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In severe or complex cases of peripheral nerve injuries, autologous nerve grafts are
the gold standard yielding promising results, but limited availability and donor site
morbidity are some of its disadvantages. Although biological or synthetic
substitutes are commonly used, clinical outcomes are inconsistent. Biomimetic
alternatives derived from allogenic or xenogenic sources offer an attractive off-
the-shelf supply, and the key to successful peripheral nerve regeneration focuses
on an effective decellularization process. In addition to chemical and enzymatic
decellularization protocols, physical processes might offer identical efficiency. In
this comprehensive minireview, we summarize recent advances in the physical
methods for decellularized nerve xenograft, focusing on the effects of cellular
debris clearance and stability of the native architecture of a xenograft.
Furthermore, we compare and summarize the advantages and disadvantages,
indicating the future challenges and opportunities in developing multidisciplinary
processes for decellularized nerve xenograft.
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1 Introduction

The current gold standard for peripheral nerve repair in segmental defects is autologous
nerve grafting (Kalomiri et al., 1994). However, several limitations hamper the clinical
practice, such as limited supply, donor site morbidity, and size discrepancy (Hu et al., 2009).
Alternative autologous nerve substitutes, such as autologous veins, muscles, and tendons
have been utilized with variable outcomes (Ray et al., 2011). Because of the abovementioned
drawbacks, tissue engineered nerve grafts (TENG) were developed, aiming to provide a
biomimetic scaffold for peripheral nerve regeneration (Houschyar et al., 2016). Although the
Food and Drug Administration had approved several off-the-shelf synthetic nerve conduits
on the market, but most of them are limited to nerve gaps <3 cm or <0.5 cm in small or large
diameter nerves, respectively (de Ruiter et al., 2009). In addition, a recent review does not
support the use of currently available TENG over standard nerve repair (Thomson et al.,
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2022). To achieve a better outcome in longer nerve gaps, nerve
allografts are harvested and processed under a commercial
decellularization process. Avance®, a mature commercial product
which is produced by processing human nerve tissue with a
combination of detergent decellularization, chondroitinase CSPG
degradation, and gamma-irradiation sterilization, has clinical
evidence to overcome up to 70 mm nerve gap in sensory, mixed,
and motor nerve repair (Gunn et al., 2010; Safa et al., 2020).
However, limited donor sources, high costs, low temperature
preservation, and potential immune rejection still remain as
clinical concerns for its wide usage.

Xenotransplantation was developed due to the unlimited
availability of sources. In general, fresh xenografts elicit an
immune response that causes graft rejection. The presence of
non-self-antigenic epitopes triggers the activation of T- and
B-lymphocytes. This, in turn, leads to the activation of an
immune response mediated by antibodies, ultimately resulting in

the rejection of these cells. (Fox et al., 2001; Vadori and Cozzi, 2014;
Lopresti et al., 2015). Despite using immunosuppressive drugs,
decellularization is an effective approach to utilize the xenogeneic
and allogeneic tissues. The cellular components of tissues are the
main cause of an adverse host response. To mitigate immune
rejection, several decellularization techniques were developed to
remove cellular components to reduce immunogenic reactions
while preserving native scaffold or extracellular matrix (ECM)
microstructure (Rana et al., 2017). Several recent studies reported
that acellular nerve xenografts have similar effects on regeneration
and immunocompatibility compared with acellular nerve allografts
(Zhang et al., 2010; Huang et al., 2015). The concept of
Decellularized extracellular matrix (dECM) is established as using
various methods (physical, enzymatic, or chemical) to lyse cells and
remove the intracellular components from a tissue while preserving
the native extracellular components and the cues for cell
proliferation and differentiation (Dahl et al., 2003; Lopresti et al.,

FIGURE 1
The physical processing methods for tissue decellularization of nerve xenograft, including freezing and thawing cycle, sonication, immersion and
agitation, perfusion and supercritical fluids.
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2015; Kim et al., 2019). Although regeneration can occur in short
nerve gaps regardless of an immune response, nerve growth was
suppressed in long nerve gaps (Choi and Raisman 2003).

