH-responsive
sustained release system with poly (γ-glutamic acid) (γ-PGA) and
72% sulfonated γ-PGA (γ-PGA-hetero-gels) loading fibroblast
growth factor-2 (FGF-2). The system successfully controlled the
release of (FGF-2) due to the sensitive deswelling properties at
pH 2.0–6.0 (Matsusaki and Akashi, 2005).

3.2.2 Temperature-responsive mechanism
Temperature-responsive sustained release system regulated the

release rate by altering the temperature (Figure 3A). Thermo-
responsive materials had reversible phase transitions with a

FIGURE 3
The releasing mechanism of bioactive factors. (A) Stimuli-responsive mechanism: pH, Temperature, Enzymes. (B) Degradation mechanism. (C)
Diffusion mechanism.
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specific temperature range. As an example, when the temperature
rose to a specific temperature, deswelling properties changed for the
thermally sensitive polymers to alter the release rate of bioactive
factors (Dang et al., 2006; Izadifar et al., 2014). Wei et al. prepared
thermosensitive micelles of a star block copolymer to control drug
delivery. The copolymer comprised a hydrophobic PMMA arm and
hydrophilic poly (N-isopropyl acrylamide) (PNIPAAm) arms. The
PNIPAAm displayed a thermos-responsive phase transition at about
33°C. Based on this, the copolymer significantly enhanced drug
release (Wei et al., 2007). The temperature-responsive drug delivery
system was made by Zhu et al. with SBA-15/poly (N-isopropyl
acrylamide) composite loading gentamicin. The gentamicin release
experiment demonstrated the nature of temperature-responsive
controlled release. (Zhu et al., 2009).

3.2.3 Enzymes-responsive mechanism
The mechanism by which enzymes specifically respond to

bioactive factors or target compounds is known as the enzyme-
responsive mechanism (Figure 3A). The covalent binding-based
controlled release systems often utilize hydrolysis or enzymolysis
mechanism to regulate the release (Lavanya et al., 2020). Some
biomaterials are enzyme-sensitive polymers that would alter the
degradation of carrier materials to control the release of factors after
adding enzymes. Some enzymes controlled the release by cleaving
the bonds between the biomaterials and bioactive factors (Rezaei
et al., 2022). Patel explored the controlled release of BMP-2 from
gelatin in vitro and in vivo. The extent of gelatin crosslinking could
influence the degradation of collagenase, and the addition of
enzymatic increased the release rate of BMP-2. The release rate
could be controlled by altering the extent of gelatin crosslinking. In
addition, basic gelatin decreased the release rate. The enzymatic
degradation and acid-base condition affected the sustained release
(Patel et al., 2008). Phelps et al. developed polyethyleneglycol-based
bioartificial hydrogel matrices. The presence of proteases promoted
the degradation of scaffolds to release bioactive factors to facilitate
vascular regeneration therapy (Phelps et al., 2010).

3.2.4 Degradation mechanism
The degradation of carrier materials is another release

mechanism of bioactive factors. The bioactive factors would be
released when biological materials underwent hydrolysis or other
types of degradation (Figure 3B). The degradation rate of biological
materials influenced the sustained-release rate of bioactive factors
(Nguyen and Alsberg, 2014; Rezaei et al., 2022). The researchers
should select appropriate biomaterials for controlling the release.
Krishnan et al. (Krishnan et al., 2020) prepared a fibrous scaffold
(silica coated nanohydroxyapatite–gelatin reinforced with poly-L-
lactic acid yarns) loading vancomycin for the treatment of
osteomyelitis because of methicillin-resistant Staphylococcus
aureus in rat models. The two loading strategies were done to
investigate the effectiveness of treatment. That one was the
vancomycin was loaded during the synthesis of the scaffold, and
another was the vancomycin was added after the completion of a
scaffold. The drug was released continuously by the degradation of
the scaffold to encourage bone regeneration, and the effect of
sustained-release was no difference between the two types of
scaffolds. Verheyen et al. (Verheyen et al., 2010) developed a
hydrogel scaffold and released VEGF via hydrogel degradation.

The appropriate degradation of biomaterials could be able to
maintain sustained release.

