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Anaerobic digestion piggery effluent (ADPE) with a quite high ammonium (NH4
+)

concentration and turbidity (dark brown color) generally requires high dilution
before microalgae cultivation, owing to its NH4

+ toxicity and color inhibition to
algal growth. An integrated pretreatment strategy of ammonia stripping and
chemical flocculation may be a more practical pretreatment procedure for
enhancing algae yield and nutrient recovery from anaerobic digestion piggery
effluent. In this study, we determined the optimum pretreatment strategy of
anaerobic digestion piggery effluent for subsequent microalgae cultivation and
nutrient recovery. The results showed that the integrated anaerobic digestion
piggery effluent pretreatment strategy of high-temperature ammonia stripping
and chemical flocculation at a mixed dosage of 2 g L−1 polyaluminum chloride
(PAC) and 40mg L−1 cationic polyacrylamide (C-PAM), and 50mg L−1 ammonium
nitrogen (NH4

+-N) enrichment provided maximum algal yield (optical density =
1.8) and nutrient removal (95.2%, 98.7%, 99.3%, and 78.5% for the removal
efficiencies of total nitrogen, NH4

+-N, total phosphorus, and chemical oxygen
demand, respectively) from anaerobic digestion piggery effluent. The integrated
pretreatment strategy is expected to become a more practical pretreatment
procedure for enhancing algae yield and nutrient recovery from anaerobic
digestion piggery effluent.
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1 Introduction

Large-scale piggery wastewater is commonly treated by an anaerobic digestion (AD)
process, which results in the intermittent release of AD piggery effluent (ADPE), specifically
comprising high levels of nitrogen, phosphorus, and organic matter (Qian et al., 2022b). If
ADPE is directly discharged into natural water bodies, it will lead to serious environmental
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pollution and ecological risk (Zhao et al., 2022). Microalgae-based
wastewater treatment is one of the most promising technologies for
advanced AD effluent (ADE) treatment and nutrient recovery (Qian
et al., 2022c), owing to fast algal growth, high photosynthetic
efficiency, and excellent nutrient uptake. Simultaneously, the
harvested algal biomass can be developed for high-value products
such as animal feed, biogas, biofuel, and valuable chemicals (Qian
et al., 2022a; Chen et al., 2022). However, a quite high ammonium
(NH4

+) concentration and turbidity (dark brown color) are the
current barriers to adopting algal cultivation for ADPE remediation
because either of the two factors can inhibit algal growth. Algal cells
during photosynthesis can result in a high pH level of ADPE, which
can easily shift the chemical equilibrium from NH4

+ to free
ammonia (NH3) (Ayre et al., 2017). NH3 is toxic to most algal
strains by diffusing through the cell membrane and accumulating in
the algal cytoplasm because of its uncoupling effects on
photosynthesis in chloroplasts (Crofts, 1966; Uggetti et al., 2014).
In addition, the dark brown color of ADPE easily obstructs the
passage of sunlight from water bodies, thus greatly inhibiting algal
photosynthesis and growth (Liu et al., 2015). Therefore, ADPE
should be properly pretreated to reduce NH3 toxicity and color
inhibition for subsequent microalgae cultivation.

In most previous studies, high-dilution pretreatment of
ADPE was the most convenient method to reduce NH4

+

toxicity and color inhibition prior to microalgae cultivation.
For example, Chlorella vulgaris attained the maximum
biomass yield in 50-fold diluted ADPE at an NH4

+-N
concentration of 100 mg L−1 and chromaticity of 170, but its
growth was inhibited in 10- and 20-fold diluted ADPE (Kwon
et al., 2020). This might be because the NH4

+-N concentration of
110 mg L−1 was critical for NH4

+ tolerance in green algae,
including Chlorella spp. (Collos and Harrison, 2014). Indeed,
the high-dilution pretreatment cannot be widely applied in large-
scale microalgae-based wastewater treatment because it needs a
huge volume of freshwater. Ammonia stripping is a reliable
pretreatment process to maintain the NH4

+ level of ADPE
below the NH4

+ tolerance of microalgae, but the dark color of
ADPE still inhibits the growth of microalgae (Li et al., 2019).
Chemical flocculation can rapidly remove the color with only a
small amount of flocculant, and the process is stable and
controllable (El Bied et al., 2021). For example, in the study
conducted by Depraetere et al. (2013), 0.2 mM ferric chloride and
200 mg L−1 cationic starch could remove chromaticities of 76%
and 73% in piggery wastewater, respectively. Therefore, an
integrated pretreatment strategy of ammonia stripping and
chemical flocculation may be a feasible procedure to eliminate
NH4 toxicity and color inhibition from ADPE for subsequent
microalgae cultivation.

