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As nanotechnology develops in the fields of mechanical engineering, electrical
engineering, information and communication, and medical care, it has shown
great promises. In recent years, medical nanorobots have made significant
progress in terms of the selection of materials, fabrication methods, driving
force sources, and clinical applications, such as nanomedicine. It involves
bypassing biological tissues and delivering drugs directly to lesions and target
cells using nanorobots, thus increasing concentration. It has also proved useful for
monitoring disease progression, complementary diagnosis, andminimally invasive
surgery. Also, we examine the development of nanomedicine and its applications
in medicine, focusing on the use of nanomedicine in the treatment of various
major diseases, including how they are generalized and how they are modified.
The purpose of this review is to provide a summary and discussion of current
research for the future development in nanomedicine.
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1 Introduction

Modern medicine is studied to pursue a new interdisciplinary discipline named
nanomedicine which combines nanotechnology and medicine (Zingg and Fischer, 2019;
Germain et al., 2020). An application of nanotechnology in medicine is called nanomedicine,
while a pharmaceutical product containing nanotechnology is known as nanomedicines. For
example, a pharmaceutical containing a nanotechnology component, usually the actual drug
or a vehicle that delivers it. Nanomedicine is an umbrella term for nanotechnology with
medical applications, whereas “nanomedicines” are pharmaceuticals containing
nanotechnology components (Hall et al., 2012).

A lecture given by Richard Feynman in 1959 at Caltech envisaged machines and devices
made of individual atoms, now known as “bottom-up” nanotechnology (Olsman and
Goentoro, 2018). Gerd Binnig and Harold Rohrer won the Nobel Prize in Physics in
1986 for their scanning tunneling microscopy technique, which enables the picking up of
individual atoms and assembling them into the desired arrangement, thus greatly enabling
the development of a new technology. Carbon 60 was discovered by Richard Smalley, Robert
Curl, and Harold Kroto in 1995, winning the Nobel Prize in Chemistry. As a result of their
research on graphene, a two-dimensional carbon molecule made up of nanoscale atoms,
Andre Geim and Konstantin Novoselov were awarded the Nobel Prize in Physics in 2010.

United States and European regulatory agencies approved the first generation of
nanomedicines in the mid-1990s (Ferrari, 2010). A typical application of nanomedicine
is liposomes, which are nanoparticles (NPs) derived from lipid molecules, similar to the basic
structure of cell membranes. With nanomedicines, cytotoxic drugs are selectively delivered
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to focal areas using nanotechnology, increasing drug concentrations
in targeted areas, reducing damage to non-targeted areas,
minimizing side effects, and achieving more therapeutic
outcomes at a lower cost than conventional therapeutic
modalities (Martin et al., 2020).Nanotechnology can establish
new routes of drug delivery and, through controlled release
systems, improve the absorption and utilization of drugs and
increase the targeting rate of drugs to a greater extent than in
conventional medicine.

Through the use of drug-loaded micro/nanorobots, the some
drugs can be effectively tracted and penetrated into the relevant
tissues. Nanotechnology has opened up new possibilities for drug
delivery (Maheswari et al., 2018). In recent years, a large number of
drug delivery systems have been developed, including liposomes
composed of phospholipid bilayers (Liu Y. et al., 2021). Hydrophilic
cores and lipophilic lipids bind hydrophilic and hydrophobic drugs
in liposomes, which are phospholipid vesicles. Targeting on cancer
therapies, liposomes are commonly used as carriers for targeted
delivery. Inorganic nanoparticles are known to carry drugs via
surface coupling (Wang X. et al., 2021), dendritic polymers with
shell-core properties (Kheraldine et al., 2021), as well as polymeric
nanoparticles. Among the propulsion sources for drug-delivery
nanorobots are magnetically driven (Hu et al., 2020; Sindhu
et al., 2021; Zhao et al., 2022; Li et al., 2023), which uses a
magnetic field to propel the device, optically driven (Dong et al.,
2016), which utilizes semiconductor-based photoinduced catalysis
to provide propulsion, acoustically driven (Ahmed et al., 2015),
chemically driven (Mou et al., 2016), and biologically driven (Park
et al., 2017; Halder and Sun, 2019). An external field drive for micro-
nanorobots can be provided by magnetic, optical, and acoustic
waves. It has the advantages of easy adjustment and high
controllability, but it relies more heavily on off-field devices for
power. Among these types of drives, magnetic drives are the most
commonly used, and compared with other micro-/nanorobot drive
methods, magnetic drives influenced bymagnetic field gradients and
magnetic field torques possess the characteristics of being easy to
acquire, easy to adjust magnetic fields, and capable of penetrating
into biological tissues without significant damage. It can be used in a
variety of liquid environments, which is the relatively most mature
driving method. Micro-/nanorobots fabricated with magnetic drive
as the power module can be broadly classified into spiral-propelled
micro-/nanorobots (Walker et al., 2015), oscillating magnetic field-
driven flexible micro-/nanorobots (Li et al., 2017; Xin et al., 2019; Liu
J. et al., 2021; Ji et al., 2021) and other types of magnetic field-driven
micro-/nanorobots, such as gradient magnetic field-driven micro-/
nanorobots (Li et al., 2016; Wang et al., 2022). Researchers are also
attempting to create micro-/nanorobots using a combination of
magnetic drive and other drive methods at the same time due to the
features such as easy adjustment of magnetic fields and non-
destructive penetration into biological tissues. This can be
accomplished by giving certain magnetic properties to micro-/
nanorobots while applying other driving methods. In recent
years, more types of magnetic nanorobots have been designed,
Yu et al. have fabricated trimeric nanorobots using three
magnetic Janus colloids of different diameters (Yu et al., 2022).
Inspired by the biological claws of tardigrades, Li et al. have designed
a magnetically driven swimming microrobots with claw geometry
and a red blood cell (RBC) membrane camouflage on its surface. It