3.2.5 Diffusion mechanism
The diffusion mechanismwas involved in most sustained systems

(Figure 3C). The bioactive factors were released from the porous
structure of bioactive materials by diffusion from high concentration
to low concentration (Davis and Leach, 2011; Ramburrun et al., 2014;
Sabaghi et al., 2023). The diffusion rate was influenced by pore size,
porosity, interconnectivity, etc. Whang et al. (Whang et al., 2000)
investigated the impact of pore size on release kinetics with pore sizes
ranging from 7 to 70 μm. The release mechanism of rhBMP-2 from
dimensional scaffolds was diffusion, and the release rate was
controlled by the pore sizes. Dexamethasone was encapsulated in
hydrogels and released from hydrogels by diffusion. The release rate
could be controlled by altering the crosslinking level (Kim et al., 2011).
Berchane et al. (Berchane et al., 2007) prepared piroxicam-loaded
PLGmicrospheres through emulsion technique. The research showed
that the release rate was impacted by diffusion, polymer degradation
and pore size. The diffusion mechanism was important to control the
release rate of bioactive factors.

4 The effects of scaffoldmicrostructure
on slow-release system

The improved scaffold microstructure can optimize the release
rates of bioactive factors to produce a sustained-release impact. For
future scientific research, it is essential to comprehend the
relationship between the release rate of bioactive factors and
scaffold microstructure. The impacts of scaffold microstructure
on slow-release systems are described below.

4.1 The effects of pore shape of scaffolds on
the slow-release system

In the slow-release system, the pore shapes of scaffolds may
impact the release of bioactive factors. In 1999, Jin et al. (Jin et al.,
2000) produced three different pore-shaped hydroxyapatite systems
with pore sizes of 100–200 μm to investigate the condition of bone
formation, which were the honeycomb-shaped hydroxyapatite
(HCHAP) system, the porous particles of hydroxyapatite
(PPHAP) system and the porous blocks of hydroxyapatite
(PBHAP) system (Figure 4).

BMP-2, a widely investigated growth factor, can increase
alkaline phosphatase activity (ALP) and promote osteocalcin
expression in a dose-dependent manner (Luvizuto et al., 2011;
Kim et al., 2013; Li et al., 2015). Hence, the ALP activity and
expression of osteocalcin can be used to evaluate the bioactivity
and the slow-release effect of BMP-2. In biochemical analysis, the
ALP activities and the osteocalcin content of all hydroxyapatite
systems contain similar characteristics: i) ALP activities were
increased from one to 2 weeks and decreased from three to
4 weeks, peaking in the second week (Figure 5A); ii) osteocalcin
content was increased from one to 4 weeks, peaking in the fourth
week (Figure 5B). The ALP activities of the HCHAP system were
four times greater than those of the PBHAP system in the second
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week (Figure 5C), and the HCHAP system contained the highest
osteocalcin content compared to the other systems (Figure 5D).

According to histologic observations, different types of bone
formation can be seen. Simply put, the bone and cartilage were not
formed in the first week, then discovered in the second week and
continued to be formed in the PPHAP and PBHAP systems. In the
HCHAP system, cartilage first developed in the tunnels andHCHAP

particles, and in the second week, bone replaced the cartilage that
had developed on the surfaces of the tunnels and HCHAP particles.
The pore shapes influenced vascularization and oxygen diffusion,
further affecting bone formation (Kuboki et al., 1995; Takita et al.,
1997; Kuboki et al., 1998).

In the HCHAP system, the ALP activity and osteocalcin content
were the highest. That meant the effect of rhBMP-2 on

FIGURE 4
Three microscopic pore shapes of scaffolds. (A) HCHAP scaffold with 110 μm pore size. (B) PPHAP scaffold with average150 μm pore size. (C)
PBHAP with average 150 μm pore size. Reproduced with permission from (Jin et al., 2000).

FIGURE 5
ALP activity and osteocalcin content in sustained systems. (A) Change of ALP activities in four samples in 4 weeks. (B) Change of osteocalcin
contents in the PPHAP system in 4 weeks. (C) ALP activities in four samples at the second week. (D) Osteocalcin contents in four samples at the fourth
week. (* indicates p < 0.05; # indicates p < 0.01). Reproduced with permission from (Jin et al., 2000).
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osteoinduction was better compared to those of other systems, and
the bone formation depended on the pore shapes of the carriers.
However, the difference in ALP activity and osteocalcin content
between the HCHAP system and the PPHAP system was minimal,
which led them to surmise that the pore shapes of carriers might
have little impact on the release of bioactive factors.