This study was conducted to solve the technical problems
encountered in ADPE pretreatment for subsequent microalgae
cultivation. In this study, the integrated ADPE pretreatment
strategy of ammonia stripping and chemical flocculation, and
subsequent microalgae cultivation was conducted to optimize the
most suitable pretreatment condition for microalgae cultivation.
Then, the optimal pretreated ADPE was supplemented with each of
the different NH4

+-N concentrations and used for microalgae
cultivation to further enhance algal yield and nutrient removal
from ADPE. The integrated pretreatment strategy is expected to

become amore practical pretreatment procedure for enhancing algal
yield and nutrient recovery from ADPE.

2 Materials and methods

2.1 ADPE preparation and flocculants

ADPE was obtained from an anaerobic digester of the Zhenghe
Biogas Plant in Xinyu City, Jiangxi Province, China. The plant
collected piggery manure to generate biogas and ADPE through a
continuous stirred tank reactor (CSTR). All the collected ADPEs
were filtered through a solid–liquid centrifugal separator (LLW800,
KAIDI, Suzhou, China) to remove large particles and stored at 4°C
before use. Polyaluminum chloride (PAC) and cation
polyacrylamide (C-PAM) as flocculants were purchased from
Gongyi Xinqi Polymer Co., Ltd., China.

2.2 High-temperature ammonia stripping
device

The high-temperature ammonia stripping device mainly
consisted of a stripping tower, circulating pump, water tank, air-
blower, heating unit, and electronic control unit (Supplementary
Figure S1). The stripping tower was made of double-layer stainless
steel with an inner diameter of 154 mm, a height of 1,500 mm, and a
working volume of 10 L. A porous material was filled inside the
stripping tower to adsorb NH3. ADPE was pumped from the water
tank along with the pipeline to the top of the inner layer of the
stripping tower using the circulating pump at a constant flow rate
and then sprayed downward using a nozzle to fully contact the
porous material. The outer layer of the stripping tower was filled
with 70°C hot water, which was supplied by a heating water tank.
Compressed air from the air-blower was injected into the bottom of
the stripping tower through a porous diffuser, and the airflow was
controlled by a flowmeter. ADPE in the stripping tower was
circulated from the bottom back to the water tank, which was
equipped with a blender to homogeneously mix ADPE.
Ammonia stripped from the top of the stripping tower was
collected and absorbed by 10% (v/v) sulfuric acid (H2SO4)
solution to recover ammonium sulfate, which was used as
supplementation of the culture medium for subsequent
microalgae cultivation.

2.3 Algal strain and pre-culture conditions

One algal strain used for ADPE remediation was isolated from a
local water body surrounding the Nanchang Maiyuan Landfill Plant
and named Nanchang University (NCU)-7, which was identified as
Chlorella sorokiniana, based on our previous methods (Li et al.,
2022). C. sorokiniana has been widely applied in wastewater
remediation because it can achieve high biomass production and
nutrient removal in mixotrophic cultivation (León-Vaz et al., 2019;
Qian et al., 2020; Qian et al., 2021).

Algal cells were maintained with a 100-mL TAP medium
(Supplementary Table S1) in a 250-mL Erlenmeyer flask. They
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were pre-cultured at 28°C ± 1°C with a continuous light intensity of
3,000 lux and set on an orbital shaker (TS-2102GZ, Tensuc,
Shanghai, China) at a rotation speed of 120 rpm.

2.4 Cultivation of microalgae

Algal cells in the TAP medium were centrifuged at 6,000 rpm
for 5 min to remove the supernatant, and the residual algal pellets
were washed twice and resuspended in distilled water to prevent
the influence of the nutrients from the medium. Subsequently,
the algal suspension was inoculated into 200 mL culture medium
(appropriately treated ADPE) at an initial optical density (OD) of
ca. 0.5 in a 500-mL flask and cultivated at the same temperature,
light, and rotation speed conditions as those in the algal pre-
culture.

2.5 Experimental design

2.5.1 ADPE pretreatment by high-temperature
ammonia stripping

A total volume of 40-L ADPE was first pretreated using the high-
temperature ammonia stripping device to reduce the ammonium
concentration. The ADPE was circulated at a flow rate of
500 mL min−1 and three cycles with a total stripping period of
4 h. The airflow rate was set to 15 m3 h−1. After ammonia

stripping, the pretreated ADPE was collected for further
experiments.