Zhang and Chen summarized several decellularization protocols
along with their mechanisms and disadvantages, including physical,
chemical, and enzymatic treatments in organ or tissue (Zhang et al.,
2022). For nerve growth, a biomimetic neural scaffold is crucial, and
thus, limited decellularization methods are applicable. Chemical-
based decellularization was widely used in nerve tissues, but the
major concern was the possible interruption of nerve growth by the
residual chemical agents (Han et al., 2019). Enzymatic treatments
provide high specificity for the removal of cellular components;
however, they cannot be removed completely that might induce
severe distortion of the ECM structure.

This minireview aims to focus on the latest five physical-based
decellularization methods for peripheral nerve xenotransplantation
(Figure 1). Table 1 summarizes the mechanisms, advantages, and
disadvantages of the current physical processing methods.

2 Different approaches of physical
processing

This minireview aims to clarify the latest four physical-based
decellularization methods for peripheral nerve xenotransplantation
(Figure 1). Table 1 summarizes the mechanisms, advantages, and
disadvantages of the current physical processing methods.

2.1 Freeze–thaw cycles

Freeze–thaw cycles refer to a repetitive freeze-drying process
(Zhang et al., 2022). In nerve xenografts, the aim of cold preservation
and freeze–thaw cycles is to destroy the nerve cell membranes by
inducing the formation of intracellular ice crystals, thereby reducing

the immunogenicity of nerve xenografts (Hare et al., 1993; Fox et al.,
2005; Philips et al., 2018). Cold preservation and freeze–thaw cycles
are easy to manipulate and an initial step in many decellularization
protocols, as the protocols can be adjusted according to nerve length
and diameter, depending on the laboratory preferences (Lasso and
Deleyto, 2017).

However, studies have shown that the ultrastructure of nerves
may be damaged by the freeze–thaw cycles, although the mechanical
properties of the nerves are preserved (Osawa et al., 1990; Evans
et al., 1998). A slower recovery in rats that received frozen grafts
compared with those that received fresh autografts in a 2 cm
median-nerve-gap rat model using Beagle dog acellular frozen
xenografts indicate that freezing leads to a barren
microenvironment for nerve regeneration (Accioli De
Vaconcellos et al., 1999). Furthermore, the freeze–thaw process
led to nerve xenograft rejection caused by the residual cells and
debris (Lu et al., 2009). Despite the easy manipulation of freeze-thaw
cycles, they might be responsible for damage to the nerve
microstructure and a depleted environment for nerve regeneration.

2.2 Perfusion

Perfusion refers to the process of introducing circulating agents
through the intrinsic vascular system of organs or tissues. This
technique is typically used in larger, thicker tissues or whole organs
(Goh et al., 2018). Only one study has reported the use of perfusion
decellularization in peripheral nerve repair. Wüthrich and Lese
applied perfusion decellularization to surgically procured
vascularized porcine sciatic nerves (Wüthrich et al., 2020). A 3D
microcomputed tomography imaging showed preserved vasculature
and the ECM component. The dissected graft contained more
external connective tissues, and the measurable growth factors
were detectable at low levels. These results suggest that the
biological activity of the graft may be retained and could

TABLE 1 Summary of current physical processing methods for decellurized nerve xenograft.

Method Mechanism Xenograft
source

Advantages Disadvantages References

Freeze-thaw
cycles

Intracellular crystallization
causes cell death

porcine,
rabbit, dog

easy, low-cost limited ability to eliminate cells Ide (1983), Ide, Tohyama, Yokota,
Nitatori, & Onodera (1983), Osawa
et al. (1990), Evans et al. (1998), Hess
et al. (2007), Jesuraj et al. (2014),
Kaizawa et al. (2017), Philips et al.
(2018)