Based on the literature evaluations, the pore shapes of scaffolds
were not the only variable in recent studies. Table 2 illustrated that
pore shapes of scaffolds might have little influence on the slow
release of bioactive factors. This discovery resembled a previous
study (Van Bael et al., 2012).

For slow-release systems, the fibrous scaffolds can be obtained
through electrostatic spinning, while porous scaffolds with round,
triangular, and other pore shapes can be produced by 3D printing,
heat treatment, and other methods. Although pore shapes may have
no immense significance on the sustained release of bioactive
factors, they do affect mechanical properties and cell
differentiation (Moroni et al., 2006; Amirkhani et al., 2012;
Boccaccio et al., 2016; Zhao D. et al., 2018; Zhang et al., 2020;
Diez-Escudero et al., 2021). Zhao et al. (Zhao D. et al., 2018)
fabricated porous titanium scaffolds by selective laser melting
with different pore shapes (tetrahedron and octahedron) and
pore sizes (500 μm and 1,000 μm). The octahedron scaffolds
exhibited outstanding static mechanical properties, and the
scaffolds with a pore size of 1,000 μm were more suitable for cell

proliferation. Similarly, Boccaccio et al. (Boccaccio et al., 2016)
investigated the effect of pore shapes on osteogenesis by
numerical optimization methods and a computational mechano-
regulation mode. The scaffolds with rectangular pores could
produce more bone than those with square pores. Similarly,
scaffolds with elliptic pores could form more bones compared to
scaffolds with circular pores.

In this section, for slow-release systems, the pore shapes of
scaffolds might bear limited significance in the release rates of
bioactive factors. Still, they might influence mechanical
properties, cell differentiation, bone formation, etc. Scaffolds with
elliptical pores might be more conducive to bone formation,
comparable to the pore shapes in human bones.

4.2 The effects of pore size of scaffolds on
the slow-release system

Scaffolds with large pore sizes promote bone formation, and
scaffolds with small pore sizes facilitate the transport of nutrients.
The relationships between the release rates of bioactive factors and
the pore sizes of scaffolds are shown in Table 3.

In 1997, Eichi Tsuruga et al. (Tsuruga et al., 1997) investigated
the effects of systems with different pore sizes on bone formation,
which was the first demonstration that the pore sizes of carriers

TABLE 2 Selected examples of slow-release systems possessing various pore shapes.

Pore shape Carrier material Bioactive factor Porosity Pore size Release pattern References

Fibrous structure PCL-Gel-BCP BMP-2 — 100nm-10 μm 32.1 %± 5.83%/1 day Kim et al. (2014)

54.4% ± 9.22%/7 days

83.16% ± 11.33%/31 days

PCL BMP-6 — 377 ± 67 nm 12%/4 h Toprak et al. (2021)

35%/30 days

Square open pore structure MPHS DMOG — — 40%/3 days Min et al. (2015)

90%/28 days

Porous structure PHB-pDA BMP-2 86% 180 ± 10 μm 4.86% ± 3.2%/1 day Li et al. (2019)

95%/30 days

PHB 54.5% ± 9.6%/1 day

100%/16 days

HA GM 40% 100–750 μm 25%/1 day Mohan et al. (2018)

50%/5 days

95%/20 days

100%/53 days

Mg-Zn TCN 63%–65% 600–800 μm 30%–40%/6 h Dayaghi et al. (2019)

100%/16 h

DCB-ECM TGF-β3 71% 67.76 ± 8.95 μm 40%/14 days Yang et al. (2021)