2.5.2 Flocculation pretreatment for microalgae
cultivation

The pretreated ADPE by ammonia stripping was used in the
flocculation experiment. The gradient concentrations of PAC (2, 4,
6, and 8 g L−1) and C-PAM (40, 80, and 120 mg L−1) were fully mixed
in ADPE for flocculation pretreatment, and the mixed concentration
in each treatment is listed in Table 1. Subsequently, the flocculation
sediment in each treatment was removed by centrifugation at
2,000 rpm for 2 min to obtain the supernatant, which was used
as the culture medium for microalgae cultivation to determine the
optimum pretreatment for enhancing algal yield. Simultaneously,
ADPE with ammonia stripping pretreatment but without
flocculation was used as a control.

2.5.3 Microalgae cultivation in the optimum
pretreated ADPE enriched with different NH4

+-N
concentrations

To further enhance the algal yield and nutrient removal from
ADPE, the algal cells were cultured in the optimum pretreated
ADPE enriched with NH4

+-N concentrations of 50, 100, and
200 mg L−1. The optimum pretreated ADPE without NH4

+-N
enrichment was used as a control. These NH4

+-N concentrations
were provided by the recovered ammonium sulfate from the
ammonia stripping device.

TABLE 1 Chromaticity, pH, and the concentrations of total nitrogen (TN), ammonium nitrogen (NH4
+-N), total phosphorus (TP), and chemical oxygen demand

(COD) in untreated ADPE; ADPE pretreated by high-temperature ammonia stripping; and ADPE pretreated by the ammonia stripping combined with different
chemical flocculant dosages (the different mixed dosages of polyaluminum chloride (PAC) and cationic polyacrylamide (C-PAM)). Data are reported as the mean ±
standard deviation (n = 3).

Treatment PAC C-PAM TN NH4
+-N TP COD Chromaticity pH

g L−1 mg L−1 mg L−1 mg L−1 mg L−1 mg L−1 PCU

Non-treatment* 0 0 1,357.9 ± 4.6 1,250.5 ± 22.6 71.2 ± 1.0 5,757.8 ± 122.2 10,500 ± 72 8.8 ± 0.1

+S** 0 0 205.6 ± 3.2 120.9 ± 2.2 62.9 ± 0.4 4,646.7 ± 100.0 8,920 ± 50 9.2 ± 0.1

+S + C/M(2/40)*** 2 40 136.5 ± 2.7 71.7 ± 1.2 18.8 ± 0.5 2,356.7 ± 61.1 3,915 ± 49 7.6 ± 0.1

+S + C/M(2/80) 2 80 130.5 ± 2.0 70.9 ± 0.4 17.8 ± 0.4 2,245.6 ± 61.1 3,175 ± 31 7.4 ± 0.3

+S + C/M(2/120) 2 120 129.0 ± 0.7 67.7 ± 0.4 16.6 ± 0.1 2,206.7 ± 100.0 2,955 ± 77 7.5 ± 0.3

+S + C/M(4/40) 4 40 94.3 ± 0.9 61.9 ± 1.0 5.3 ± 0.1 1,434.4 ± 72.2 1,540 ± 1 7.3 ± 0.1

+S + C/M(4/80) 4 80 85.7 ± 0.6 55.3 ± 0.4 3.3 ± 0.2 1,195.6 ± 77.7 980 ± 5 7.3 ± 0.0

+S + C/M(4/120) 4 120 80.0 ± 0.6 56.5 ± 0.8 3.2 ± 0.0 1,106.7 ± 22.2 915 ± 7 7.3 ± 0.1

+S + C/M(6/40) 6 40 71.5 ± 0.5 45.4 ± 0.6 2.8 ± 0.3 1,084.4 ± 22.2 882 ± 1 7.2 ± 0.1

+S + C/M(6/80) 6 80 68.7 ± 0.5 43.4 ± 2.2 2.7 ± 0.1 1,062.2 ± 66.7 835 ± 2 7.4 ± 0.1

+S + C/M(6/120) 6 120 63.7 ± 0.5 42.4 ± 3.2 2.0 ± 0.5 884.4 ± 11.1 629 ± 1 7.4 ± 0.1

+S + C/M(8/40) 8 40 52.6 ± 1.1 38.0 ± 0.8 0.8 ± 0.2 717.8 ± 5.6 153 ± 1 7.3 ± 0.1

+S + C/M(8/80) 8 80 53.5 ± 1.9 34.2 ± 1.0 0.3 ± 0.1 706.7 ± 5.6 155 ± 2 7.3 ± 0.1

+S + C/M(8/120) 8 120 53.1 ± 0.2 40.2 ± 1.0 0.2 ± 0.0 695.6 ± 11.1 143 ± 1 7.5 ± 0.2

*ADPE without high-temperature ammonia stripping and chemical flocculation.

