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The application of three-dimensional printing technology in the medical
field has great potential for bone defect repair, especially personalized and
biological repair. As a green manufacturing process that does not involve
liquefication through heating, low-temperature deposition manufacturing
(LDM) is a promising type of rapid prototyping manufacturing and
has been widely used to fabricate scaffolds in bone tissue engineering.
The scaffolds fabricated by LDM have a multi-scale controllable pore
structure and interconnected micropores, which are beneficial for the
repair of bone defects. At the same time, different types of cells or
bioactive factor can be integrated into three-dimensional structural
scaffolds through LDM. Herein, we introduced LDM technology and
summarize its applications in bone tissue engineering. We divide the
scaffolds into four categories according to the skeleton materials and
discuss the performance and limitations of the scaffolds. The ideas
presented in this review have prospects in the development and application
of LDM scaffolds.
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1 Introduction

Bone defects, mostly those concerning a young and athletic population, are increasingly
receiving attention (Sfeir et al., 2022). In general, bone tissue has a natural capacity to
regenerate, which helps the repair of minor injuries. However, large bone defects due to
pathological fractures or high-energy injuries present a clinical challenge requiring bone
grafting to overcome. Bone tissue engineering, combined scaffolds, seed cells, and cytokines
play important roles in bone repair. The ideal bone tissue engineering scaffold should have a
suitable surface for cell attachment, a porous structure for vascularization, and a suitable
mechanical support (Roseti et al., 2017). Various technologies for fabricating scaffolds with
controlled structure and pore size, including rapid prototyping manufacturing (RPM), gas
foaming, and electrospinning, have been reported. Representative fabrication methods and
materials of bone tissue engineering are given in Table 1. As an innovative material
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processing approach, RPM scaffolds have been used in preclinical
studies (Dadhich et al., 2016; Yang et al., 2017; Dadhich et al., 2021).
The materials of RPM can be liquid or solid, and the printing
processes using wet materials include inkjet printing,
stereolithography, and direct ink writing. With the help of
computer-aided design (CAD) tools, RPM offers the possibility of
fabricating complex structures through the layer-by layer deposition
of inks of various materials (Jones, 2012; Do et al., 2015; Wubneh
et al., 2018). Undoubtedly, RPM is important to the future of bone
regeneration for its ability to control the geometry and internal
porous structures of scaffolds. In 1999, Leu et al. reported rapid
freezing prototyping inmilestone work (Zhang et al., 1999; Leu et al.,
2000). During the fabricating process, water is deposited from a
nozzle in a cryogenic atmosphere and rapidly frozen layer by layer.
As an extension, RPM is often called low-temperature deposition
manufacturing (LDM) when the injection devices extrude materials
used for tissue engineering.

LDM was firstly reported in 2002 for the fabrication of bone
tissue engineering scaffolds, which is based on traditional fabrication
technologies such as direct ink writing (Xiong et al., 2002). The
material used in LDM is usually a viscous polymer and the extruder
is usually of piston or pneumatic type operating at room
temperature (Geven and Grijpma, 2019). In addition, scaffolds
can be fabricated on a cold platform or in a freezer layer-by-
layer with the solvent then removed by freeze drying
(Papastavrou et al., 2018; Qin et al., 2021). Compared with
conventional technologies, LDM is combined with a phase

separation process and the scaffolds have a hierarchically porous
structure from microns to nanometers that is beneficial to cell
adhesion and tissue growth (Liu et al., 2017). However, the
mechanical properties of the LDM scaffolds are usually slightly
weaker than those of traditional scaffolds. In addition, LDM is a kind
of green manufacturing because it does not require heating during
fabricating (Zhang et al., 2008). LDM scaffolds thus maintain the
bioactivities of natural biopolymers, such as gelatin, chitosan and
sodium alginate and are often used for bioprinting or printing tissue
(Wang et al., 2012; Zafeiris et al., 2021; Zhao et al., 2022). As LDM is
a molding method based on material extrusion, it has requirements
for the viscosity of the extruded inks. The ability to control the pore
size by selecting the ratio of solvent or precursor solution within the
specific viscosity range of each material is an obvious advantage of
LDM. Inorganic particles such as nano-hydroxyapatite and
tricalcium phosphate (TCP) have been widely used for the
backbone structure of scaffolds (Wang et al., 2014; He et al.,
2016; Cheng et al., 2021). Moreover, synthetic biopolymers, such
as poly- (lactic-co-glycolic acid) (PLGA), poly-(L-lactic acid)
(PLLA), and polyurethane (PU), have been commonly used in
the fabrication of porous bone tissue engineering scaffolds (Wang
et al., 2013; Gentile et al., 2014; Zhang et al., 2022; Zhao et al., 2022).
Ideal scaffolds can be fabricated by adjusting the properties of the
material, the proportions of composite materials or the printing
parameters. LDM has been adopted for bone tissue engineering
scaffolds for two decades. Herein, we discuss LDM technology and
review its applications in the field of bone tissue engineering.

GRAPHICAL ABSTRACT
The fabrication of bone tissue engineering scaffolds including bioactive factors by low-temperature depositionmanufacturing and its application for
bone defect repair.
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2 Technical process of LDM

2.1 Material preparation and optimization

Typically, the LDM material is fully dissolved in an organic
solvent, such as 1,4-dioxane, and the ink is mixed evenly adopting
an emulsion stabilizer and ultrasonic technology. Then, the ideal
material properties are obtained by adjusting the appropriate mass
ratio of the different materials and the mixture is stirred well to form a
uniform liquid paste (Lai et al., 2018). The concentration of a material
in the solvent affects microstructure of scaffolds (Liu et al., 2007).
When the polymeric materials are dissolved at higher concentrations
in the solvent, the scaffolds have a smaller pore size and thicker walls
of micropores. In contrast, scaffolds with lower concentrations of
polymeric materials have larger pores and thinner walls of
micropores. Hu et al. (2015) fabricated a pure PLGA scaffold, a
PLGA/pearl scaffold with a weight ratio of 5:2, and a PLGA/TCP
scaffold with a weight ratio of 5:2 and found that the proportions of
the composite materials affected the structure of scaffolds in terms of
the continuity of pores. Guo et al. (2017) used PLGA with various
lactic acid: glycolic acid molecular weight ratios to demonstrate the
dependence of the extrusion process on the polymer composition.
They built a statistical model to reveal the correlation and
predominant factors that determine printing precision.