50%/42 days

PCL-Gel-BCP: polycaprolactone-gelatin-biphasic calcium phosphate; MPHS: mesoporous bioactive glasses and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) polymers; DMOG:

dimethyloxallyl glycine; PHB: poly (ε-caprolactone)-nanohydroxya-patite-bioglass; PHB-pDA: poly (ε-caprolactone)-nanohydroxya-patite-bioglass-polydopamine; HA: hydroxyapatite; GM:

gentamicin; TCN: tetracycline; DCB-ECM: demineralized cancellous bone-acellular cartilage extracellular matrix.
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could influence cell differentiation. The researchers fabricated five
porous hydroxyapatite scaffolds with pore sizes of 106–212,
212–300, 300–400, 400–500 and 500–600 μm with the same
porosity (70%). They compared the ALP activities in the second
week and osteocalcin contents in the fourth week with different pore
sizes according to the biochemical analysis of implanted ceramics
with a pore size of 106–212 μm. The ALP activities and the
osteocalcin contents of the porous hydroxyapatite system with a
pore size of 300–400 μm were 3.5 times and 2.0 times more than the
system with a pore size of 106–212 μm, respectively.

Non-porous implants can neither develop cartilage nor
osteogenesis, while small-porous implants can only form
cartilage. Meanwhile, vascularization was the principal factor for
BMP-induced ossification, which suggests the pores should be larger
than the diameter of the capillary. Wang et al. (Wang et al., 2016)
also demonstrated this point that the sizes of optimum macropores
for neovascularization were 50–350 μm.

To sum up, it was considered that the implants with pore sizes of
300–400 μmwere an applicable option that the slow-release systems
had the highest ALP activities and osteocalcin contents analogous to
some studies (Murphy et al., 2010; Murphy and O’Brien, 2010). The
scaffolds with small pore sizes (90–150 μm) could promote cell and
protein adhesion, whereas large pore sizes (>300 μm) could promote
bone formation and blood vessel formation (Murphy et al., 2010;
Murphy et al., 2010).

The point that the pore sizes of scaffolds impacted the release of
bioactive factors could also be confirmed by simulation. Sun et al.
(Sun et al., 2013) developed a 3Dmodel to discover the effect of pore
sizes on release rates of bioactive factors. They then carried out
experiments to verify the simulation results. Experiments supported
the simulation results that the release rate of bioactive factors in
scaffolds with a small pore size (480 μm) was faster than in scaffolds
with a large pore size (720 μm). The mechanism was explained by
stating that more bioactive factors were required to be released into
the environment in scaffolds with large pore sizes to reach a similar
concentration as in scaffolds with small pore sizes. Like several other

reports, the simulation also discovered that porosity had a stronger
impact on angiogenesis and osteogenesis than pore size, which is
more significant for releasing bioactive factors (Fisher et al., 2002;
Karageorgiou and Laplan, 2005). In this study, the ideal pore size for
releasing bioactive factors in the simulation model was 540 μm.

Nevertheless, some researchers considered that scaffolds with
larger pore sizes were more beneficial for slow release (Taniguchi
et al., 2016; Szustakiewicz et al., 2021; Qin et al., 2022). Qin et al.
(Qin et al., 2022) specialized in the system with 3D-printed
bioceramic scaffolds with similar porosity but different pore sizes
(480 µm、600 µm、720 µm) (Figure 6A). The ion release rate of the
system with a pore size of 720 µm was lower than that of the other
systems (Figure 6B). In this research, the scaffold with a pore size of
600 µm provided a satisfactory biological microenvironment in
which the osteocytes had the best reproduction and bone was
uniformly dispersed. Additionally, Taniguchi et al. (Taniguchi
et al., 2016) did a series of experiments to support this point that
the scaffold with a pore size of 600 µm was more suitable.

Some researchers investigated the effect of nanopores on slow-
release systems. For instance, to investigate the bioactivity of growth
factors, Samer et al. (Srouji et al., 2011) prepared core-shell fiber
systems with different pore sizes using a co-electrospinning process.

The release of mats S1 and S2 with small pore sizes (400 ± 80 nm
and 450 ± 77 nm) approached 12%–15% in 27 days, with a burst release
of 5% in the first 4 h. And the release of mats S3 with a large pore size
(500 ± 90 nm) approached 28% in 27 days, with a burst release of 18%
in the first 4 h. While the release of mat S4 with a maximal pore size
(650 ± 63 nm) approached 76% in 27 days and a burst release of 67% in
the first 4 h. This experimental phenomenon demonstrated that the
release speed with large nanopores was faster than that with small
nanopores. The release pattern indicated that the release mechanism
was related to desorption and was similar to the process described by
Srikar et al. (Srikar et al., 2008). According to the diffusion equation
(Deff = Dbk(t)/psp) reported by Gandhi et al. (Gandhi et al., 2009), the
diffusion speed increasedwith increasing pore size corresponding to the
experimental result. Meanwhile, the slow-release systems had more

TABLE 3 Selected examples of slow-release systems possessing various pore shapes.