**ADPE pretreated by high-temperature ammonia stripping.

***ADPE pretreated by ammonia stripping combined with chemical flocculation at a mixed dosage of 2 g L−1 PAC and 40 mg L−1 C-PAM.
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2.6 Analytical methods

2.6.1 Algal growth and water quality analysis
OD as algal yield was measured at 680 nm using a

spectrophotometer (DR 6000, Hach, Loveland, United States) to
determine the growth of microalgae. Chlorophyll a in algal cells was
measured based on a previous study (Song et al., 2020).

pH and chromaticity (unit: PCU) were measured using a
portable pH meter (PB-10, Sartorius, Beijing, China) and
colorimeter (SD9011B, XINRUI, Shanghai, China), respectively.
To determine the water quality characteristics, the collected
sample was filtered through a 0.45-µm pore-size syringe filter
(PES, Jinteng, Tianjin, China) to remove suspended materials.
The filtrate was analyzed using a Hach kit (DR 6000 Hach,
Loveland, United States) to determine the concentrations of the
chemical oxygen demand (COD), total nitrogen (TN), NH4

+-N, and
total phosphorus (TP). The removal efficiencies (R, %) of nutrients
(COD, TN, NH4

+-N, and TP) were calculated using the following
equation:

R � C0i–Cf i( )/C0i × 100( ), (1)
where C0i and Cfi represent the concentrations (mg L−1) of
nutrient i on the initial and final days of the experimental
period, respectively.

2.6.2 Three-dimensional fluorescence
excitation–emission matrix (3D-EEM) analysis

The EEM spectra of the ADPE samples were determined by
fluorescence spectroscopy (F97pro, Lengguang Tech, Shanghai,
China) with a scanning emission (Em) wavelength from 300 to
600 nm (1-nm increment) by increasing the excitation (Ex)
wavelength from 300 to 500 nm (5-nm increments).

3 Results and discussion

3.1 ADPE pretreated by the integrated
strategy and corresponding EEM analysis

In untreated ADPE, chromaticity, TN, NH4
+-N, TP, and COD

concentrations were 10,500 PCU, 1,357.9, 1,250.5, 71.2, and
5,757.8 mg L−1, respectively, while they decreased to 8,920 PCU,
205.6, 120.9, 62.9, and 4,646.7 mg L−1 after high-temperature
ammonia stripping pretreatment (+s), respectively (Table 1). The
slight decrease in COD and chromaticity may be because the
volatile organic compounds escape from ADPE through heat
degradation and CH4 production (Meng et al., 2023). The NH4

+-N
content sharply declined, but chromaticity was still quite high after
ammonia stripping. However, after the integrated pretreatment of
ammonia stripping combined with chemical flocculation,
chromaticity, TN, NH4

+-N, TP, and COD concentrations further
reduced to 2,950–3,920 PCU, 129–137, 67–72, 16–19, and
2,200–2,360 mg L−1 in +S + C/M(2/40-120) treatments, respectively
(e.g., +C/M(2/40) represented chemical flocculation at a mixed dosage
of 2 g L−1 PAC and 40 mg L−1 C-PAM). With the increasing PAC
supplementation amounts from 4 to 8 g L−1, they further declined to
910–1,550 PCU, 80–95, 55–62, 3.2–5.3, and 1,100–1,440 mg L−1 in +S +
C/M(4/40-120) treatments; 620–890 PCU, 63–72, 42–46, 2.0–2.8, and

880–1,090 mg L−1 in +S + C/M(6/40-120) treatments; and
140–155 PCU, 52–54, 34–41, 0.2–0.8, and 690–720 mg L−1 in +S +
C/M(8/40-120) treatments. These results suggested that the chemical
flocculation of PAC and C-PAM addition could not only effectively
reduce COD and chromaticity from ADPE but also remove nutrients
including nitrogen and phosphorus. Compared to the C-PAM dosage,
the increases in PAC dosage could more effectively remove TN, NH4

+-
N, TP, COD, and chromaticity from ADPE. Furthermore, the increases
in PAC dosage had a greater removal effect on COD and chromaticity
than TN, NH4

+-N, and TP. These results were confirmed by the study
conducted by Harif et al. (2023).