achieves controlled motion and targeted dwellings in a high velocity
blood flow environment, providing a new idea for the precise
treatment of malignant tumors (Li et al., 2023). Micro-/
nanorobots powered by light are mainly actuated by
photoinduced catalysis in semiconductors, and the action of
light-driven micro-/nanorobots in biological tissues can be
controlled by adjusting light intensity, light frequency, light area,
light duration or by enhancing photocatalytic efficiency (Wang Q.
et al., 2020; Yang et al., 2021).Additionally, research on micro-/
nanorobots propelled by acoustics is essential, particularly the use of
ultrasonic waves that can penetrate biological tissues with greater
reliability (Díez et al., 2017; Mu et al., 2021). Wang et al. described a
novel intracellular antigen delivery strategy using ultrasound (US)-
propelled gold nanowires (AuNWs) nanomotors modfied with a
model antigen (ovalbumin, OVA). Due to the excellent
biocompatibility of AuNWs nanomotors, it can improve antigen
cross-presentation and cellular immunity and thus promote
immune efficiency of vaccines (Wang J. et al., 2021). In terms of
chemical drives, bubble propulsion mechanisms have received the
most attention to date. By adjusting the intensity and pulse of UV
irradiation, Mou et al. can remotely control whether or not bubbles
are generated, while utilizing the photocatalytic water redox reaction
on TiO2/Pt under UV irradiation16. It is important to note;
however, that bubble recoil propulsion does have limitations, and
the floating bubbles are unstable inmost physiological environments
outside of the gastrointestinal tract of human (Jang et al., 2019). As a
result of their inherent limitations, nanorobots remain challenging
in design and preparation today, including complex fabrication
techniques, difficulties in surface modification, difficulties in
flowing biofluids, and poor biocompatibility or poor
biodegradability, depending on the materials (Zhang et al., 2020).

There are many applications of nanomaterials, including drug
delivery, medical imaging, and other fields, that benefit from their
unique physicochemical properties and photothermal effects,
namely, its small size, light weight, easy adjustment, strong
penetrationand non-destructive penetration into biological
tissues. In recent years, nanomedicine has shown great potential
for applications. For instance, nanomedicines have been widely
applied. Since the first nanomedicine doxorubicin (DOX) was
introduced in 1995 (Barenholz, 2012), researchers have developed
a wide range of nanomedicines to date, including paclitaxel albumin
nanoparticles (Chen et al., 2021) and elitecan liposomes (Wang T.
et al., 2021), which are used to treat a variety of serious diseases. The
use of nanomedicine for disease monitoring and minimally invasive
surgery is among the many clinical applications of nanomedicine.
Consequently, the development of nanomedicine in disease
monitoring and minimally invasive surgery is not to be
underestimated, as nanorobots have many advantages over
conventional robots, including the ability to monitor and treat
lesions more efficiently (Mir et al., 2017).

1.1 Clinical applications of nanomedicine

Research for nanotechnology application in the medical field has
focused on the diagnosis of diseases, targeted delivery, and
minimally invasive surgical procedures. As a result of their small
size, light weight, flexibility, and nondestructive penetration into
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biological tissues, micro-/nanorobots achieve results that are
difficult or even impossible to achieve by conventional mean
(Fadeel and Alexiou, 2020). In terms of chemical reactivity,
fluorescence, magnetic permeability, and electrical conductivity,
nanomaterials demonstrate significant differences, and these
properties could lead to significant advancements in the
development of new drugs (Jacob et al., 2020). Imaging
techniques in the biomedical field are used to monitor the
pharmacokinetics and pharmacodynamics of nanomedicine, as
well as to improve nanomedicine-based therapeutic regimens in
preclinical research (Tuguntaev et al., 2022).