Sonication rupture the cell membrane via
generating acoustic cavitation

rabbit low-cost; can shorten
processing time

can’t remove DNA content Hudson et al. (2004), Boriani et al.
(2017), Bolognesi et al. (2022), Suss
et al. (2022)

Perfusion Pressure induced by perfusion
via natural vasculature can
remove cellular components

porcine might overcome long
nerve gap

surgical complexity, donor site
morbidity and limited nerve
availability

Wüthrich et al. (2020)

avoid ischemic damage
and central necrosis

Immersion and
Agitation

isolate and remove cells from
the tissue

rat Easy, might overcome
long nerve gap

Time consumable Vasudevan et al. (2014)

Supercritical
fluids

Uncertain porcine environmental friendly,
nontoxicity, low cost,
disinfection

low ability of defatting Isenschmid et al. (1995), White et al.
(2006), Casali et al. (2018), Topuz et al.
(2020), Wei et al. (2022)
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promote nerve regeneration. An in vitro study revealed the potential
for re-endothelialization, but no in vivo study has been conducted
yet. These nerve scaffolds can be created for specific lesions and are
becoming increasingly available, with the potential to overcome
large nerve gaps.

2.3 Immersion and agitation

Immersion and agitation refers to the process of submerging
tissues into decellularization solutions with constant mechanical
agitation (Crapo et al., 2011; Zhang et al., 2022). Compared with
perfusion treatment, immersion and agitation is used in
processing small, fragile and thin sections of tissues without
innate vascular structures (Alshaikh et al., 2019). The
efficiency of this method depends on different paraments
including agitation intensity, decellularization agent and tissue
dimension (Duisit et al., 2018). Immersion and agitation methods
of tissue decellularization have been described for a wide variety
of tissues, including peripheral nerves (Hudson et al., 2004;
Karabekmez et al., 2009; Vasudevan et al., 2014). However,
most of the decellularization solutions were chemical,
detergent, or enzymatic solutions (Keane et al., 2015). To the
best of our knowledge, only Vasudevan et al. reported an
immersion and agitation method with detergent-free solution
in peripheral nerve field (Vasudevan et al., 2014). In their design,
the nerve grafts were immersed with detergent-free solution and
were cultured at 37°C with 5% CO2 for 2 weeks under constant
agitation, which was performed to initiate Wallerian
degeneration in vitro to clear axonal and myelin debris inside
the nerves. In the 3.5-cm sciatic nerve transection rat model,
nerve regeneration was identical to that of detergent-processed
grafts, while the functional nerve regeneration was only observed
in detergent-free decellularized grafts at 12 weeks. This method
did not significantly affect the ECM surface structure, collagen
structure and integrity, mechanical strength, and GAG content,
but may cause more damages to tissues due to the limited
diffusion of chemical, detergent, or enzymatic decellularization
solutions by agitation (Wilson et al., 2016; Simsa et al., 2019;
Zhang et al., 2022).

2.4 Sonication

Sonication is a method of rupturing the cell membrane by
generating acoustic cavitation bubbles and inducing shear stress
effect. It can assist in the penetration of agents by vibration as well as
remove cellular debris. It was demonstrated that coupling
freeze–thawing with sonication contributes to a cell-free and
aseptic xenograft in a shorter time than applying freeze–thawing
alone in a rabbit peripheral nerve model (Boriani et al., 2017). Based
on these results, they further developed a newmethod of soaking the
nerve tissues in decellularizing solutions, with combination of
sonication and freeze–thaw cycles (Bolognesi et al., 2022). This
new method was validated through histology and
immunohistochemistry, showing its application to decellularized
xenografts with similar or better results compared with the Hudson
technique (Hudson et al., 2004). However, it was observed that

sonication during chemical decellularization did not remove
deoxyribonucleic acid (DNA) content but only cellular debris
and myelin sheaths (Suss et al., 2022). So far, no study has
utilized sonication as a single process for xenograft decellularization.