It could be found that the color removal effect of the flocculant
on ADPE was not good enough when PAC dosage was low, the
formed floc was small and suspended in ADPE, and the floc
sedimentation performance was poor (Supplementary Figure S2).
With the increases in PAC dosages, floc formation was accelerated in
ADPE, the floc volume became larger, and the sedimentation
performance of floc improved, corresponding to the
enhancement of color removal. As known, the flocculation of
PAC is mainly related to the charge neutralization process or the
adsorption and precipitation of metal hydroxide. The deposition of
hydroxyl radicals leads to the possibility of sweep flocculation, in
which the impurity particles are involved in the growing sediment,
thus being effectively removed (Duan and Gregory, 2003). The
addition of PAC to wastewater would destroy the stability of
colloidal materials and make small particles agglomerate into
large settleable flocs (Wei et al., 2016).

3D-EEM spectroscopy was used to evaluate the structure
characterizations of organic matter in ADPE before and after
ammonia stripping combined with chemical flocculation
pretreatments. Peak A was only identified from ADPE in non-
treatment and +s treatment at Ex/Em 390–430/450–500 nm
(Figures 1A, B), while peaks B and C were detected in +S +
C/M(2/40) treatment at Ex/Em 350–380/430–460 nm and
380–410/460–490 nm, respectively (Figure 1C). These three peaks
were all described as polycarboxylate-type humic acid (Wang and
Zhang, 2010; Qian et al., 2023).

3.2 Microalgae cultivation in pretreated
ADPEs by the integrated strategy

Algal growth was inhibited in +S treatment without flocculation
(Figure 2) probably because the extremely high chromaticity (ca.
9,000 PCU) still existed in the pretreated ADPE. Very high
chromaticity easily leads to the light reduction received by
microalgae and inhibits the synthesis of various compounds in algal
cells (Maltsev et al., 2021). ODs as algal yields were the highest in +S +
C/M(2/40-120) treatment, being ca. 1.6, on the final day among the
treatment, followed by ca. 1.3 in +S + C/M(4/40-120) treatment and ca.
1.1 in +S + C/M(6 and 8/40-120) treatment. This suggested that ADPEs
in +S + C/M(2/40-120) treatment with a PAC supplementation of
2 g L−1 were more suitable media for microalgae cultivation, maybe due
to a large amount of phosphorus existing in the media (Table 1)
compared to the other treatment procedures. To reduce C-PAMdosage
as much as possible for high cost efficiency, adding the mixed
supplementation of 2 g L−1 PAC and 40 mg L−1 C-PAM to the
ammonia stripping-pretreated ADPE (i.e., +S + C/M(2/40)
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treatment) was the most suitable pretreatment for enhancing algal yield
from ADPE. Wang et al. (2020) also conducted a similar study, which
reported that the COD, total Kjeldahl nitrogen (TKN), and TP contents
in dairy manure wastewater were removed by 72.6%, 58.7%, and 43.0%
in the optimal flocculation–centrifuge pretreatment, respectively, and
their content in the two-fold diluted manure supernatant from this
pretreatment was further reduced by 82.2%, 90.1%, and 83.4%,
respectively, with a harvested algal yield of ca. 1.2 g L−1 during
culturing C. vulgaris UTEX-2714. These results confirmed that the

integrated pretreatment strategy of ammonia stripping and chemical
flocculation was a reliable procedure to avoid NH3 toxicity and color
inhibition from ADPE for subsequent microalgae cultivation.

3.3 Microalgae cultivation in pretreated
ADPEs enriched with different NH4

+-N
concentrations

Based on the most suitable pretreatment, +S + C/M(2/40)-
pretreated ADPEs were enriched with different NH4

+-N
concentrations and used as culture media for microalgae
cultivation to further enhance algal yield and nutrient removal
from ADPE. These NH4

+-N concentrations were provided by
recovered ammonium sulfate from the ammonia stripping device
to achieve nitrogen resource recycling and utilization.