1.1.1 The use of nanomedicine in the treatment of
major diseases

With the unique advantages of nanotechnology, targeted drug
delivery has become a reality. By delivering therapeutic drugs
through nanocarriers and targeting their delivery to the focal
area, it is possible to increase the concentration of therapeutic
drugs in the focal area while minimizing side effects and damage
to non-targeted areas. Many nanomedicines have been developed by
researchers in the last few decades for different diseases, especially
for some major diseases, which have greatly reduced pain and
economic pressure for patients.

1.1.1.1 Oncology therapy related applications
The It is widely recognized that medical nanotechnology is a

promising approach to solve cancer challenges. Worldwide, cancer
is the leading cause of death, accounting for nearly 10 million (or
nearly one in six) deaths, according to a report published by the
World Health Organization (WHO). Among the conventional
cancer treatments, surgical resection, radiotherapy, and
chemotherapy are the most common. The current conventional
treatment for cancer kills cells indiscriminately in the focal area of
the body, causing severe pain to the patient during the treatment
procedure (Li et al., 2020). Drug delivery via nanomedicine carriers
is a viable alternative to conventional chemotherapy which suffers
from poor water solubility, poor tissue targeting, and severe systemic
toxic effects (Kumstel et al., 2020). Nanomedicine carriers increase
drug concentration within the target area and thus improve drug
utilization and efficacy by increasing the drug concentration in the
target area. As well, the nano drug carriers can be administered
within the tumor vasculature, thereby reducing the drug dose and
the toxic side effects on other tissues and organs.

In the world, liver cancer is the sixth most common type of
cancer. Hepatocellular carcinoma (HCC) has an 18% 5-year survival
rate, making it the second most lethal cancer following pancreatic
cancer. Its insidious onset and insensitivity to chemotherapy make
its treatment unsatisfactory (Zhang X. et al., 2016). As nanodrugs are
able to increase drug bioavailability and hepatic targeting while
reducing side effects on normal tissues, they offer greater
possibilities for treating hepatocellular carcinoma when
conventional therapies are ineffective (Bakrania et al., 2021;
Elnaggar et al., 2021). In the field of targeted therapies, sorafenib
(SOR) was the first systemic drug to demonstrate efficacy in patients
with advanced HCC and has been used as a first-line treatment for
more than 10 years. SOR alone is unlikely to achieve therapeutic
expectations because of its inherent toxic side effects and the
development of tumor resistance. This could be caused by the

development of resistant tumor variants. In addition to
traditional anticancer drugs, nanomedicines can be combined
together to enhance delivery, retention, and release of these drugs
into target cells and tumor tissues, thereby increasing the therapeutic
effectiveness of cancer treatment. The combination of SOR and
adriamycin has been proven to provide better therapeutic effects in
patients with advanced hepatocellular carcinoma in clinical trials.
Using a hybrid lipid-polymer nanoparticle containing a tumor-
targeting peptide (iRGD), Zhang J. et al. (2016) developed a
(DOX) and SOR delivery system containing iRGD (see
Figure 1A). In contrast to single drug delivery, the hybrid
delivery system resulted in greater bioavailability of the drug,
improving the effectiveness of the anti-tumor treatment. The
results of this study demonstrate that nanoparticles combined
with clinical anticancer drugs are capable of enhancing anti-HCC
efficacy, which is a direction of future research. In addition to the
combination of nanoparticles and anticancer drugs, the
combination of therapeutic nucleic acids and nanoparticles has
also shown promise for application. In the research of Oh et al.
(2016), DOX bound by electrostatic interaction was delivered
through liposomes coated with siRNA, and the combination of
DOX and siRNA inhibited tumor growth (see Figure 1B). Therefore,
synergistic antitumor therapy has the potential to effectively target
tumor cells and improve the antitumor effect, demonstrating its
great potential. A nanodrug (HA @ PDC-DOX2) was also developed
and synthesized by Wang J. et al. (2020), consisting of peptide-
adriamycin as the core and hyaluronic acid as the shell, to enhance
the stability and targeting capability of PDC-DOX2 (see Figure 1C).
A new gold nanoparticle (Do-AuNP) was successfully synthesized
from the extract of Dendrobium (DO), a traditional Chinese
medicine. Experimental results show Do-AuNP has better anti-
tumor efficiency as compared to gold nanoparticles in either vitro or
in vivo, providing a new approach (Zhao et al., 2021). One of the key
directions in nanomedicine research for the future will be to
combine nanoparticles with molecules, therapeutic drugs or
inter-nanoparticles in order to enhance the stability, therapeutic
effects, and reduce the toxic effects of nanomedicines.

