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B. anthracis is one of the most often weaponized pathogens. States had it in their
bioweapons programs and criminals and terrorists have used or attempted to use
it. This study is motivated by the narrative that emerging and developing
technologies today contribute to the amplification of danger through greater
easiness, accessibility and affordability of steps in the making of an anthrax
weapon. As states would have way better preconditions if they would decide
for an offensive bioweapons program, we focus on bioterrorism. This paper
analyzes and assesses the possible bioterrorism threat arising from advances in
synthetic biology, genome editing, information availability, and other emerging,
and converging sciences and enabling technologies. Methodologically we apply
foresight methods to encourage the analysis of contemporary technological
advances. We have developed a conceptual six-step foresight science
framework approach. It represents a synthesis of various foresight
methodologies including literature review, elements of horizon scanning, trend
impact analysis, red team exercise, and free flow open-ended discussions. Our
results show a significant shift in the threat landscape. Increasing affordability,
widespread distribution, efficiency, as well as ease of use of DNA synthesis, and
rapid advances in genome-editing and synthetic genomic technologies lead to an
ever-growing number and types of actors who could potentially weaponize
B. anthracis. Understanding the current and future capabilities of these
technologies and their potential for misuse critically shapes the current and
future threat landscape and underlines the necessary adaptation of biosecurity
measures in the spheres of multi-level political decisionmaking and in the science
community.
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1 Introduction

Historically, mostly naturally occurring pathogens, such as B. anthracis were developed
as biological weapons (BWs) due to their inherent infectious and often lethal characteristics
(Frischknecht, 2003; Kaufer et al., 2020). The past decades have witnessed an immense
increase in the rate of development and research related to life sciences for both industry and
academia with applications in all relevant fields. Some of these technological advances and
scientific techniques have an exceptional dual-use and hence misuse potential (Lentzos,
2016; Kaufer et al., 2020; Kosal, 2021; World Health Organization, 2022), and could be
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adapted to develop a new class of advanced BW agents. These can be
engineered to elicit enhanced or new effects and alter them to
become devastating agents for biological warfare or bioterrorism
(Ainscough, 2002; Paris, 2023). However, it is the combination of
different technological achievements and developments that
together can lower the thresholds for the development of novel
biological and chemical weapons.

Multiple national and international legislative regulations such
as the Biological Weapons Convention (BWC) provide legally
binding measures to prevent the work with biological agents for
non-peaceful purposes. Their aim is summarized in the so-called
“general purpose criterion”, Article I of BWC, additionally, Article
IV obligates states-parties “to prohibit and prevent the development,
production, stockpiling, acquisition or retention of the agents,
toxins, weapons, equipment and means of delivery specified in
Article I of the Convention, within the territory of such State,
under its jurisdiction or under its control anywhere.” (United
Nations, 1972). Furthermore, multiple export regime controls,
such as the Australia Group (AG) (The Australian Department
of Foreign Affairs and Trade, 1958) and the Wassenaar
Arrangement (Wassenaar Arrangement Secretariat, 1995) have
been implemented to prevent the proliferation of dual-use goods
and technologies and to promote the transparency of national
export control regimes. Moreover, the United Nations Security
Council Resolution 1540 (2004) (United Nations Security
Council, 2004) obligates states to implement measures against
terrorism with nuclear, chemical and biological weapons. With a
view to BWs, however, concerns are raised that emerging
technologies might serve especially bioterrorists to circumvent
existing biosecurity regulations and governance raising legitimate
questions about the existing biosecurity landscape (Trump et al.,
2021a; DiEuliis, 2022). While such concerns have been raised before,
the current threat landscape is more complex than when discussed
in 1971 (United States Arms Control and DIsarmament Agency,
1971) or 2001 (Zilinskas, 2020).