Carrier material Bioactive
factor

Pore size Appropriate pore size for sustained
release

References

Core (PEO)-shell (PCL-PEG)
fiber mats

BMP-2 400, 450, 500, 650 nm 400 nm Srouji et al. (2011)

HA BMP-2 106–600 μm 300–400 μm Tsuruga et al.
(1997)

Cap BMP-2 480, 720 μm (experiment) 480 μm Sun et al. (2013)

180–720 μm (simulation) 540 μm

CSi-Mg6 Ion 480, 600, 720 μm 600 μm Qin et al. (2022)

P (DLLA-co-TMC) BMP-2 5.2 ± 0.9 μm - Wang et al. (2017)

35.2 ± 13.9 μm

PLLA Protein 50–350 μm Both 50–350 μm and 100 nm-10 μm Wang et al. (2016)

100 nm-10 μm both 50–350 μm and
100 nm-10 μm

PEO: poly (ethylene oxide); PCL-PEG: polycaprolactone-poly (ethylene glycol); Cap: calcium phosphate; CSi-Mg6: 6 mol% Mg-substituted CSi (magnesium-substituted calcium silicate

scaffolds; P (DLLA-co-TMC): poly (D, L-lactic acid-co-trimethylene carbonate); PLLA: poly (L-lactic acid).
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significant ALP activity than fast-release systems, and the amount of
new bone formation in slow BMP-2 releasing systems was 1.375 folds
that of fast BMP-2 releasing systems.

Similarly, Wang et al. (Wang et al., 2017) also demonstrated that
the diffusion speed expanded with the increase of pore sizes. They
fabricated surface porous tissue engineering scaffolds through
cryogenic 3D plotting (Figure 7A). The scaffold micropores
changed from a diameter of 5.2 ± 0.9 µm to 35.2 ± 13.9 µm
while a burst release of BMP-2 changed from 17% to 40% in the
initial 24 h, and a sustained release of BMP-2 varied from 53% to
84% within 30 days (Figure 7B).

In slow-release systems, the macropores could stimulate the
formation of blood vessels and cell proliferation and migration,
while micropores could promote the release of nutrients. The slow-
release systems with simplex pore size impact the release rate of factors
and ALP activity. Slow-release systems containing macropores and
micropores might be more appropriate.Wang et al. (Wang et al., 2016)
developed four PLLA slow-release systems, including macropores
(50–350 µm) and micropores (100nm-10 µm). The slow-release
system with macropores and micropores provided a more favorable
microenvironment for protein adsorption and cell proliferation than
the other three slow-release systems with single-pore scaffolds.

FIGURE 6
Release pattern of bioactive factors in slow-release systems. (A) Microscopic structures of CSi-Mg6 scaffolds with different pore sizes prepared by
digital light processing-based three-dimensional printing technique. (B) Pattern of Ca, Mg, Si release, mass decrease in CSi-Mg6 scaffolds with different
pore sizes. Reproduced with permission from (Qin et al., 2022).

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Pei et al. 10.3389/fbioe.2023.1230682

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1230682


The release rates of bioactive factors might increase with the
increase of pore sizes in scaffolds with small pore sizes (nano-sized
pores to tens of microns pores) and might decrease with the addition
of pore sizes in scaffolds with large pore sizes (hundreds of microns
pores). The reason could be that a sufficiently high concentration of
bioactive factors was required to fill the pores first in scaffolds with
larger pore sizes. Through investigation, it was discovered that the
slow-release system with a large pore size (about 400 μm) might be
more conducive to the slow release of bioactive factors to form bone.
It seemed more acceptable to have both macropores and micropores
in the scaffolds for a slow-release system.