Synthetic materials have better mechanical properties whereas
natural materials have better biocompatibility in scaffolds
(Rahmanian-Schwarz et al., 2014). Unfortunately, no solvent
dissolves synthetic and natural materials together in LDM.
Gelatin or GelMA hydrogel has a thermo-reversible sol-gel
property, having a liquid state at 37°C and a gel state at a
temperature lower than 20°C (Luo et al., 2020). They can help
combine drugs, essential elements, and other bioactive factors with
the scaffold material. GelMA also has a photocrosslinking ability
that stabilizes the structures after printing. The bioink then enters a

sol-gel state quickly and is transferred to a syringe for subsequent
three-dimensional (3D) hybrid printing at low temperature.

2.2 Printing process and improvements

Usually, the structure and pore size of scaffolds determine the cell
growth and regeneration of bone tissue. Material properties can be
optimized by adjusting the parameters of the LDM system to print
more ideal bone tissue engineering scaffolds. The parameters of the LDM
system include the proportion of the compositematerial, the design of the
model, the concentration of the material and the working parameters of
the devices (Liu et al., 2007; Hu et al., 2015; Bružauskaitė et al., 2016;
Wang et al., 2017b; Guo et al., 2017). According to the selection and
combination of ink materials, the printer is designed to have a single
nozzle or multiple nozzles, and is used with the corresponding syringe
(Liu et al., 2009a; Liu et al., 2009b). In the process of LDM, the shape and
architecture of scaffolds are controlled through freeform fabrication and
the features ofmicrostructure, such as porosity and surface roughness, are
realized manufactured through freezing drying (Koski et al., 2018). The
dispensing system deposits printing inks in a low-temperature
environment, which is a continuous extrusion process in contrast
with inkjet processes. The ink-containing syringe extrudes the ink
through a micro-nozzle. Compared with other traditional techniques,
LDM based on extrusion has an appropriate deposition and printing
speed during printing, which facilitates rapid scalability (Johnson and Jia,
2016; Lee et al., 2020). Figure 1 depicts the LDM process of bone tissue
engineering scaffolds and the application for bone defect repair. The
advantage of thismethod is the variety of options of printing inks. In bone
tissue engineering, various materials containing biologics have been
successfully applied for the fabrication of tissue engineering scaffolds
(Mehesz et al., 2011; Kronemberger et al., 2022). During printing, the
deposited ink is cured to strengthen each layer. As the paste freezes, its
particles are expelled from the solidification (freezing) front (Papastavrou

TABLE 1 Representative fabrication methods and materials in bone tissue engineering.

Method
Properties

Representative materials
Advantages Disadvantages

FDM Commonly used and low cost; Broad resource of
material and high mechanical strength

Low accuracy and details; Biomaterial restriction due to
need for high temperature

TCP, PCL, Al2O3, TCP/PP, TCP/PCL

Binder jetting Accuracy and flexibility; Low cost of materials and
binders; Low to high temperature allowed

Slow printing speed; Risk of toxicity HA, α-TCP, β-TCP, PLA, PEG, PLGA,
Gelatin, Chitosan

SLS Suit for polymer-ceramic composites; Fast printing
speed; Strong functional parts

Limited material options; resolution depends on laser;
Require depowering

PCL, PEEK, PLLA, PGA, PCL/HA,
PHBV/HA

SLA Relatively fast and high resolution; High accuracy;
Complex internal features

Sensitive to long exposure; Only applicable for
photopolymers

PPF/DEF, PDLLA/HA, β-TCP

Gas foaming Relatively faster manufacturing processes; High
porosity scaffold

Inability to create fully interconnected pores; Inability in
creating intricately shaped scaffolds

PCL, PLA, PLLA, PLGA, PLA/HA

Electrospinning Capable of producing nanofibers; Commonly used for
wound dressing

Difficult to control; Fiber size and density are not ideal
for guiding bone cell growth

PCL, PGA, PCL/PGA, PCL/HA

PCL/HA/collagen

LDM Good porosity; keeping activity of biological factors;
Open to blending to a certain extent

Mechanical properties are usually poor PCL, PLGA, TCP, HA, Gelatin,
PLGA/HA

FDM, fused deposition modeling; SLS, selective laser sintering; SLA, stereolithography; TCP, tricalcium phosphate; PCL, poly(ε-caprolactone); HA, hydroxyapatite.

PLA, polylactic acid; PEG, polyethylene glycol; PLGA, poly (lactic-co-glycolic acid); PEEK, polyetheretherketone; PLLA, poly (L-lactic acid); PGA, polyglycolic acid.

PHBV, poly (3-hydroxybutyrate-co-3-hydroxyvalerate); PPF, poly(propylene fumarate); DEF, diethyl fumarate; PDLLA, poly-DL-lactide.
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et al., 2018). The frozen part is freeze-dried to sublimate the freezing
medium and leave a highly porous scaffold.

The shape and architecture of scaffolds depend on the models
designed using computer software (Bružauskaitė et al., 2016). CAD
tools offer the possibility to fabricate complex structures and custom
scaffolds. In addition, the working parameters of LDM printers need
to be adjusted for the fabrication of ideal scaffolds. As an example,
the forming platform usually remains below a temperature of 0°C
and the temperature of the nozzles must be much higher than that of
the platform. Only in this way can the extruded lines be integrated
with the previous layer. The extrusion speed and nozzle diameter
determine the structure and size of scaffolds (Wang et al., 2017b). In
the process of printing, it is necessary to control the appropriate
temperature of the platform and nozzle according to the material
properties and surrounding environment. At the same time, the
temperature, pressure, speed, and other parameters need to be
constantly adjusted to ensure the smooth printing of the scaffolds.