Synthetic biology (SynBio) is an emerging technology withmany
useful applications exemplifying the technological power inherent to
biotechnology like the generation of synthetic viruses, bacteria, and
eukaryotic cells (Venter et al., 2022), partly synthetic chloroplasts
(Miller et al., 2020), the generation of photosynthetically more
efficient C3-plants (South et al., 2019), or the by now well-known
mRNA vaccines (May 2021). However, it is one of the major
categories of dual-use research of concern (DURC) for
pathogenic microorganisms (MacIntyre, 2015; Sun et al., 2022).
With SynBio normally benign microorganisms can be engineered to
secrete toxins or even hard-to-obtain regulated pathogens could be
assembled in the laboratory (Singh and Kuhn, 2019; Sanz et al.,
2022). Genetic modification by editing, deleting, and inserting
desired sequences into targeted sites of a genome (Eisenstein,
2020; Hoose et al., 2023; Yeom et al., 2023) by harnessing the
clustered regularly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated protein (Cas)9 system for genome editing (Jinek
et al., 2012; Zhang et al., 2020) may increase the bio-threat potential.
In addition, many important biotechnological techniques bear a
dual-use and hence misuse potential such as whole-genome
sequencing or oligonucleotide synthesis and DNA assembly
(assembling multiple smaller fragments of oligonucleotides into
the desired larger sequence). Using Golden Gate and Gibson

assembly technologies, artificial DNA molecules can be
synthesized with greatly reduced cost and time. In fact, the cost
of oligonucleotide synthesis has dropped as low as $0.07–0.1 per
base and continues to decrease (Sun et al., 2022; Hoose et al., 2023).

Furthermore, such advances do not occur in a vacuum, they are
accompanied, supported, and further enhanced by converging
technologies from other fields of science. Surely, one of the
most influential fields is that of bioinformatics additionally
boosted by the advent of artificial intelligence (AI) and machine
learning, enabling all branches of omics, biomedical imaging, and
signal processing (Min et al., 2016), as well as protein structure
prediction (Jumper et al., 2021). Other converging technologies
entail robotics relevant for manufacturing and drones, additive
manufacturing leading up to 3D bioprinting (Ozbolat et al., 2016),
and nanotechnology with application in physics, chemistry,
biology, engineering, and medicine (Bracamonte, 2023; Malik
et al., 2023; Singh and Kaur, 2023). Furthermore,
meteorological data improved critically as an enabling
development in biowarfare (Hemming and Macneill, 2020;
Levinson, 2022). Taken together, these emerging and
converging technologies pave the way for new applications for
the weaponization, dissemination, and delivery of biological
weapon agents (Brockmann et al., 2019; Kosal and Kosal, 2020;
Favaro et al., 2022). Such new agents and BW delivery systems
(e.g., drones and advanced aerosolizers) could provide an array of
additional and novel use options, expanding the BW paradigm
(Pethő-Kiss, 2022) innovative approaches to counterproliferation,
detection, mitigation, medical countermeasures, and forensics for
attribution. Consequently an adaptation or a change in the
biosecurity architecture including biodefense, preparedness, and
prevention is necessary (National Academies of Sciences, 2018;
Trump et al., 2021b).

Indeed, thus far mostly state actors have been applying advanced
technologies for weapons production, at least in past programs
(Caudle et al., 1997; Riedel, 2004). Hence, traditionally, concerns
over the misuse of, for example, genetic engineering have focused on
state-sponsored biological warfare programs possessing the
necessary high level of knowledge, skills, and resources to
accomplish this challenging and multifaceted task. However, the
increasing affordability, widespread distribution, as well as efficiency
and ease of use of DNA synthesis and together with rapid advances
in genome-editing and synthetic genomic technologies lead to an
ever-growing number and types of actors who could potentially
misuse existing knowledge and emerging technologies (Hoffmann
et al., 2023; Paris, 2023). Therefore, as the field advances, BW are
expected to become a larger concern as they could be misused by
malicious non-state actors, because scientific advances will make use
of biological agents more accessible (Sanz et al., 2022; Yassif, 2022).
In the past, organized non-state groups and potential adversaries
demonstrated they can acquire dangerous biological agents if
sufficiently determined. Therefore the focus of the present
manuscript is bioterrorism. In fact, there have been several
confirmed cases of biological agent events between (Carus, 2001).
Noteworthy, the influence of scientific progress in relevant fields on
the likelihood of bioterrorists attaining and using BWs can not be
quantitatively determined. Past terrorists’ failures to develop and use
BWs indicate that developing a BW is a highly intricate process.
Thus, the impact of a single scientific breakthrough or a novel
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technology on BW acquisition should not be overstated (Koblentz,
2020). Understanding the current and future technology capabilities
and their misuse potential is critical for understanding the current
and future threat landscape, i.e., biodefense and biosecurity. New
bioagents could emerge or be developed much faster than defenses
against these threats can be built.