In addition to being the most common malignant tumor in
women, breast cancer is also the leading cause of cancer deaths in
women. Researchers have developed a variety of nanomedicines
using a variety of materials to solve the problem of serious side
effects caused by therapeutic drugs. These nanomedicines target
cancer cells specifically and do not affect normal cells. It has been
reported that Cheng et al. (2021) have developed a novel
nanomedicine (CuQDA/IO@HA) containing copper ions and
quercetin to specifically target cancer cells via CD44 and induce
specific cytotoxicity in breast cancer (BRCA)-mutated cancer cells.
More importantly, CuQDA/IO@HA demonstrated no significant
adverse effects on normal tissues or organs, demonstrating the
ability to treat cancer cells by integrating metal ions with
nanomedicines. It is possible to reapply nanodrugs by integrating
metal ions. A number of nanomedicines based on nucleic acids,
including DNA and RNA, have been found to be particularly
effective when combined with chemotherapy. To enhance the
therapeutic efficacy and targeting on breast cancer, Zhan et al.
(2019) developed a novel tumor-targeting nanomedicine
(AS1411-T-5-FU) that was combined with 5-fluorouracil (5-FU)
using DNA-based delivery systems (see Figure 2A). As a result, this
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FIGURE 1
(A) Co-delivery of DOX and SOR by iRGD-modified lipid-polymer hybrid nanoparticles (Zhang J. et al., 2016). Reproduced with permission.
Copyright 2016, Nanomedicine: Nanotechnology, Biology and Medicine; (B) Schematic of preparation of Gal-DOX/siRNA-L (Oh et al., 2016).
Reproduced with permission. Copyright 2016, Nanomaterials; (C) Schematic illustration of formation of HA @ PDC-DOX2 (Wang J. et al., 2020).
Reproduced with permission. Copyright 2020, Materials Science and Engineering: (C)

FIGURE 2
(A) Schematic diagram of the structure of the nanomedicine (AS1411-T-5-FU) (Zhan et al., 2019). Reproduced with permission. Copyright 2019, ACS
Applied Materials & Interfaces; (B) Estimated atomic % of detected surface elements (Howard et al., 2022). Reproduced with permission. Copyright 2022,
Small.
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nanomedicine is capable of targeting and killing breast cancer cells
more effectively than 5-fluorouracil alone, showing DNA’s potential
as a nanomedicine material. Nucleic acid nanodrugs, however, face
considerable difficulties in clinical applications due to their poor
biocompatibility and low drug loading efficiency. Alternatively,
Howard et al. (2022) assembles herpes simplex virus (HSV1716)
with magnetic nanoparticles in order to precisely target cancer cells
through magnetic actuation (see Figure 2B), preventing antibodies
from attacking the virus in vivo before it can act, allowing the virus to
proliferate in cancer cells while accumulating immune cells in the
tumor, It can improve the treatment effect of disseminated tumors
by 50% by promoting antitumor immunity, inducing tumor
shrinkage, and increasing survival in a homozygous mouse model
of breast cancer. Each material has its own advantages and
disadvantages, and it appears to be a promising direction for
future research utilizing the advantages of the materials
themselves to their fullest extent and utilizing chemical coupling
as a means of circumventing their shortcomings.

It is extremely difficult to treat glioma using conventional
therapy as the blood-brain barrier severely hinders the anticancer
effects of chemotherapy on glioma. However, various specific
transporters on the blood-brain barrier can be utilized as targets
to deliver tumor drugs using targeted nanoparticle delivery systems
(Deng et al., 2020).Hortelao et al. designed an experimental
nanorobot which was modified by urease and constructed with
SiO2 as a shell. It can load therapeutic drugs into tumor cells for