3 LDM materials for bone tissue
engineering scaffolds

3.1 LDM scaffolds of bio-ceramic materials

Hydroxyapatite (HA) and other related Ca/P-based bio-
ceramics have been used in the manufacturing of bone scaffolds

for their varying osteoconductive and osteoinductive properties.
They not only exist naturally in bone tissue but also have high
mechanical strength and biodegradability. Moreover, the
biodegradation rates can be optimized by adjusting the molar
ratio of Ca and P in the optimized compound. In addition, the
inorganic materials can be categorized into silicate-based glasses,
borate-based glasses and phosphate-based glasses according to the
components of the bioactive glass (Simorgh et al., 2022). The
majority of bio-ceramic materials are subjected to a sintering
procedure and high temperature treatment to prepare the
scaffolds and achieve sufficient mechanical qualities (Baino and
Fiume, 2020). As an example, hydrogel, containing active elements is
often mixed physically with the scaffold to provide the ceramic
material bioactivity (Simorgh et al., 2022). In addition, several
studies have used bio-ceramic materials to formulate inks for the
preparation of bone tissue engineering scaffolds through LDM.
Table 2 gives bone tissue engineering scaffolds based on bio-
ceramic materials. We divide the scaffolds with bio-ceramic
skeletons into bio-ceramic scaffolds, bio-ceramic scaffolds with
natural polymers, and bio-ceramic scaffolds with bioactive factors.

3.1.1 Bio-ceramic scaffolds
Klammert et al. (2010) used binder solution and powder

(Mg3(PO4)2) to print scaffolds at room temperature and dried the
scaffolds for 24 h. The structures were designed on the basis of
stereolithography data and modified with 20% DAHP powder to

FIGURE 1
The fabrication process of bone tissue engineering scaffolds by LDM and its application for bone defect repair. LDM, low-temperature deposition
manufacturing.
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improve the conversion rate andmechanical reinforcement (Figure 2A).
However, they did not conduct in vivo investigations to explore other
biological features. Castilho et al. used TCP powder and phosphoric acid
solution as a binder to print dense cylindrical and porous scaffolds at
room temperature (Castilho et al., 2013). They optimized the
computational topology design to better fabricate the scaffolds
through LDM and also considered the mechanical properties and
permeability. Bolaños et al. printed tailor-made ceramic scaffolds
with α/β-TCP and phosphoric acid binder at low temperature
(Bolaños et al., 2020). An in vivo experiment using a large animal
model showed that thematerial was degraded and replaced by bone, and
the scaffolds had an excellent ability to promote bone formation. At the
same time, in vitro experiments showed that porous implants had good
mechanical properties.

3.1.2 Bio-ceramic scaffolds with natural polymers
The brittleness of scaffolds is a main shortcoming of ceramic

material. Bio-additives, such as collagen and silk fibroin (SF), are
naturally degradable and can be used to optimize the ceramic
scaffolds. HA and collagen are often added to the precursor

solution to improve the mechanical and clinical properties of the
scaffolds (Lin et al., 2016; Salgado et al., 2016). The scaffolds
prepared at 4°C by Lin et al. (2016). had an excellent 3D
structure and enhanced the osteogenic outcome in rabbit femoral
condyle defect models (Figure 2B) (Lin et al., 2016). Huh et al. (2018)
prepared bio-ink by mixing gelatin, TCP, and SF loaded the solution
into a barrel with the temperature controlled from 25°C to 45°C and
printed on the low temperature stage of 10°C (Huh et al., 2018). The
scaffold had enhanced mechanical strength and high cellar activity.
Liu et al. (2021b) used HA, SF, and gelatin to prepare bio-inks and
fabricated scaffolds adopting crosslinking and freeze-drying
technologies. The scaffolds were cross-linked under absolute
alcohol at room temperature for 24 h. They found that the
scaffolds enhanced the compressive modulus in two groups and
were conducive to cell proliferation and osteogenesis. Zafeiris et al.
(2021) fabricated hydrogels by HA and chitosan and then adopting
chemical crosslinking in a natural crosslinking agent to improve
mechanical properties. The syringe was prepared with a nozzle tip
diameter of 0.41 mm and a printing speed of 0.8–1.5 mm/s to
improve the printing accuracy. The 3D printing process was

TABLE 2 LDM of bio-ceramic skeleton scaffolds for bone tissue engineering.

Year Team Materials Properties of scaffolds

2004 Almirall et al α-TCP/CDHA The scaffolds have larger porosity and biological surface while the
mechanical strength is low

2010 Klammer et al Mg3(PO4)2/DAHP STL data helped design the scaffolds and DAHP helped to improve the
mechanical strength

2012 Moseke et al β-TCP/MCPM The hardened granules were microporous and consisted of crystals of
0.5–7 μm size

2013 Castiho et al TCP/phosphoric acid The scaffolds were optimized adopting computer and considered
permeability during fabrication

2014 Inzana et al Calcium Phosphate/Collagen The mechanics were strengthened adopting increasing the
concentration of binder solution

2016 Lin et al Collagen/HA The CHA scaffolds had excellent 3D structure and promoted cell
proliferation and osteogenic outcome

2016 Raina et al HA/SF/Chitosan/BMP-2/ZA Bio-composite cryogels as carrier scaffolds for bone active agents
augmenting bone regeneration

2018 Huh et al Gelatin/TCP/SF The scaffolds had enhanced mechanical properties and high cellar
activity

2018 Ahlfeld et al CPC/alginate-methylcellulose The bio-ink was cell-laden and fabricated constructs with spatially
defined cell distribution

2018 Lee et al HA/collagen/PRP The scaffolds had growth factors and a polyphenol tannic acid was used
to control the release of PRP.

2020 Chen et al HA/BMP-2/VEGF The scaffolds showed well porous structure and better osteogenic but the
compressive strength was low

2020 Bolaños et al α/β-TCP/phosphoric acid The scaffolds had excellent ability to promote bone formation and
showed well mechanical properties

2021 Liu et al HA/SF/Gelatin The compressive modulus of scaffolds was enhanced and had better cell
proliferation and osteogenesis

2021 Zafeiris et al HA/Chitosan The scaffolds were Chemical crosslinked to improve mechanical
strength close to cancellous bone

TCP, tricalcium phosphate; CDHA, calcium deficient hydroxyapatite; DAHP, diammonium hydrogen phosphate; MCPM, mono calcium phosphate monohydrate.