Biological weapons do not only pose a threat through state-
sponsored programs but also in bioterrorism and bio-crime
incidents. (For distinction please refer to Jansen et al. (Jansen
et al., 2014). This paper focuses on B. anthracis as a biological
weapon agent. The zoonotic bacterial pathogen B. anthracis is the
etiological agent of peracute, acute, subacute and chronic anthrax, an
often fatal toxin-mediated disease primarily affecting herbivores, but
also encountered in other mammals, including humans, and
occasionally birds (Turnbull, 2014). Mostly in poor rural areas,
up to 2,000 (WHO, 2023) cases (Hesse et al., 2022; WHO, 2023) of
anthrax occur annually worldwide (Carlson et al., 2019). Although,
B. anthracis and its persistent endospores in the soil generally do not
pose a public health concern in post-industrial societies, it is one of
the high-priority and most dangerous BW agents. It is thus classified
by the Centers for Disease Control and Prevention (CDC) as a
category A agent, posing the highest risk to the public and national
security because of its widespread availability, environmental
stability, easy dissemination, its morbidity and mortality, and
consequently the high potential for social disruption (Rotz et al.,
2002; Riedel, 2005; Cole and Bergman, 2010; Morse, 2014; Johns
Hopkins Center for Health Security, 2023). Among the three major
forms of human anthrax (cutaneous, gastrointestinal, and
inhalational), cutaneous anthrax is the most common with a 80%
survival rate even if untreated. The form most likely resulting from
an aerosolized spores is inhalational anthrax. Prior to 2001, it was
believed that inhalational anthrax would lead to 90% of fatal cases.
However, in the anthrax attack of 2001, with prompt recognition
and treatment with appropriate antibiotics, the fatality rate was
reduced to 5 out of 11 anthrax victims.

Phylogenetically B. anthracis belongs to the B. cereus sensu lato
group consisting of 18 closely related sporulating Gram-positive
bacteria including B. cereus and B. thuringiensis (Acevedo et al.,
2019). Despite their highly divergent pathogenicity, the
chromosomes of these three species show very high genetic
similarity, while their rRNA sequences are nearly identical,
showing only varaiations expected within different species
(Bazinet, 2017). Bacillus thuringiensis infects insect larvae, while
B. anthracis and B. cereus are mammalian and human pathogens.
While anthrax is often fatal, B. cereus is a opportunistic pathogen
causing periodontitis, foodborne illness, and acute ophthalmitis in
humans (Kotiranta et al., 2000; Argôlo-Filho and Loguercio, 2013;
Granum, 2017; Pilo and Frey, 2018). Some bacterial strains of B.
cereus, e.g., B. cereus biovar anthracis, which are ubiquitous in West
Africa, cause an anthrax-like disease in a broad host range of
mammals (Pilo and Frey, 2018). So far, no cases of human
infections with this strain have been reported. Nonetheless, the
CDC has included this pathogen in the list of Biological Select
Agents and Toxins (BSAT) posing a potential risk to public health
and safety (American Society for Microbiology, 2017). To the best of
our knowledge, such an amendment for B. cereus biovar anthracis is
currently lacking in the European Union (EU) regulations on dual-
use items.

Using the most thoroughly studied traditional BW agent B.
anthracis (Savcı, 2019) as a prime example, this paper analyzes and
assesses the possible bioterrorism threat arising from advances in
synthetic biology and other converging sciences. In addition, the
possible required biosecurity adaptations in the field of biodefense
are identified. Creating effective biosecurity procedures will require
understanding the present state of synthetic biology and other
biosecurity-relevant emerging technologies. For a realistic harm
potential and threat assessment of a future B. anthracis BW, it is
necessary to weigh and reassess identified hazards and novel threats
against established mitigation measures and possible
countermeasures. This includes, on the one hand, knowing the
platforms and technologies available for construction or
engineering B. anthracis or related microbes, and planning for
the future when the field overcomes bottlenecks or barriers. On
the other hand, effective biosecurity requires continuous technology
mapping to identify possible B. anthracis dissemination routes, its
potential targets and the ability to apply forensics for attribution
after an attack. This article addresses a problem on the intersection
of life sciences and security studies and is hence written from a
transdisciplinary perspective.