release. As a result of loading nanobots with therapeutic drugs and
releasing them in the tumor area, the drug concentration in the focal
area increased and the drug utilization rate improved, and the drug
was also reduced as it was released into other tissues and side effects
were reduced (Llopis-Lorente et al., 2019). Therefore, it is apparent
that nanodrugs are more effective at breaking through the blood-
brain barrier than traditional chemotherapy treatments, which
offers more treatment options for those suffering from brain
diseases. The benefit of this approach is that it provides a greater
variety of treatment options for brain diseases and achieves a more
rapid therapeutic effect. Nevertheless, drug resistance is also a
problem when treating glioma with a single drug. The
combination of drugs, however, has good performance in treating
glioma. The synergistic effect of the combination of therapeutic
drugs and siRNA can significantly improve the anticancer effect in
various cancers. In an experiment conducted by Peng et al. (2018), a
targeted nanocarrier carrying temozolomide (TMZ) and anti-BCL-
2 siRNA was used to assess the physicochemical properties and
release profile of this drug, both in vitro and in vivo (see Figure 3A).
Moreover, the drug promoted targeted drug delivery and inhibited
tumor growth by activating pro-apoptotic genes in cancer cells,
resulting in a significant apoptotic response and prolonging patients’
survival periods. It is necessary to develop drugs for the treatment of
brain diseases that are capable of crossing the blood-brain barrier, as
well as to evaluate the clinical effectiveness of the drugs and to target
drug resistance.

FIGURE 3
(A) Schematic illustration of the preparation for TMZ-FaPec@siRNa micelle and the release of TMZ and siRNa inside cancer cells (Peng et al., 2018).
Reproduced with permission. Copyright 2018, International Journal of Nanomedicine; (B) Preparation process of the nanomedicine (Au/FeMOF@CPT
NPs) (Ding et al., 2020). Reproduced with permission. Copyright 2020, Advanced Science (C) Schematic diagram of the preparation of platelet
membrane-coated docetaxel (DTX)-loaded poly (lactic co-glycolic acid) (PLGA) nanoparticles (PM/PLGA/DTX) (Chi et al., 2019). Reproduced with
permission. Copyright 2019, Journal of Nanoparticle Research.
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Less than 5% of pancreatic cancer patients survive 5 years after
being diagnosed, making it the world’s deadliest cancer. To enhance
the quality of life and prolong the survival time of patients with
pancreatic cancer, Gao et al. (2020) proposed delivery of drugs by
ultrasound-targeted microbubble destruction (UTMD), which has
significantly improved the therapeutic effect on patients with
advanced pancreatic cancer. Due to its high biological toxicity,
however, it has some limitations when applied to patients who
are in good physical condition because it places high demands on
their physical function. As reported by Ding et al. (2020), a hybrid
nanodrug was fabricated (Au/FeMOF@CPT NPs) with metal
organic backbone nanoparticles (MOF) and gold nanoparticles
(Au NPs) (see Figure 3B), which improved the stability of the
nanodrug in the organism. It was effective because cancer cells
contain high concentrations of phosphate, resulting in the drug’s
complete release. Even though gold nanoparticles are one of the least
toxic metal nanoparticles, high concentrations may be genotoxic,
and drug safety needs to be considered as well (Desai et al., 2021a).
Nanomedicines are also being investigated for their potential
therapeutic applications in the treatment of tumors in other
organs, including the lung (see Figure 3C) (Chi et al., 2019;
Wang S. et al., 2020), the esophagus (Chen et al., 2020; Salapa
et al., 2020), and the cervical region (Sadoughi et al., 2021; Venkatas
and Singh, 2021). Considering nanomedicines’ excellent targeting

capability, future research should focus on improving the
bioavailability of drugs, increasing their concentration in tumor
sites, addressing possible drug resistance, and increasing their
therapeutic potential.

1.1.1.2 Endocrine disease treatment applications
Our standard of living has been improving in recent years, and

the lifestyle and diet structure have also been changing. As a result,
the incidence of diabetes mellitus (DM) and other diseases has been
increasing, while traditional hypoglycemic drugs have proved
difficult to treat diabetes, causing great inconvenience to patients
(Vessby et al., 2000). Additionally, diabetic patients are more likely
to require a prolonged hospital stay and have a higher cost of
hospitalization, particularly if they have chronic complications
(Karahalios et al., 2018). For the purpose of alleviating the side
effects associated with long-term insulin injections and the
administration of first-line diabetes treatments, including
biguanides, sulfonylureas, and glycosidase inhibitors, a variety of
nanoparticle-based delivery systems have been developed to replace
conventional medications (Chatzipirpiridis et al., 2015; Wang et al.,
2018). According toBanerjee et al. (2020), plasmid lipocalin
(pADN)-based nanodrugs were developed for treating insulin
resistance in type 2 diabetes in experiments with diabetic rats
(see Figure 4A). They avoided enzymatic degradation of the gene