BCP, biphasic calcium phosphate; HA, hydroxyapatite; PRP, plate-rich plasma; SF, silk-fibroin; CPC, calcium phosphate; BMP-2, bone morphogenetic protein-2.

ZA, zoledronic acid; VEGF, vascular endothelial growth factor.

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Sun et al. 10.3389/fbioe.2023.1222102

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1222102


applied at a low temperature of 25°C and the scaffolds were freeze
dried to obtain a porous structure by removing the solvent. They
obtained mechanical properties close to those of cancellous bone
and good cell compatibility. Inzana et al. (2014) increased the
phosphoric-acid-based binder solution concentration and
dissolved collagen into the binder to maximize mechanical
strength and cytocompatibility. This method enhanced the
mechanical strength of materials without reducing
biocompatibility. They also implanted calcium-phosphate-based
scaffolds into murine femoral defect to assess the bone healing
performance and osteoconductive.

3.1.3 Bio-ceramic scaffolds with bioactive factors
Another disadvantage of ceramic material is the low retention

level of growth factors and drugs. Therefore, bioactive substances

such as live cells and growth factors are integrated in bioinks to
increase the biological activity and osteogenic ability of bone
repair materials. It is not a difficult task to impregnate biological
factors into the mixed bioink and the low temperature avoid the
risk of thermal degradation of drugs or growth factors. To
overcome the shortcomings, Lee et al. designed a new
composite with stable structure using CDHA, collagen, and
plate-rich plasma (PRP) to enable better growth and
differentiation of cells (Lee and Kim, 2018a). They used a
nozzle size of 330 μm to print scaffolds at a low temperature
of −16°C. Figure 2C (Lee and Kim, 2018a) is a schematic of the
preparation of scaffolds and presents the macro/micro-
morphology in optical and scanning electron microscopy
images. The PRP had several growth factors, and a polyphenol
tannic acid was used to control the release of PRP. The result

FIGURE 2
(A) Microscopic morphology and in vivo evaluation of the scaffolds. (B) The robocasting fabrication process and SEM images of the surface
morphology. Micro-CT 3D reconstruction images and histological analysis of new bone formation around and within the scaffolds. (C) Schematic of the
preparation of scaffolds, as well as the macro/micro morphology shown by optical and SEM images. SEM, Scanning electron microscope.
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in vitro showed that PRP composited scaffolds have better bone
mineralization and cell proliferation, but the efficacy for bone
regeneration in vivo remains controversial. Ahlfeld et al. (2018)
combined the 3D plotting of calcium phosphate and an alginate-
methylcellulose cell-laden blend as model bioink . They printed
scaffolds were printed at room temperature using a needle with
an inner diameter of 410 µm and a layer thickness of 250 µm.
They proposed an osteochondral tissue graft model and evaluated
the mechanical properties of the scaffolds. They found that bone
morphogenetic protein-2 (BMP-2) promotes osteogenesis and
vascular endothelial growth factor promotes angiogenesis. Chen
et al. (2020) prepared composite scaffolds loaded with BMP-2
and vascular endothelial growth factor through 3D printing layer
by layer at a temperature below 40°C. The nozzle of the printer
had a diameter of 0.42 mm and the distance between strands was
set at 600 μm to ensure good printing accuracy. They found that
the scaffolds had good porosity and osteogenic and angiogenic
properties through microcomputed tomography and
immunochemical staining. However, the interaction of
chitosan with gelatin achieved a compressive strength of only
6 MPa, which is below many clinical requirements. Similarly,
Raina et al. formulated a precursor solution by mixing rhBMP-2
and bisphosphonates such as zoledronic acid, which can be used
to control the resorption process (Raina et al., 2016). The scaffold
loaded with both rhBMP-2 and zoledronic acid showed high bone
formation.

3.2 LDM scaffolds of synthetic polymeric
materials

Compared with ceramics, polymeric materials have more
versatile physicochemical properties that suit clinical applications.
Synthetic polymers usually have good processability and mechanical
properties and are thus used widely in preparing materials for bone
tissue engineering technology (Lutolf and Hubbell, 2005; Rezwan
et al., 2006; Amiryaghoubi et al., 2020). Table 3 gives bone tissue
engineering scaffolds based on polymeric materials. According
to the compositions and functions, we divided the scaffolds
with synthetic polymeric skeletons into three categories,
namely, synthetic polymeric scaffolds with bioactive factors,
synthetic polymeric scaffolds with hydrogels and synthetic
polymeric scaffolds with bioactive factors/hydrogels or modified
polymers.

3.2.1 Synthetic polymeric scaffolds with bioactive
factors

It is often necessary to composite bioactive factors or modify the
materials to increase biocompatibility or osteogenic capacity. PLGA is
an excellent biomaterial for bone scaffolds with biodegradability and
biocompatibility and has good matrix for pearl powder, which can
provide bioactivity for PLGA (Zhang et al., 2009). Xu et al. (2010) used
LDM technology to combine the advantages of pearl and PLGA and
fabricated scaffolds on a platform at a temperature of −40°C. The
scaffolds had a porous structure and good biocompatibility, and gene
expression and alkaline phosphatase (ALP) activity tests showed osteo-
inductive bioactivity more extensive than that of TCP/PLGA scaffolds.
Wang et al. (2018) synthesized shape memory PU to fabricate scaffolds