2 Materials and methods

Our applied methodology falls under the umbrella of foresight
methods defined as “a systematic, participatory, future-intelligence-
gathering and medium-to-long-term vision-building process aimed
at enabling present-day decisions and mobilizing joint action”
(Miles et al., 2016; Foresight, 2018). Foresight methodology is
applied to encourage the analysis and consideration of a range of
future biosecurity hazards arising from contemporary advances in
synthetic biology and other technologies to inform decision-making
and public policy (OECD, 2019).

For the current study, we have developed a conceptual six-step
foresight science framework approach as depicted in Figure 1. This
framework was adapted from biosecurity and anti-bioterrorism
studies and represents a synthesis of various foresight
methodologies implementing literature review, and elements of
horizon scanning, trend impact analysis, red team exercise
(Zhang and Gronvall, 2020; Moran, 2021) and free flow open-
ended discussions. We have chosen this framework because it
builds on existing knowledge of historical anthrax attacks and
analyzes the possible future implications of a changing scientific
and technological environment for B. anthracis BW development
and employment. This is a prerequisite to proactively deterring or
defeating future threats by exposing vulnerabilities and allowing for
corrective actions. In addition, it allows evaluation of whether
advances in science and technology may enhance the possibility
of malicious actors gaining access to the required knowledge and
scientific infrastructure to develop and use an anthrax BW. This
information is required for threat analysis, that in turn could reveal
possible deficiencies in the current biosecurity management system.

By reviewing over 600 publications, the historical development
of B. anthracis in BW programs and its potential use as a modern
biological weapon agent driven partly by advances in biosciences
will be traced to set the scope. Of special interest is the literature on
the anthrax bioagent including methodology to genetically engineer
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B. anthracis and related strains, different delivery systems,
international BW governance and mitigation strategies, but also
export control laws, and agent detection methodology. Furthermore,
the literature research served the purpose of feeding into steps of
technology screening and qualitative trend extrapolation in
identifying indicators and structural trend shifts, respectively.
While indicators identified by the technology screening are
hinting at potential future tendencies either in the form of basic
research, patents, investments, or among others social phenomena
(Amanatidou et al., 2012), trend extrapolation, on the other hand,
focuses on established ongoing dynamics such as trends and driving
forces. Technology screening and trend extrapolation were
performed to elucidate how contemporary dynamic science
developments especially in the field of synthetic biology could
facilitate new biosecurity challenges (Bakhtin et al., 2017; Kohler,
2021). In the pathway exploration special emphasis was given to the
current technology advancements or knowledge availability and
accessibility with relevance to weaponizing. In this study, we
examine the current technical obstacles and possibilities a
terrorist group may encounter in the development of an anthrax
bioweapon. Therefore, in this thought experiment we researched
and analyzed every necessary step concerning the bioagent
acquisition, amplification, sporulation and aerosolization as well
as the delivery system, choosing the most economic development
options and those that pose the lowest possible danger for
perpetrators to be exposed to the agent during the production
process (Figure 2A). Subdividing the process into the necessary
labor steps (Figure 2B) helped to investigate potential loopholes and
regulatory gaps. Each step (e.g., different acquisition paths to attain a
virulent anthrax strain) is described in its difficulties and
possibilities, potential bottlenecks, and circumventive alternatives.
The goal of pathway exploration is to identify weaknesses and

vulnerabilities in systems or strategies, develop more effective
plans and processes, and prepare organizations to respond to
unexpected challenges and threats.

Thereafter, a threat evaluation of identified hazards and novel
threats was performed. The aforementioned foresight science
framework steps allowed a holistic technology evaluation and
hence an out balancing against established monitoring,
medication and mitigation measures and possible
countermeasures (Figure 2C) for a potential future B. anthracis
BW threat evaluation. Free flow open-ended discussions led to
suggesting the necessary biosecurity architecture adaptation for
appropriate biosecurity management including required measures
to raise awareness and preparedness. In addition, recommendations
for politicians and other stakeholders were elucidated.

3 Results and discussion

For the conceptual six-step foresight science framework
approach the most important findings were considered (listed in
Supplementary Table S1). For the sake of convenience, a
chronological-analytical representation of these findings is given
below.