4.3 The effects of porosity of scaffolds on
slow-release system

The porosity of human cancellous bone ranges from 50% to
90%, implying that porosity beyond 50% is the essential element for
cell proliferation and osteogenesis in bone tissue engineering (Batool
et al., 2021; Oliveira et al., 2021). The following formula calculates
porosity:

P � V0 − V2

V1 − V0
× 100 (4.1)

Where (p), (V0), (V1) and (V2) represent porosity (%), the initial
volume of solvent (mL), the volume of solvent after the scaffold
immersed (mL) and the volume of solvent after the scaffold removed
(mL), respectively.

The porosity of scaffolds was generally above 70% and most
were between 70% and 80%, with which the slow-release systems
could regulate the release rates of bioactive factors to achieve the
slow-release effect, as shown in Table 4.

The porosity and release rates might have a favorable correlation.
Cui et al. (Cui et al., 2021) produced three types of slow-release systems
with different porosities through three different techniques SSE 3D
printing, FDM 3D printing, and a traditional approach (CON). The
porosity of the scaffold prepared by CON was the largest at 64.96%.

The drug release rate was also the fastest (Figure 8) compared to the
other methods, and the mechanical properties and pore sizes also
influenced the release. This discovery was similar to the research
investigated by Qin et al. (Qin et al., 2022).

Similarly, Cheng et al. fabricated Ti-6Al-4V scaffolds by laser
sintering with porosity varying from 15% to 70%. They discovered
that when the porosity grew, the total amount of bioactive factors
also did so, and the effect on osteogenesis was best in the system with
the highest porosity (Cheng et al., 2014). In addition, the scaffolds
with larger pore sizes might have larger porosities (Fu et al., 2010;
Sobral et al., 2011; Liu et al., 2013; Cheng et al., 2014; Diao et al.,
2018; Zaharin et al., 2018; Lee et al., 2019; Wo et al., 2020). But it
does not mean the phenomenon is typical. For example, the
discrepancy in pore size is apparent, but the difference in
porosity is minimal (Al-Munajjed et al., 2008; Park et al., 2019).
Amir A et al. (Al-Munajjed et al., 2008) fabricated hyaluronan-
collagen scaffolds with three different pore sizes (302.5, 402.5 and
525.0 μm) but similar porosities (94.0%, 94.0% and 95.0%). The
slow-release systems can have the same porosities but different pore
sizes by 3D printing and other methods (Wo et al., 2020).

For efficient sustained release, the porosity was typically between
70% and 80%, and the porosity was independent of the pore size.
Additionally, we observed that the release rate and amount of
bioactive factors might increase when porosity increased.

4.4 The effects of other aspects on slow-
release system

The release rates of bioactive factors could be impacted by a
variety of aspects, not just the scaffold microstructure, including the
common action of diverse bioactive factors, the encapsulation
methods, pore interconnectivity and external factors (Hu et al.,
2014; Rahman et al., 2014; Porta-i-Batalla et al., 2016; Bose et al.,
2019; Kim et al., 2020; He et al., 2021; Hu et al., 2021).

The interconnectivity of pores plays a vital role in cell growth,
migration, transport of nutrients and release of bioactive factors.

FIGURE 7
Release pattern of bioactive factors in slow-release systems with different pore sizes. (A) Schematic of P (DLLA-co-TMC) scaffold with different pore
sizes. (B) Release pattern of BMP-2 in scaffolds with different pore sizes prepared with different water content emulsions. Reproduced with permission
from (Wang et al., 2017).
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There is a specific correlation between porosity and pore
interconnectivity. In general, under the premise of satisfying
mechanical properties, higher porosity is conducive to improving
the interconnectivity of pores. The higher porosity and
interconnectivity of pores benefit cell migration, transport of

nutrients, and release of bioactive factors to stimulate bone
regeneration. Wenk et al. (Wenk et al., 2009) prepared the silk
fibroin scaffolds loading the insulin-like growth factor I, and the
scaffolds possessed the nature of interconnectivity of pores. The
method can increase the interconnectivity of pores to control the

TABLE 4 Selected examples of slow-release systems possessing various porosity.