adopting LDM technology. The bioink included superparamagnetic
iron oxide nanoparticles to promote osteogenic induction and
polyethylene oxide or gelatin to improve printing. In their study, the
platform was set at −30°C for PU/polyethylene oxide ink and 5°C for
PU/gelatin ink. Dimethyl sulfoxide (DMSO) is a solvent that dissolves
both polar and nonpolar compounds (Galvao et al., 2014). Guo et al.
(2018) incorporated growth factors such as BMP-2 and TGF-β
(transforming growth factor-β) into PLGA scaffold using
DMSO. They obtained stretchability greater than that of pure PLGA
scaffolds. However, DMSO is cytotoxic and needs to be removed
completely through evaporation during the preparation. Zhang et al.
(2019) adopted LDM technology to fabricate a PLGA scaffold and
compounded with decellularized acellular cartilage extracellular matrix
through physical–chemical cross-linking. The scaffolds were printed
at −20°C and had good biological and mechanical characteristics, but
were deficient in the function of recruiting endogenous stem cells. Chen
et al. printed scaffolds with acellular cartilage extracellular matrix and
waterborne polyurethane (PU) on a platform at temperatures ranging
from −25 to −30°C (Chen et al., 2021). Figure 3A (Chen et al., 2021)
presents a schematic of adipose-derived stem cell seeding and
hematoxylin and eosin staining images of repaired cartilage at 3 and
6 months after operation. The figure shows that the porosity,
hydrophilicity, and bioactive components of the scaffolds are
improved by adding the extracellular matrix. In view of the
photothermal effect and biological activity of magnesium,
researchers composited PLGA and shape memory polyurethane
(PU) with Mg respectively (Long et al., 2021; Zhang et al., 2022).
They constructed the scaffolds adopting LDM technology and verified
the good osteogenic performance of the scaffolds. As the thermal-
responsive matrix, shape memory PU significantly improved the
mechanical properties of the scaffolds and made closer contact with
bone tissue.

3.2.2 Synthetic polymeric scaffolds with hydrogels
Hydrogels have strong hydrophilicity, that provides an

environment suitable for cell proliferation and differentiation.
Therefore, the biological activity and mechanical properties of
the scaffold can be improved by compositing hydrogel and
polymer. For example, a novel composited PLGA-gelatin/
chondroitin/hyaluronate scaffold was fabricated to keep the
differentiation of mesenchymal stem cells (MSCs) and
improved the regeneration of cartilage (Fan et al., 2006). Kim
et al. (2016) proposed a 3D printing method with a low
temperature working plate to fabricate scaffolds. They directly
printed alginate and collagen layer by layer on a low-temperature
(−20°C) cooling plate using a 250-µm printing nozzle and poly (ε-
caprolactone) (PCL) as the coating agent. They found that the
tensile modulus and osteogenic capacity of the scaffolds were
better than those of the pure-hydrogel scaffolds. However, the
strong cooling effect of the low-temperature working plate limited
the height of the manufactured porous scaffolds, which introduced
defects in this LDM process. Similarly, another study reported that
adding electrospun PCL fibers into a gelatin hydrogel solution
increased the Young’s modulus of the resulting construct (Kai
et al., 2012). Another team fabricated scaffolds with gelatin and
poly (vinyl alcohol) adopting LDM process (Kim et al., 2018). They
explored the best mixture ratio to get the optimal mechanical and
biological properties for a working stage temperature ranging
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from −5 to −40°C. The quantitative results of ALP activity and
calcium deposition and optical images of ALP staining of the
scaffolds are shown in Figure 3B (Kim et al., 2018). Lee and Kim
(2018b) developed scaffolds having a multilayered nanofibrous
structure and composited with collagen and pluronic F-127. Geng
et al. (2021) fabricated a biodegradable poly (glycerol-co-sebacic
acid-co-L-lactic acid-co-polyethylene glycol) scaffold and filled it
with gelatin nanofibers. The scaffold promoted bone repair by
locally releasing deferoxamine, which is essential for angiogenesis
and osteogenesis.

3.2.3 Synthetic polymeric scaffolds with bioactive
factors/hydrogels or modified polymers

Zhao et al. dispersed PLLA containing ibuprofen into sodium
alginate aqueous solution to prepare the bioink (Zhao et al.,
2022). The scaffolds were fabricated at a temperature of −20°C
using a 0.41 mm printing nozzle. The plotting pressure was
130 kPa and the extrusion speed was fixed at 3 mm/s. The
scaffolds had enhanced mechanical stability, excellent
osteogenic activity, and anti-inflammatory activity. In contrast
with work that composited bioactive factors and hydrogels, Gao

et al. (2022) synthesized an amorphous polyaryletherketone with
carboxyl groups (PAEK-COOH). They fabricated scaffolds by
LDM technology at a temperature of −30°C, where the porosity
was hierarchically controlled and the implanted scaffold induced
bone formation in vivo (Figure 3C) (Gao et al., 2022). Compared
with other degradable materials, the scaffolds had high
mechanical strength that made up for the poor mechanical
properties of the low-temperature solution printing method.
The electrostatic interaction of carboxyl groups induced HA
mineralization and the porous surface further promoted cell
adhesion. This research was a breakthrough in the field of
bone regeneration and repair of polymeric materials, and
research on combining the active factors of PAEK-COOH is
currently underway.

3.3 LDM scaffolds of polymer-ceramic
materials

High-molecular-weight polymers usually have poor geometric
properties, such as a poor pore size and poor porosity and

TABLE 3 LDM of polymer skeleton scaffolds for bone tissue engineering.

Year Team Materials Properties of scaffolds

2006 Fan et al PLGA-gelatin/chondroitin/hyaluronate The scaffolds showed better proliferation and differentiation of MSCs for bone and
cartilage repair

2010 Xu et al PLGA/Pearl The scaffolds had high porosity, proper pore size and mechanical property

2016 Kim et al Alginate/Collagen/PCL The tensile modulus, cell proliferation and deposition of calcium were significantly
increased

2018 Kim et al Gelatin/PVA The scaffolds showed better physical and biological properties through various
weight fractions of PVA and gelatin

2018 Wang et al PU/SPIO NPs/PEO The scaffolds were biodegradable and showed better shape memory properties and
cell viability

2018 Guo et al PLGA/BMP-2/TGF-β The bioactive factors were dissolved in bio-ink adopting dimethyl sulfoxide and
showed more stretchability

2018 Lee et al Collagen/PF-127 The scaffolds had fully interconnected macropores and had properties of
thermoreversible polymer

2019 Zhang et al PLGA/DACECM The scaffold had rough surface and a three-dimensional structure with
interconnected pores

2021 Chen et al WPU/ECM WPU improved the mechanical properties and ECM improved the bioactivity and
porosity of the scaffolds

2021 Geng et al PGSLP/Gelatin/DFO The microporous scaffolds promoted the process of endothelial cell migration and
osteoblast differentiation

2021 Long et al PLGA/Mg The scaffolds had biomimetic hierarchical porous structures and released Mg ions
to promote bone regeneration

2022 Gao et al PAEK-COOH The scaffolds had hierarchically porous and the mineralization was induced by
electrostatic of carboxyl groups