FIGURE 4
(A) Schematic illustration of formation of chitosan-oleic-adipose homing peptide (AHP) micelles complexed with DNA (Banerjee et al., 2020).
Reproduced with permission. Copyright 2020, International Journal of Pharmaceutics; (B) Activation of intestinal L-cell GLP-1 secretion by lipid
nanoparticles (Beloqui et al., 2016). Reproduced with permission. Copyright 2016, Molecular Pharmacology; (C) Diagram of the functional role of
nanofiber-reinforced hydrogel (NFRH) (Qiu et al., 2021). Reproduced with permission. Copyright 2021, Journal of Colloid and Interface Science.
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product and significantly improved insulin sensitivity for up to
6 weeks, which is an effective therapeutic method. Due to the
pleiotropic nature of the secreted glucagon-like peptide (GLP),
L cells have attracted the attention of researchers, as Beloqui
et al. (2016) A nanostructured lipid carrier was added to L cells,
and the experimental results showed that nanostructured lipid
carriers can increase GLP-1 secretion in murine and human L
cells, which results in increased GLP-1 secretion for diabetes
treatment purposes. In order to treat diabetes, exosomes can be
used as nanomaterials (see Figure 4B). It has been found that these
agents are capable of influencing both glucose and lipid levels,
primarily through promoting glucose metabolism, enhancing
lipid metabolism, and reducing lipid deposition (Ashrafizadeh
et al., 2022). Therefore, they can serve as a new strategy for the
treatment of diabetes.

A major focus of current research is the use of nanomedicines to
treat diabetic complications, in addition to diabetes itself. Patients
with diabetes are at risk for a variety of complications, including
diabetic foot, diabetic neuropathy, diabetic nephropathy, diabetic
retinopathy, etc. (Desai et al., 2021b; Balogh et al., 2022) One of the
most common, serious, and expensive complications of diabetes is
diabetic foot. As a result of hyperglycemia and abnormal glucose
metabolism, diabetic patients develop lesions, neuropathy, and
infection, making diabetic foot wounds difficult to heal and
leading to long-term inflammation (Tatulashvili et al., 2020). In
the case of diabetic feet, conventional treatment methods, such as
blood glucose control and wound debridement, fail to heal the
wound in a timely manner, and once infection occurs untreated,
amputation is the only option (Mariadoss et al., 2022). Therefore, a
drug capable of improving poor wound healing is urgently needed
for diabetic. There has been some discussion regarding the potential
value of nanomaterials in wound healing and infection control in
this regard (Pormohammad et al., 2021; Simos et al., 2021). The
development of polymeric, metallic, and ceramic nanomaterials for
the treatment of acute and chronic wounds has been found to
accelerate the regeneration of damaged dermal and epidermal
tissues (Parani et al., 2016). Nanoparticles of silver (AgNPs)
synthesized by Varaprasad et al. (2010) are suitable for use as
antimicrobial dressings and wound dressings, which represents
an important advancement in the field of antimicrobial dual-ion
technology. By disrupting bacterial biofilms and causing aggregation
of blood cells and platelets, the peptide-modified NFRH developed
by Qiu et al. (2021) may accelerate wound healing by disrupting
bacterial biofilms (see Figure 4C). A growing number of diabetic
patients are living in China, which has led to an increased need for
treatment of diabetes and its complications, especially the severe
complications of diabetes.

1.1.1.3 Circulatory system therapeutic applications
The pathogenesis of many diseases, including deep vein

thrombosis, pulmonary embolism, and ischemic stroke, involves
thrombosis (Priya et al., 2021). In clinical practice, antiplatelet
agents, anticoagulants, and fibrinolytic drugs are commonly used
in the treatment of thrombosis, including arterial and venous
thrombosis (Loyau et al., 2018; Khoukaz et al., 2020). In contrast,
traditional thrombolytic drugs have a short half-life, low
bioavailability, poor targeting, and low output efficiency, and the
treatment must be repeated multiple times. An efficient drug is