3.1 Bacillus anthracis in warfare

Not surprisingly, anthrax as a BW agent has been the focus of
BW research for at least 11 decades (World Health Organization,
1970; Centers for Disease Control and Prevention, 2023). Being a
traditional, non-genetically engineered BW agent, B. anthracis has
reliable traits regarding pathogenicity and is capable of causing

FIGURE 1
A conceptual six six-step foresight science framework approach.
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lethal inhalation anthrax. In addition, it is characterized by its agent
availability; large-scale manufacturability; stability during
production, storage, and transportation; ability to be efficiently
disseminated including stability after dissemination limited
vaccine availability; and previous research and development of
the agent as a BW; with the potential of causing public panic

and social disruption. Hence, it fulfills all the requirements of a
BW agent except for lacking person-to-person transmission.

At least 8 nations are believed or known to have had developed
offensive biological weapons programs that include B. anthracis
until 1990s (Riedel, 2005; Carus, 2017). Indeed, already in World
War I, Germany used anthrax to infect animals (Leitenberg, 2001).

FIGURE 2
Process of the pathway exploration of a biological weapon. (A) Technical steps for the development of BWs. Implications of scientific developments,
public accessibility of biology, knowledge, and emerging as well as enabling technologies for (B) clandestine development of a Bacillus anthracis BW; and
(C) developing measures for monitoring, medication, and mitigation. UNSC: United Nations Security Council; HCD: High-Cell-Density; SSF: Solid-State
Fermentation.
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During World War II, B. anthracis was found in most military BW
arsenals. The infamous, Japanese Unit 731 tested anthrax among
other BW agents on Chinese prisoners during the occupation of
Manchuria (Riedel, 2004; Riedel, 2005). Until the BWC entered into
force (1975), the United Kingdom (UK), the United States of
America (United States), Japan, and the Soviet Union (USSR)
weaponized B. anthracis within their military programs, even if
an anthrax BW battlefield employment never happened (Bernstein,
1987; Roffey et al., 2002; Cole and Bergman, 2010; Beedham and
Davies, 2020; Centers for Disease Control and Prevention, 2023).

An accidental release of anthrax spores in 1979 from the military
research and production facility in Sverdlovsk, USSR exposed the
deadly impact of this bioagent. At least 68 people died in the ensuing
anthrax outbreak (Meselson et al., 1994). In addition, this accident
showed that the USSR continued clandestine research on B.
anthracis during the Cold War, even after the signature of the
BWC In the same year, an anthrax vaccine precipitated (AVP) was
licensed in the UK (Splino et al., 2005).

During this period, the scientific fields of molecular biology and
microbiology, and other technologies were advancing at a very high pace.
Two decades after the initiation of the BWC, the Third Review
Conference in 1991 decided to establish an Ad Hoc Group of
Governmental Experts (Final, 1991) that held four sessions in
1992 and 1993 to identify and examine potential verification
measures from a scientific and technical standpoint. Eventually, by
the end of the millennium, secret military programs including B.
anthracis developed, e.g., by Iraq (Zilinskas, 1997; Cole and Bergman,
2010) was terminated by UNSCOM andUNMOVIC and those of USSR
(Meselson et al., 1994) were allegedly terminated (Mauroni, 2022) but
never veryfied. In addition, the anthrax vaccination of troops and the
veterinary vaccine for livestock seemed to contain the danger of. In
addition, the anthrax vaccination of troops and the veterinary vaccine for
livestock seemed to contain the danger of B. anthracis in biological
warfare.

3.2 Bacillus anthracis in bioterrorism

At about the same time, besides state actors and their BW
programs, a new danger in the form of bioterrorist-related
inhalation-anthrax attacks emerged, signaling the beginning of a
new era. Foremost, terrorists tried to use anthrax as a BW. Aum
Shinrikyo cult released B. anthracis spores in an unsuccessful
biological attack in Kameido, Japan wanting to initiate an
inhalation anthrax epidemic. Cult members successfully designed
and built a system for pumping a bacterial suspension up eight floors
of their head office building to an aerosol dispersal device on the
rooftop (Keim et al., 2001). However, this and several other attempts
with anthrax spores failed, due to the use of an attenuated Sterne
strain, also used as a vaccine for animals (Cole and Bergman, 2010).
To date, only a small fragment of the cult’s program was uncovered
by Japanese police and intelligence, and only parts of evidence have
been made publicly available (Riedel, 2004).