2022 Zhang et al SMPU/Mg The scaffolds had porous structure, improved mechanical properties and stable
photothermal effects

2022 Zhao et al PLLA/Alginate/ibuprofen/Sr The scaffolds had enhanced mechanical stability, well osteogenic activity and anti-
inflammatory activity

PLGA, poly (lactic-co-glycolic acid); MSCs, mesenchymal stem cells; PCL, poly(ε-caprolactone); PVA, poly (vinyl alcohol); PU, polyurethane; SPIO NPs, superparamagnetic iron oxide

nanoparticles; PEO, polyethylene oxide; BMP-2, bone morphogenetic protein-2; TGF-β, transforming growth factor-β; PF-127, Pluronic F-127; DACECM, decellularized acellular cartilage

extracellular matrix; WPU, waterborne polyurethane; ECM, extracellular matrix; PGSLP, poly (glycerol-co-sebacic acid-co-L-lactic acid-co-polyethylene glycol); DFO, deferoxamine; Mg,

magnesium; PAEK-COOH, polyaryletherketone with carboxyl groups; SMPU, shape memory polyurethane; PLLA, poly (L-lactic acid).
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interconnection, which affect the attachment of scaffolds to cells.
Generally, the ability of a polymer to support bone conduction is
improved by adding ceramic filler to form a polymer–ceramic
composite scaffold. Compared with pure polymer, ceramic
composites have obvious benefits in terms of cell performance.
Table 4 presents bone tissue engineering scaffolds with
polymer–ceramic skeletons. We divide the scaffolds into three
categories.

3.3.1 Polymer–ceramic scaffolds
The fabrication of PLLA/TCP composite scaffolds for bone

tissue engineering was first presented by Xiong et al. (2002) as a
new deposition manufacturing method. They mixed PLLA solution
and TCP powder and finished the printing process in a low
temperature environment of 0°C. The sublimation of dioxane in

the freeze-drying procedure created micropores around the printed
macropores. Yang et al. (2006) fabricated PLGA/TCP composited
scaffolds by LDM and performed cell experiments to observe
the mechanical strength, cell affinity, and degradation. Similarly,
other PLGA/TCP scaffolds have been fabricated adopting double-
nozzle technology and optimizing fabrication parameters to
obtain the best mechanical properties and biocompatibility
(Kai et al., 2009; Li et al., 2011). Lian et al. (2021) used LDM
technology to develop sponge-like PLCL/HA scaffolds that
promoted the interactions between MSCs and materials at a
temperature of −28°C. In addition, the paracrine function of
MSCs on scaffolds was improved, enhancing immunomodulation,
angiogenesis, and osteogenic potential. The LDM-printed sponges
with hierarchical interconnected pores could promote cell-scaffold
interaction and upregulates osteogenic and vasogenic activity via the

FIGURE 3
(A) Flow cytometric analysis and the schematic diagram of ADSCs seeding. The H&E staining images of the repaired cartilage at 3 and 6 months after
cartilage defect creation and scaffold implantation. (B) The optical images of ARS and ALP staining of the scaffolds. The quantitative results of ALP activity
and calcium deposition. (C) The hierarchically porous scaffold of PAEK-COOH favoring cellular adhesion and HA mineralization. The scaffold implanted
in rabbit femur defects model induced bone formation. ADSCs, Adipose-derived stem cells; ARS, alizarin red S; ALP, alkaline phosphatase; PAEK-
COOH, polyaryletherketone with carboxyl groups.
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signaling paths (Figure 4A) (Lian et al., 2021). However, an in vitro cell
experiments showed that cell viability on the surface of the scaffolds
was time dependent and unaffected by the composited PLGA/nHA
(Chen et al., 2013a).

3.3.2 Polymer-ceramic scaffolds with hydrogels
Hydrogels and collagen have been used to increase the

hydrophilicity of scaffolds composited with ceramics and
polymeric materials. For example, PLGA/β-TCP scaffolds
prepared by LDM have been wrapped with collagen to
improve the hydrophilicity and osteogenic differentiation
(Wang et al., 2012; Zhang et al., 2017; Diloksumpan et al.,
2020 composited hydrogel and calcium phosphate to prepare
the scaffolds at ambient temperature (20°C–25°C) and encased
the scaffolds in a PCL shell (Diloksumpan et al., 2020). They
found that scaffolds with constant pores had better osteogenic
properties than gradient scaffolds and that bone growth was
enhanced in only one direction. Figure 4B presents the
formation of new bones in scaffolds and the staining of
hematoxylin and eosin, tartrate-resistant acidic phosphatase,
osteonectin, and collagen type I in decalcified sections of

porous structures (Diloksumpan et al., 2020). Similarly, Dou
et al. developed a PLGA/HA framework and filled it with gelatin
through LDM (Dou et al., 2021). The combination between the
scaffolds and the original tissue was closer than that for single-
material ones.

3.3.3 Polymer ceramic scaffolds obtained drugs or
bioactive factors

Another major advantage of LDM in biomaterial application
is the potential of including drugs and growth factors to improve
bone healing or resist infection during the creation of
polymer–ceramic composites. Dong et al. (2014) proposed a
method of using solvent evaporation and low-temperature
drying technology to prepare implants, which were
composited with poly-DL-lactide, HA, and anti-tuberculosis
drugs. Salvianolic acid B (SB) is an active component
extracted from danshen and it can improve osteogenesis and
angiogenesis (Cui et al., 2012). Lin et al. printed the composited
scaffolds composed of PLGA, β-TCP, and SB through LDM at a
temperature of −28°C and evaluated the effects on spinal fusion
models (Lin et al., 2019). Icariin is another bioactive factor used

TABLE 4 LDM of polymer-ceramic skeleton scaffolds for bone tissue engineering.

Year Team Materials Properties of scaffolds

2009 Kai et al PLGA/TCP/Chitosan Using computer-assisted design system to optimal parameters based on a double-nozzle technology

2011 Li et al PLGA/TCP The scaffolds were identical to defects and the mechanical properties were similar to cancellous bone

2012 Wang et al PLGA/β-TCP/Collagen The scaffolds were wrapped with Type I collagen and had greater abilities of proliferation and osteogenic

2013 Chen et al PLGA/TCP/Icariin The scaffolds composited with icariin had more mineralized bone and more new blood vessels ingrowth

2013 Chen et al PLGA/nHA The results indicated that the viability of cells on the scaffolds were not affected by nHA/PLGA.