2.5 Supercritical fluids

Supercritical fluids are fluids above their critical pressure and
temperature that possess characteristics such as low viscosity and
high diffusivity. Supercritical carbon dioxide (ScCO2) is an
environmentally friendly solvent that is widely used in the field
of biomedicine and biomaterials due to its nontoxicity, low cost,
and superior disinfection and sterilization abilities (Subramaniam
et al., 1997; Casali et al., 2018). It has a critical pressure 7.38 MPa
and a critical temperature 31°C. ScCO2 has been shown to remove
cells from the tissues while maintaining the ECM structure.
However, the exact mechanism by which this occurs is unclear.
The hypothesis that high pressure induces cell bursting, as claimed
by Topuz et al., has been refuted (Isenschmid et al., 1995; White
et al., 2006). It is hypothesized that ScCO2 might induce hypoxia,
which has been validated by histological and morphological
analyses after successful decellurization of bovine optic nerves
using ScCO2 (Topuz et al., 2020). Wei et al. developed a porcine
acellular nerve xenograft based on supercritical extraction
technology and validated it in a 15-mm rat sciatic nerve model
(Wei et al., 2022). A porous nerve basement membrane with a well-
preserved 3D structure was observed. Low cytotoxicity was noted
in vitro, leading to decreased immune response in vivo. The ScCO2

treatment group was found to be similar to the autologous nerves
in terms of regenerated nerve quality, target muscle wet weight
regain, and motor function recovery. Moreover, the hybrid
detergent plus ScCO2 treatment demonstrated better outcomes
in terms of decellularization and defatting compared to ScCO2

alone (Casali et al., 2018).

3 Challenges and opportunities

In recent decades, tissue engineering has been applied in the field
of regenerative medicine to peripheral nerve repair, relying on the
three main pillars: scaffolds, cells, and growth factors (Carvalho
et al., 2019). In scaffolds, preserving the biomimetic
microenvironment is essential, whereas in xenografts, the
removal of cells is critical to prevent subsequent immune
rejection. Gilpin and Yang et al. measured four aspects of the
decellularized ECM to assess the quality of decellularization:
removal of cells, elimination of genetic material, preservation of
the protein content, and retention of the mechanical properties
(Gilpin and Yang, 2017). Carpo et al. proposed specific criteria for
assessing the efficacy of cell removal: the decellularized ECM must
have the following: 1) less than 50 ng double-stranded DNA per mg
ECM dry weight, 2) less than 200 bp DNA fragment length, and 3)
no visible nuclear material by 4′,6-diamidino-2-phenylindole
staining (Crapo et al., 2011).

Chemical and enzymatic approaches are the most widely applied
methods for peripheral nerve decellularization, but the possible
toxicity of the chemicals and destruction of the ECM proteins
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are major drawbacks of these methods. Physical treatments like
modulating temperature or pressure have been effective, but it
comes with limitations because of the natural architecture of
nerves. Freeze–thawing is widely used and an important step in
all decellularization protocols. However, debris retention and
potential microstructure damage might restrict the in vivo
therapeutic effects. Perfusion decellularization was developed to
overcome long nerve gaps using vascularized porcine sciatic
nerves, but the evidence of an in vivo study is lacking.
Immersion and agitation decellularization is commonly used but
generally with chemical, detergent, and/or enzymatic solutions.
Sonication is integrated with other methods to assist in removing
cellular debris. However, the clearance of DNA content is
questionable. Supercritical fluids show promise with advantages
of nontoxicity, low cost, superior disinfection and sterilization
abilities, and can solely and effectively remove cells. Pure physical
treatment has a limited but acceptable effect in decellularization
compared with chemical and enzymatic approaches. Both
immersion and agitation and supercritical fluids had shown that
identical decellularization efficacy can be achieved as compared to
chemical or enzymatic approaches. Further investigations are
required to validate the in vivo therapeutic outcomes. With
comprehensive understanding of the physical processing
methods, multidisciplinary integration of different approaches are
expected to elicit accumulative benefits, in terms of reducing
immunogenicity and preserving the mechanical properties and
microenvironment of native nerve tissue.
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