urgently needed to combat the encroachment of thrombotic disease
in patients. Researchers have thus turned their attention to the
treatment of thrombosis after nanomedicines were first introduced
for the treatment of oncological diseases. Worldwide, ischemic
stroke is one of the leading causes of severe disability and death,
posing a serious public health problem as well as an economic
burden on families of patients. Blood supply to the brain from blood
vessels is impeded by thrombosis, resulting in a sudden reduction in
cerebral blood flow caused by a series of pathological changes. These
changes ultimately lead to cerebral ischemia, which can result in
severe disability and even death (Ma et al., 2021). Consequently, a
variety of nanomedicines have been developed with the goal of
improving the effectiveness and precision of thrombosis treatments
(Su et al., 2020). Timely and effective thrombolytic therapy is of
great clinical significance, and nanomedicines such as liposomes,
polymer nanoparticles, and magnetic nanoparticles offer great
potential (Liu et al., 2018). Furthermore, Xu et al. (2019)
developed a dextran-derived polymeric nanoparticle-based
nanocarrier (tP-NP-rtPA/ZL006e) for simultaneous delivery of
tissue fibrinogen and dextran-derived polymeric nanoparticles
(see Figure 5A). Compared to conventional free drugs, this
nanodrug reduced the ischemic area more effectively in in vitro
and in vivo experiments. By contrast, the small extracellular vesicle
(sEV)-based drug delivery system developed by Loch-Neckel et al.
(2022) is endogenous nanovesicles that have excellent targeting
capabilities and are naturally biocompatible (see Figure 5B).
These devices are more advantageous in treating CNS diseases,
providing greater benefits for the treatment of Alzheimer’s disease,
brain tumors and other diseases, as they can cross the blood-brain
barrier and target specific nerve cells. Nanomaterials have also
shown great potential when combined with traditional Chinese
medicine. Salvianolic acid B(SAB), a water-soluble phenolic acid
derived from Salvia miltiorrhiza, a traditional Chinese medicine.
According to Zhang S. et al. (2022), the RR@SABNPs are a brain-
targeted bionanopharmaceutical made of bovine serum albumin
nanoparticles that contain salvianolic acid and functionalized red
blood cell membranes that contain salvianolic acid. In addition to
stability, it is biocompatible as well. Influenced by single-cell
organisms, Zhang et al.propose a strategy to use programmed
alternating magnetic fields to enable amoeboid microrobots to
more effectively deliver thrombolytic drugs and unblock embolic
vessels (Zhang et al., 2023).

Furthermore, in a mouse model of infarction, the drug
significantly scavenged excess reactive oxygen species and
reduced infarct size. It is anticipated that the number of patients
who suffer from severe disability or even death as a result of
thrombosis will be greatly reduced.

1.1.2 Other disease treatment related applications
Nanomedicine has also demonstrated promising results in the

research of diseases other than tumors and blood clots mentioned
above. As the sixth leading cause of death in humans, pneumonia is
caused by a variety of pathogens such as bacteria, viruses, and fungi
that cause damage to lung tissue or interstitial lung. Despite their
effectiveness in treating common pneumonia, conventional drugs
are less effective in treating some critically ill patients, such as those
with acute lung injury. In light of this, the development of new drugs
for the specific treatment of critically ill patients is one of the most
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hotly debated topics in current research (Muhammad et al., 2022).
According to Mukhaerjee et al., silver Prussian blue (PB) analog
nanoparticles (SPBANPs), a new nanopharmaceutical formulation
developed by combining PB with silver salts (silver nitrate). The
SPBANPs demonstrated excellent antibacterial activity in Gram-
negative bacteria (Escherichia coli, Klebsiella pneumoniae, and
Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus
subtilis) (Mukherjee et al., 2020). A worldwide pandemic of
COVID-19 has caused the development of vaccines, and
nanotechnology has been an integral part of the development of
efficient, safe, and relatively affordable vaccines based on
nanomedicine principles in order to control the pandemic (Al-
Hatamleh et al., 2021; Shapiro, 2021). It has been determined that
vaccines based on nanomedicine principles will be effective, safe,
and cost-effective in the fight against the COVID-19 pandemic
across the globe. Nanotechnology has played an integral part in
developing such vaccines (Tang et al., 2017; Niu et al., 2021).
William M. Pardridge develops a drug that both encapsulates
plasmid DNA encoding a therapeutic gene and crosses the
blood-brain barrier (BBB). The drug uses Trojan horse liposomes
(THL), also known as polyethylene glycolated immunoliposomes,
formed by encapsulation of plasmid DNA inside polyethylene
glycolated liposomes with a net anionic charge, and THL is

developed as a receptor-targeted nanomedicine for the treatment
of human central nervous system disorders. (Pardridge, 2020).

1.2 Diagnostic applications of nanomedicine

Through the advancement of nanotechnology, nanomaterials of
various types, shapes, and sizes are being applied to biosensors in
order to enhance their sensitivity and accuracy in detecting diseases
(Spychalska et al., 2020). Salahandish et al. (2018), for instance, used
graphene, a material which is highly thermally stable and has good
gas barrier properties. For the detection of miRNA-21, which is a
breast cancer marker, a graphene-based (NFG) nanosensor with
silver nanoparticles (AgNPs) is developed with high sensitivity,
which could be useful for the early diagnosis of breast cancer
(see Figure 6A). Zhang et al. proposed the use of magnetic
properties of iron oxide nanoparticles as MRI contrast enhancer.
Such particles can form magnetic fields and are easily deformed and
manipulated. This method makes MRI of lesion sites easier to
visualize and also effectively reduces the amount of contrast
agent used (Zhang Z. et al., 2022).