2014 Dong et al PDLLA/HA/Anti-TB drugs The composited scaffolds were fabricated by solvent evaporation and low temperature drying technology

2015 Yoshida et al PLGA/β-TCP/FGF-2 The PLGA coating scaffolds had high porosity, good compressive strength and biocompatibility

2015 Wei et al PLGA/β-TCP/RGD The scaffolds with the peptide increased the cell proliferation and osteogenic differentiation of the BMSCs

2017 Wang et al PLLA/CaP/BMP-2 The scaffolds had better mechanical properties and had sustained release of Ca2+ and BMP-2 for osteogenic

2017 Zhang et al PLGA/TCP/Collagen The scaffolds were designed to mimic mechanical properties and hydrophilicity of bone and cartilage

2018 Huang et al Col-I/PLGA/n-HA/Fe2O3 The nanocomposite scaffolds had suitable mechanical properties and compatibility for caricular repairment

2018 Lai et al PLGA/TCP/Icariin The scaffolds had a well-designed structure to provide mechanical support and stable icariin release

2018 Song et al PVA/CaP/PRF PRF improved biological activities and bioactive factors could sustained release from scaffolds

2019 Lin et al PLGA/β-TCP/SB The composite scaffold could enhance osteogenesis and angiogenesis by incorporating with SB.

2019 Lai et al PLGA/β-TCP/Mg The scaffold had both osteogenic and angiogenic abilities to enhance the formation of new bone

2020 Diloksumpan et al PCL/α-TCP/Hydrogel The hydrogel and CaP were encased in PCL cages to obtain better osteogenic from only one direction

2021 Dou et al PLGA/nHA/Gelatin The scaffolds had large front and side hole size to provide space and support for tissue ingrowth

2021 Cheng et al PLGA/β-TCP/CuB CuB released from the scaffolds and enhances bone regeneration and neovascularization in the models

2021 Lian et al PLCL/HA The scaffolds promoted the adhesion and paracrine of MSCs, thereby improving the osteogenic ability

2021 Zhang et al PCL/β-TCP/Icariin The scaffolds had highly porous structure and maintained the bio-efficacy of icariin for tissue regeneration

2022 Lai et al PLGA/β-TCP/OP/rBMSC The OP could be released from the scaffolds and enhanced the proliferation and differentiation of BMSC.

2022 Wang et al PCL/nHA/Gelatin-CaO2 The scaffolds had bionic hierarchical porous structures and could release O2 sustainably for bone repair

PLGA, poly (lactic-co-glycolic acid); TCP, tricalcium phosphate; n-HA, nano-hydroxyapatite; PDLLA, poly-DL-lactide; HA, hydroxyapatite; FGF-2, fibroblast growth factor-2; RGD, arginine-

glycine-aspartic acid; PLLA, poly (L-lactic acid); BMP-2, bone morphogenetic protein-2; PVA, poly (vinyl alcohol); SB, Salvianolic acid B; CuB, cucurbitacin B; PLCL, poly (L-lactic acid-ε-
caprolactone); OP, osteogenic peptide; rBMSC, rat bone marrow derived mesenchymal stem cell.
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to producing composite scaffolds. It is compounded into
degradable scaffolds fabricated with polymer ceramic
composites to provide mechanical support and promote the
process of bone regeneration (Lai et al., 2018; Zhang et al.,
2021). Chen et al. (2012); Chen et al. (2013b) incorporated
BMP-2 and phytomolecule icaritin into PLGA/TCP scaffolds
and found that icariin enhanced bone calcium deposition and
regeneration.

Wang et al., 2017a printed scaffolds through LDM with
materials composited of Ca-P, PLLA and BMP-2 on a custom-
made cryogenic substrate at the temperature of −30°C. The scaffolds
had well biological activity and sustained release of Ca2+ and BMP-2.
Another type of diphasic magnetic scaffold was fabricated by LDM
with PLGA, collagen, nano-hydroxyapatite, and Fe2O3 using a low-
temperature rapid prototyping instrument at −4°C (Huang et al.,
2018). It had good biocompatibility and matched better to the
structure of cartilage or subchondral bones. Yoshida et al. (2015)
fabricated PLGA/β-TCP scaffolds combined with fibroblast growth

factor-2, which are showed good bioeffect for bone augmentation.
There are other works on the loading of active factors, such as
platelet-rich fibrin, magnesium, cucurbitacin B, osteogenic peptide,
arginine-glycine-aspartic acid (RGD) and CaO2 microspheres, on
scaffold materials to increase osteogenesis (Wei et al., 2015; Song
et al., 2018; Lai et al., 2019; Cheng et al., 2021; Lai et al., 2022; Wang
et al., 2022). It is worth mentioning that the platelet-rich fibrin
facilitates hemostasis and the secretion of growth factors while
degrading fibrin (Song et al., 2018). Magnesium provides
mechanical properties and biodegradability for polymer-ceramic
scaffolds (Lai et al., 2019). Scaffolds fabricated at −30°C had 3D
porous structures and enhanced the new bone formation within the
tunnel after implantation (Figure 4C) (Lai et al., 2019). Wang et al.
(2022) fabricated scaffolds on a receiving platform at a temperature
of −10°C and showed that CaO2 improves the expression of
transcription factors by releasing O2 and thus promotes
osteogenesis. RGD-containing peptides have the ability for
modulation of cell adhesion and differentiation (Li et al., 2017).