In the mid-1990s al-Qaida allegedly underwent attempts to
procure and weaponize anthrax bacteria, with the former USSR,
Kazakhstan or East Asia as a source of these biological agents.
According to United States officials in Afghanistan in late 2001,
efforts to weaponize B. anthracis failed despite speculated assistance

from Russian scientists (Cronin, 2003; Spyer, 2004; Leitenberg, 2005;
Salama and Hansell, 2005).

Almost concomitantly in the fall of 2001, letters containing
anthrax spores dispatched to high-profile journalists and politicians
in the United States killed five non-targeted people, mostly postal
workers (Quintiliani and Quintiliani, 2003). A nearly decade-long,
$100 million investigation into the 2001 Amerithrax attacks, proved
B. anthracis mass disrupting capabilities as well as the difficulty
associated with investigating such incidents (Böhm and Beyer, 2003;
Cole and Bergman, 2010).

3.3 Technology screening and trend
extrapolation

Considering anthrax research, we identified several indicators in
different pertinent fields with a dual-use potential relevant to anthrax BW
development (Supplementary Table S1). The indicators most relevant to
our pathway exploration were scientific achievements, advancements or
discoveries that could be exploited for B. anthracis’ BW attribute
enhancement or those potentially used to circumvent biosecurity
measures implemented to prevent the proliferation and development
of aB. anthracisBW. In our qualitative approach extrapolating indicators
along their trajectories, fivemajor trends were identified as relevant (from
most to least significant).

1. Increasing access to standardized biotechnology potentially
reduces tacit knowledge requirements (Jackson, 2001; Revill
and Jefferson, 2014)

2. Accessibility of scientific data (open access publications, online
repositories, literature databanks) is continuously increasing
(euroCRIS, 2016)

3. Oligonucleotide synthesis and sequencing are facilitated, readily
available and steadily decreasing in costs (Hughes and Ellington,
2017; Hoose et al., 2023)

4. Converging and enabling technologies (Internet, AI, Machine
Learning, Additive Manufacturing, unmanned aerial vehicles
(UAV), Robotics, and advances in aerosolizing technology)
expand the BW paradigm (Brockmann et al., 2019; Lentzos,
2020)

5. The Do-It-Yourself (DIY) and Frugal Science community
expands and facilitates communication and protocol design
and exchange (Seyfried et al., 2014; Tocchetti and Aguiton,
2015; Tennenbaum et al., 2021)

These trends project impacts that increase future threat
potentials by further lowering entry obstacles for BW
development, reducing the risk of being detected and uncovered,
facilitating BW design and mass production, as well as employment.
Potential threats are more closely examined in the pathway
exploration. At the same time, these trends might also contribute
to strengthening preparedness, prevention, and mitigation.

3.4 Pathway exploration

To evaluate the inherent threat posed by contemporary science
and the possible new dangers arising from scientific and
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technological advances, B. anthracis BW development stages were
thoroughly analyzed. Relevant findings from technology screening
and trend extrapolation feed into our pathway exploration.
Generally, the development of a B. anthracis weapon starts with
the acquisition, followed by mass production, and ends with the
weaponization of B. anthracis as depicted in Figure 2A.

The following part contains considerations on scientific
developments, public accessibility of biology, knowledge, and
emerging as well as enabling technologies for the clandestine
development of a B. anthracis BW by terrorists (Figure 2B).

3.4.1 Knowledge acquisition
The deliberate, malicious misuse of biosciences and technology,

besides a motive, requires intention and material resources including
technological infrastructure, access to information as well as necessary
explicit and tacit knowledge (Vogel, 2006; Nixdorff, 2020). Since the
turn of the millennium, there exists an apprehension that terrorists or
other state- or non-state actors might circumvent existing biosecurity
regulatory systems by acquiring new tacit knowledge, expertise, or
vulnerabilities to develop biological weapons (Riedel, 2005; Cole and
Bergman, 2010; Mondange et al., 2022). Explicit knowledge includes
standard operation procedures for producing and processing biological
agents and can be acquired through open-access scientific literature. In
fact, a vast amount of knowledge and information from many decades
of anthrax research is available and publicly accessible (Morris and
Boyack, 2005; Savcı, 2019). Undeniably, globalization and the internet
have significantly diminished the barrier to acquiring explicit
knowledge. Tacit knowledge on the other hand is not only
acquirable through hands-on encounters but it remains a hindrance
to weapon efficiency and effectiveness (Tennenbaum et al., 2021).
However, the required tacit knowledge to produce risky biological
products is constantly decreasing due to the combination of SynBio
with AI and automation.