Porosity Pore diaeter Carrier
material

Bioactive factors Release pattern References

86.0% 180 ± 10 μm PHB-pDA BMP-2 4.86% ± 3.2%/1 day Li et al. (2019)

95%/30 days

63.0%–

65.0%
600–800 μm Mg-Zn TCN 30%–40%/6 h Dayaghi et al.

(2019)
100%/16 h

71.0% 67.76 ± 8.95 μm DCB-ECM TGF-β3 40%/14 days Yang et al. (2021)

50%/42 days

69.4% 480 μm CSi-Mg6 Ion Fast release for 480 μm slow release for
720 μm

Qin et al. (2022)

69.8% 600 μm

62.9% 720 μm

73.6% 431.31 ±
18.40 μm

PLGA-n HA BMP-2 9.54% ± 0.86%/2 days Deng et al. (2019)

61.38% ± 2.39%/30 days

64.6% 125 μm CS-HA Icariin 50%/8 h Li et al. (2013)

73%/24 h

80%/2 days

82.3% 400 μm n BG-PS-COL Steroidal saponin 18%/2 days Yang et al. (2017)

60%–70%/15 days

80%/35 days

80.0% 400–600 μm MBG-SA-G Naringin and calcitonin gene-related
peptides

Sustained release for 21 days Wu et al. (2019)

PLGA-nHA: polylactic-coglycolic acid-nano-hydroxyapatite; CS-HA: chitosan-hydroxyapatite; nBG-PS-COL: nano-bioglass-phosphatidylserine-collagen; MBG-SA-G: mesoporous bioactive

glass-sodium alginate-gelatin.

FIGURE 8
The situation of porosity and drug release of three slow-release systems (A) The porosity of the three scaffolds fabricated via threemethods. (B)Drug
release pattern in scaffolds with three different porosities. Reproduced with permission from (Cui et al., 2021).
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release of factors, in which the porogen was eluted with hexane and
silk fibroin was transformed into water-insoluble conformation via
methanol or water vapor. The porous polyethylene glycol diacrylate
hydrogel system loading vascular endothelial growth factor (VEGF)
was prepared. The performance of highly interconnected pores and
favorable porosity is enough to release VEGF and promote
angiogenesis (Oliviero et al., 2012). Kundu et al. (Kundu et al.,
2011) organized antibiotic-loaded bioactive glass porous scaffolds to
treat osteomyelitis. The vacuum infiltration and freeze-drying
methods were used to load the drug onto scaffolds. The scaffold
with 60%–65% porosity, 60 µm pore size, and high interconnectivity
was ideal. The system with 49% antibiotic adsorption positively
impacted bone formation. The efficient interconnectivity could
promote the transport of nutrients and the release of bioactive
factors to achieve the purpose of bone regeneration.

Some researchers incorporated one bioactive factor into
microspheres and combined them with biomaterials to form
scaffolds to achieve the slow-release effect (Fei et al., 2008; Chen
et al., 2010; DeWitte et al., 2018). Fei et al. (Fei et al., 2008) researched
a novel composite slow-release system of bone grafts made of calcium
phosphate cement (CPC) and PLGA microspheres that are loaded
with rhBMP-2. Compared to the CPC system, the composite system
properly extended the release of rhBMP-2 such that the composite
system had an initial release of 4.9% in 24 h and a prolonged release
for 28 days. Some researchers have encapsulated two bioactive factors
into a slow-release system to release bioactive factors sequentially to
achieve the slow-release effect (Schmidmaier et al., 2003; Raiche and
Puleo, 2004; Yilgor et al., 2009; Lim et al., 2010). Lim et al. (Lim et al.,
2010) developed a delivery system for BMP-7 and TGF-β2 where
BMP-7 and TGF-β2 were loaded into gelation alginate and polyion
complex nanoparticles, respectively. The release rates of dual growth
factors (BMP-7: 36% and TGF-β2: 16%) in the nanoparticle/hydrogel
system were much slower than the respective release rates (BMP-7:
70% and TGF-β2: 50%). External factors were also vital for the release
rates (Hu et al., 2014; Porta-i-Batalla et al., 2016; Kim et al., 2020; Park
et al., 2021). Porta et al. examined the different release models of
doxorubicin at PH 5.2 and 7.4 with a faster release rate at PH 5.2. The
various situations emphasize the significance of comprehensive
consideration for a suitable slow-release system.