Growth curves of NCU-7 showed similar trajectories among
all treatments, but the final algal yields were quite different. OD
was ca. 1.8 in the 50-mg NH4

+-N treatment, being the highest
among the treatments, followed by 1.6 in no enrichment and 100-
mg NH4

+-N treatment (Figure 3A). However, the lowest algal
yield (OD = 1.5) was obtained in the 200-mg NH4

+-N treatment.
The trends of algal yields among the treatments were similar to
those of chlorophyll a (Figure 3B). These results suggested that
algal growth might be inhibited in 100- and 200-mg NH4

+-N
treatments compared to the 50-mg NH4

+-N treatment.
Therefore, the 50-mg NH4

+-N enrichment was a suitable
treatment for microalgae cultivation.

TN, NH4
+-N, and TP concentrations in all treatments decreased

with increasing incubation times, regardless of the initial
concentrations. At the end of the experiment, 50-, 100-, and 200-mg
NH4

+-N treatments, and no enrichment removed 85.5, 114.1, 133.8,
and 34.3 mg L−1 of TN concentrations (Figure 3C), respectively, in
response to NH4

+-N removal of 90.2, 123.1, 147.3, and 39.8 mg L−1,
respectively (Figure 3D). It has been known that high pH levels above
8.0 favor NH4

+ volatilization by converting into ammonia (Escudero
et al., 2014). Therefore, this TN/NH4

+-N removal might include partial
volatilization losses during the experiment due to pH levels of 9.0–11.0

FIGURE 1
Three-dimensional excitation—emission matrix (EEM) spectra of untreated ADPE (A), ADPE pretreated by high-temperature ammonia stripping (B),
and ADPE pretreated by high-temperature ammonia stripping and chemical flocculation (C) [where the mixed dosages of flocculants were 2 g L−1

polyaluminum chloride (PAC) and 40 mg L−1 cation polyacrylamide (C-PAM)].

FIGURE 2
Growth curves of NCU-7 in different treatments (detailed
information on each treatment is shown in Table 1). Error bars
represent standard deviations (n = 3).

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Qian et al. 10.3389/fbioe.2023.1219103

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1219103


(data not shown). TP concentrations decreased to almost the same level
in all treatments (Figure 3E). pH levels above 7.0 contributed to
enhancing phosphorus removal from wastewater through phosphate
precipitation with metals, such as calcium phosphate and/or struvite
(Moutin et al., 1992; Le Corre et al., 2009). The level of algal yields in the
50-mg NH4

+-N treatment was significantly higher than that in the 100-
and 200-mg NH4

+-N treatments despite a lower TN/NH4
+-N removal

amount in the 50-mg NH4
+-N treatment and similar levels of TP

removal amounts among the three treatments. This suggested that
relatively high nitrogen and phosphorus removal was assimilated into
the algal biomass in the 50-mgNH4

+-N treatment. COD concentrations
gradually decreased until 48 h but increased after that point (Figure 3F).

The decrease was ascribed to algal heterotrophy, while the increase
might be related to algal excretion (Zhuang et al., 2016). Based on the
initial nutrient concentrations in raw ADPE without pretreatment, TN,
NH4

+-N, TP, and COD in the suitable 50-mg NH4
+-N treatment with

high algal yields achieved high removal efficiencies of 95.2%, 98.7%,
99.3%, and 78.5%, respectively.

4 Conclusion

The integrated ADPE pretreatment strategy of high-
temperature ammonia stripping and chemical flocculation at a

FIGURE 3
Algal growth curves (A), chlorophyll a (B), and the concentrations of total nitrogen (TN) (C), ammonium nitrogen (NH4

+-N) (D), total phosphorus (TP)
(E), and chemical oxygen demand (COD) (F) in the optimum pretreated ADPE enriched with NH4

+-N concentrations of 50, 100, and 200 mg L−1 (“the
optimum pretreated ADPE” represents “ADPEwas pretreated by the ammonia stripping combined with chemical flocculation at amixed dosage of 2 g L−1

PAC and 40 mg L−1 C-PAM”). Error bars represent standard deviations (n = 3).
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mixed dosage of 2 g L−1 PAC and 40 mg L−1 C-PAM, and 50 mg L−1

NH4
+-N enrichment provided the maximum algal yield (OD = 1.8)

and nutrient removal (95.2%, 98.7%, 99.3%, and 78.5% for TN,
NH4

+-N, TP, and COD removal efficiencies, respectively) from
ADPE. The integrated pretreatment strategy could be a
promising approach to algal biomass production and nutrient
removal from ADPE.
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