During the treatment of diabetes, it is imperative to develop
new methods of monitoring blood glucose levels, since the

FIGURE 5
(A)Main components of the tP-NP-rtPA/ZL006e (Xu et al., 2019). Reproducedwith permission. Copyright 2019, ACSNano; (B) Schematic illustration
of formation of sEV biogenesis (Loch-Neckel et al., 2022). Reproduced with permission. Copyright 2022, Front. Pharmacol.
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current methods are relatively cumbersome to diagnose and
monitor. Biosensors based on nanoparticles offer increased
glucose monitoring sensitivity, allowing clinicians and
researchers to quantify diabetes levels and make further
diagnoses with greater accuracy (Kovatchev, 2018; Wang Y.
et al., 2021).

1.3 Surgical procedures utilizing
nanomedicine

It is also possible to use nanomedicine technology in minimally
invasive surgical procedures. Since micro-/nanorobots are small and
lightweight, they offer increased flexibility in narrow biological
tissue environments. Macro-/nanorobots can perform a number
of precise micro-operations and reduce tissue damage during
surgery, as well as perform functions that macro-/nanorobots
cannot.

In a live rabbit eye, Chatzipirpiridis et al. successfully
operated a micro-/nanorobot wirelessly by rotating around
its axis and injecting a 23-gauge needle into the central
vitreous fluid (see Figure 6B) (Chatzipirpiridis et al., 2015).
Researchers insert nanorobots into rat brains through the nose
to perform different types of movements by regulating the
magnetic field. They are currently investigating the insertion
of magnetic microrobots into neural tissue to induce behavioral
changes in small mammals (Soto et al., 2020). In the future, it
may be possible to develop micro-/nanorobots that can treat
diseases in other narrow areas of the human body. In this study,
it has been shown that micro-/nanorobots can significantly
reduce tissue damage during surgery owing to their own
properties, and their use in minimally invasive surgery holds
great promise. It has demonstrated excellent potential in
experimental studies, even though it has not yet been able to
be scaled up to the clinical setting.

2 Nanomedicine faces numerous
challenges

In Micro-/nanorobots are much smaller than macro-robots and
they can pass through biological tissues to reach the lesion, allowing
precise micro-operations and accurate drug delivery in complex
biological environments. There is a great deal of potential in
nanotechnology for the future. Medical nanotechnology still faces
many problems in practical clinical applications despite the
numerous breakthroughs and innovations in nanotechnology and
materials science in recent decades.

1) Micro-/nanorobots are used to deliver nanomedicines due to
their small size, allowing them to penetrate deep into biological
tissues with less damage and to cross the blood-brain barrier to
reach sites which conventional drugs are unable to reach.
However, their drug-carrying capacity is slightly insufficient,
and they can also have difficulty transporting large molecules.
Therefore, further research is needed to promote nanorobots to
break through in vivo biological barriers and achieve multi-drug
carriage more effectively.

2) A crucial aspect of the development process is the selection of
nanomaterials. In particular, the preparation of micro-/
nanorobots that utilize naturally occurring microorganisms in
nature must address the problem of life support for
microorganisms as well as the provision of nutrients necessary
for their growth. It is important to consider the toxicity,
degradability and applicability of the materials used in the
preparation of micro-/nanorobots using artificial technologies
(such as 3D printing) and whether they can be widely used.

3) Depending on the degree of lesions, the appropriate amount of
nanomedicine should be released, as well as how to provide timely
and accurate feedback regarding whether the expected effect has been
achieved. When the drug has been delivered and released into the
body, it should be completely and safely discharged outside the body.

FIGURE 6
(A) Schematic illustration of formation of nanocomposite fabrication (Salahandish et al., 2018). Reproduced with permission. Copyright 2018,
Biosensors and Bioelectronics; (B) cobalt-nickel (CoNi) microtube steered along a vein in a porcine eye (Chatzipirpiridis et al., 2015). Reproduced with
permission. Copyright 2015, Advanced Healthcare Materials.
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4) Currently, cross-disciplinary cooperation and exchange are
insufficient; basic research needs to be improved, and some
important theoretical issues involving nanomedicines still
require further study.

3 Overview and outlook

With continuous innovations and breakthroughs in nanomedicine
technology, diagnosis and treatment at the microscopic level are
increasingly becoming a reality, and nanomedicine technology is
widely used in clinical treatment, disease diagnosis and other
medical fields. However, nanomedicine does not yet have a perfect
solution to many major diseases, and safety issues and other problems
remain challenging. However, the system is not yet perfect and some
problems still exist. In the field of nanomedicine technology, solving the
material, functional and safety-related problems of nanocarriers is still a
hot spot for research with wider potential applications, which deserves
more in-depth exploration and research.
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