5 Conclusion and future prospects

Slow-release systems improve the limitations of bioactive factors to
promote further bone repair, which develops the application of BTE.
Hence, slow-release systems play an irreplaceable role in BTE. This
review first summarizes the requirements and preparation methods
of ideal scaffolds, followed by some characteristics of scaffold
microstructure. Subsequently, the loading nature and releasing
mechanism of bioactive factors were described. The bioactive factors
were incorporated into scaffolds with non-covalent or covalent
bonding. In addition, in the third delivery strategy, the bioactive
factors were encapsulated into nanoparticles or microspheres and
loaded into scaffolds. The releasing mechanism contained diffusion,
degradation and stimulus responsiveness involving pH, temperature
and enzymes. Finally, this review primarily epitomized the impacts of
scaffold microstructure, including pore shape, pore size and porosity on
slow-release systems with bioactive factors for bone repair.

The pore shapes of scaffolds might have minimal influence on
the release rates of bioactive factors but significantly influence the
mechanical properties of slow-release systems and bone
differentiation. Previous studies have shown that pores are the
basic requirement for producing bone (Tsuruga et al., 1997) that
elliptic pores have an enormous potential for osteogenesis
(Boccaccio et al., 2016). Blood vessels could develop when the
pore sizes were larger than 50 um, and the slow-release systems
with large pore sizes (about 400 µm) might have more potential to
control the release rates of bioactive factors. The regular distribution
of pore sizes from nanometer to micron is more conducive to bone
regeneration. In terms of porosity, the porosity of scaffolds was
generally beyond 70%, and most were between 70% and 80%. When
the porosity is relatively high, the release rates of bioactive factors
might be relatively fast. Furthermore, there is no strong correlation
between the porosity and the pore size in the slow-release systems.

We realized that it was challenging to prepare a suitable
sustained-release system. The bioactive factors loaded into
scaffolds with non-covalent bonding, especially physical
adsorption, would have burst release in the preliminary period.
This type of system had the property of burst release in the initial
stage and slow release in the later stage. It is not conducive to the
stable release of bioactive factors and the regeneration of bone tissue.
The bioactive factors loaded into scaffolds with covalent bonding,
such as primary amine, carboxyl, etc., would be more effective in
reducing burst release in the preliminary period and maintaining
sustained release in the whole process. This kind of system could
better sustain the release of bioactive factors and promote bone
tissue regeneration. Also, the bioactive factors loaded into scaffolds
with particulate encapsulation could control the release of bioactive
factors. The nanoparticles or microspheres with small sizes and large
specific surface areas could be more advantageous for releasing
factors. We realized that the system with about 400 µm pore size and
about 70%–80% porosity might be more potential to control the
release rates of bioactive factors. We considered that the system in
which bioactive factors were loaded into scaffolds covalently with
about 400 µm pore sizes with 70%–80% porosity and the system in
which bioactive factors were encapsulated into particles and then
loaded into scaffolds could be more possible to retain long-term
steady release of bioactive factors. But the release rate could also be
influenced by many other elements, including pH, temperature, the
concentration of bioactive factors, etc. We should consider various
aspects more deeply to get a relatively perfect sustained system.

Several issues still need to be resolved in the future, although the
slow-release systems have significantly advanced bone regeneration.
The first challenge is related to bioactive factors in slow-release systems.
Due to the complexity of the process, various bioactive factors with
different efficacies are involved in bone regeneration. But the research
on the slow-release systems involving multiple bioactive factors to
simulate the natural healing cascade is limited to a limited number of
studies, which needs to be further performed. Another is the translation
of scientific research into clinical applications. Most research
experiments have been conducted on animals such as mice or
rabbits, but their applicability to the human body needs to be
clarified. I suggest that scientists conduct human osteoblast
experiments on amphibians to expand the potential for clinical
applications. Slow-release systems have brought us great inspiration
in the treatment of bone diseases. More andmore scientific research on

Frontiers in Bioengineering and Biotechnology frontiersin.org14

Pei et al. 10.3389/fbioe.2023.1230682

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1230682


slow-release systems will be transformed into clinical applications to
address therapeutic issues excellently in the future.
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