FIGURE 4
(A) Representative of the 3D porous nHA/PLGA composite scaffolds. SEM images of the porous PLGA/n-HA scaffolds and microscopic images of
cells. (B) Visualization of the implant and formation of new bones via µCT. H&E, TRAP, osteonectin, and collagen type I staining of decalcified sections of
porous structures. (C) Morphological characteristics and in vivo implantation of the scaffolds. The representative histological analysis of new bone
formation after implantation. SEM, Scanning electron microscope; LDM, low-temperature deposition manufacturing; H&E, Hematoxylin and eosin;
TRAP, Tartrate-resistant acid phosphatase.
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3.4 Others

There are scaffolds that are constructed without compositing a
ceramic or polymer framework. Table 5 presents bone tissue
engineering scaffolds based on other materials. Lode et al. (2016)
dispersed high-density collagen to stabilize structures in LDM and
adopted chemical crosslinking with 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide. Zhang et al. (2007) prepared
scaffolds comprising collagen/chitosan/BMP-7 materials and
implanted them into defects of mandible. Similarly, Reed et al.
(2016) developed an acellular scaffold with chitosan/alginate and
controlled the structure of the scaffold adopting LDM technology to
improve cell influx and distribution. Lee et al. (2018) used decellularized
extracellular matrix) to induce cellular activities and SF to achieve
proper mechanical strength. The scaffolds were fabricated on a low-
temperature (−40°C) stage using a 300-μm nozzle at a speed of
10 mm s−1. 3D-printed scaffolds have been fabricated with gelatin
and SF, platelets, or polyols adopting crosslinking and freeze-drying
technologies (Zhu et al., 2016; Liu et al., 2021a). He et al. (2021)
combined natural modified protein technologies with LDM to fabricate
scaffolds of BMP-2 and Human Bata Defensin-3 (hBD3). The scaffolds
could realize bone induction through BMP-2 and antibacterial
properties through hBD3. Karamat-Ullah et al. (2021) developed the
silica-SF bio-ink to print scaffolds by LDM. The antibacterial peptide
was covalently linked to SF and had effective bactericidal ability.

4 Conclusion and challenges

In this article, we introduced the technical process of LDM and
reviewed the applications of this technology to bone tissue engineering
scaffolds. As a greenmanufacturingmethod, LDMnot only controls the
pore size of the scaffolds through the use of CAD tools, but also
preserves the activity of biological factors. However, there remain
many challenges in the LDM of scaffolds. First, the mechanical
strength of a scaffold fabricated by LDM is commonly low.
Although composited materials improve the mechanical properties,
the strength requirements of load-bearing bone are not met. In
addition, it is difficult to select a solvent that dissolves both synthetic
and natural polymers. Few solvents have been used up to the point and it
is undeniable that the benefits of this technology are underutilized.
Secondly, it is difficult to balance the degradation of scaffold materials
with the regeneration of new bone tissue. There is no doubt that such

osteogenesis is not ideal when the degradation rate of scaffolds is faster
than the regeneration rate of new bone. Furthermore, themajority of the
degradation products are acidic and thusmildly toxic or even toxic to the
human body. In addition, a suitable substrate temperature and
requirements of the printing platform are not clear. In brief,
materials printed on cold plates and freezers form ice crystals in
different orientations, which control the microstructures of porous
scaffolds. Developing a more suitable low temperature printing
system is one of the future research directions.

5 Prospects

Bone regeneration is not just a simple process of bone formation
and resorption. It is a multi-system including the musculoskeletal
system and immune system (Zheng et al., 2021). In addition, the
combination of antimicrobial drugs and biomaterials can effectively
control bone infection and improve prognosis while promoting bone
repair (Hu et al., 2021). In contrast to traditional manufacturing
techniques, 3D printing, particularly LDM, has the advantage in that
it can produce tissue engineering scaffolds with customized forms,
bioactivity, porosity, and mechanical properties. One approach of
bioprinting involves injecting cell-rich hydrogels into scaffolds,
which has drawbacks including an uneven cell distribution and an
injection pressure that affects cell activity and scaffold porosity. An
exceptional benefit of LDM is the ability to fabricate scaffolds with
linked macro-pores and micro-pores while consistently allowing the
integration of biomolecules, such as live cells, into the scaffolds. In
addition, LDM allows the customization of scaffolds through changing
the nozzles and combining various RPM techniques.

An ideal bone tissue engineering scaffold fabricated by LDM has the
following properties. The scaffolds must, first and foremost, be of high
mechanical quality to suit the demands of bone tissue, particularly the
stability required by load-bearing bone. Second, the material should have
strong cytocompatibility and a capacity for bone conduction,
vascularization, nervousness, and disintegration, among other good
biological qualities. Third, the interfacial repair of complicated bone
defects depends on the creation of multilayer gradient scaffolds made of
bone, cartilage, and soft tissue. LDM is a promising RPM technique that
promises the fabrication of ideal scaffolds and is expected to become
indispensable in bone tissue engineering. The next step is to investigate
various solvent systems for blending different materials or bioactive
components and to develop an ideal printing workstation. Bioinks

TABLE 5 LDM of other scaffolds for bone tissue engineering.

Year Team Materials Properties of scaffolds

2007 Zhang et al Chitosan/Collagen/BMP-7 The scaffolds had higher ALP activity and promoted the expression of osteopontin and bone sialoprotein

2016 Lode et al Collagen The high viscous and density collagen was used and the scaffolds were crosslinking with carbodiimide EDC.

2016 Zhu et al Gelatin/platelets The scaffolds had special internal porous structures for bone tissue and large molecules to infiltrate in better

2018 Lee et al Collagen/dECM/SF The dECM was used to induce cellular activities and SF could enhanced the mechanical strength for scaffolds

2021 He et al PHA/BMP-2/hBD3 The scaffolds realized directional bone induction, angiogenesis and antibacterial effects at the same time

2021 Ullah et al Silica/SF/antimicrobial peptides The antimicrobial peptides were covalently linked to silica-SF scaffolds to show great bactericidal effects

2021 Zafeiris et al SF/Gelatin/polyols The scaffolds had good rheological properties and enhanced osteogenic by Samd1/5/8 and Runx2 pathways

BMP-7, bone morphogenetic protein-7; dECM, decellularized extracellular matrix; SF, silk-fibroin; PHA, phytohaemagglutinin; hBD3, human Beta Defensin 3.
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with optimal properties have been prepared by adjusting parameters to
obtain a balance of mechanical properties and biological activity in
scaffolds. In future work, composite scaffolds with near-ideal levels
should be further prepared with LDM technology to promote the
regeneration of bone tissue and surrounding tissues and ultimately
realize multi-organ bioprinting.
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