Principally, forums such as DIY biology classes and Journal of
Visualized Experiments (JoVE) videos can transfer the necessary
skill and knowledge needed to use otherwise highly sophisticated
techniques such as CRISPR during the development of an anthrax
BW. Moreover, available kits can help to reduce knowledge and skill
requirements during such CRISPR experiments given that the actor
can select the appropriate kit and troubleshoot as needed (Paris,
2023). However, it is important to keep in mind that while some
terrorist groups may want to genetically engineer B. anthracis;
others may be satisfied with the most simple way to produce spores.

3.4.2 Biological agent acquisition and agent
properties

There are multiple ways to acquire the anthrax bioagent. Here, we
more closely examine three, the isolation from natural sources, the
illegal procurement from authorized laboratories, and themodification
of related organisms to an anthrax bioagent. Furthermore, we examine
the possibilities to include antibiotic resistances.

3.4.2.1 Isolation
Due to its well-known danger and for biosecurity reasons, B.

anthracis is a regulated microorganism (CDC, 2023) by national and
international conventions, that cannot be easily acquired from
regular sources, such as culture repositories (Sharan et al., 2007).
However, being widely distributed in sub-Saharan Africa, China,

Kazakhstan, North-, South- and Central America, South- and East
Europe, the Caribbean, the Middle East, and Australia (Carlson
et al., 2019), one possibility to acquire various starins of B. anthracis
would be to isolate this microorganism from natural reservoirs from
the soil in the reported outbreak area or infested animal carcasses
according to established and publicly available protocols (Böhm and
Beyer, 2003). Undergraduate microbiology skills can be used to
isolate B. anthracis from a natural contagious source. Most of the
necessary production techniques are readily available in open-access
journals and textbooks. With isolated starter culture, a terrorist
could grow cultures with billions of spores in a 100-L vessel in less
than a week under adequate biosafety precautions. The isolates
should be positive in PCR assays for pXO1 and pXO2 probes. These
probes are not subjected to security screening and are in general
easily attainable, even for non-authorized institutions. Drying the
slurry by freeze drying, for example, for weaponization is tricky,
though not impossible (Green et al., 2007).

3.4.2.2 Illegal procurement
Another possibility is the illicit acquisition from an authorized

institution such as culture collections or research facilities working
with dangerous pathogens. Although generally obligatory and
stringent biosafety and biosecurity regulations are in place, there
is always a possibility of sabotage or intentional misuse of available
resources by staff members (as in the case of Amerithrax, 2001), or
third parties. Therefore, the possibility of illegal procurement of B.
anthracis from a research biosafety level (BSL-) 3 laboratory cannot
be ruled out. Via relevant research publications and mapped
containment laboratories (Bulletin of the Atomic Scientists, 2022)
locating relevant BSL-3 laboratories has become an easy endeavor.
In addition, there still exists the possibility of obtaining or thieving
weaponized anthrax from a state’s offensive or defensive program,
however less plausible, especially given that there is no knowledge
about active offensive activities anywhere and that the number of
states with appropriate/suitable defensive programs is limited
(Sharan et al., 2007).

3.4.3 Genetic engineering and synthetic biology
From the mid-1980s until 2003, the genome of B. anthracis was

successfully sequenced (Read et al., 2003) and the two main
megaplasmids carrying the main virulence factors pXO1 for the
toxins factors edema factor (EF), protective antigen (PA), and lethal
factor (LF) (110 MDa, 181 kb) (Green et al., 1985) as well as
pXO2 for the capsule (60 MDa, 95 kb) encoding the three genes
capB, capC, and capA (Makino et al., 1989; Okinaka et al., 1999)
protecting from phagocytosis (Makino et al., 1989) were identified.
Strains lacking either plasmid are either avirulent or significantly
attenuated (Okinaka et al., 1999; Pilcher, 2003). In the upcoming
years, knowledge about other pathogenicity factor genes increased,
and “at the dawn of the 21st century, the scientific field of anthrax
was perceived as a dead end” (Mondange et al., 2022).

However, as with the progress achieved with recombinant DNA
in the 1970s and the rise of synthetic biology in the 2000s, the
emergence of genome editing technologies, such as CRISPR in 2012,
raised fears about that novel engineered strains of B. anthracis could
become available for bioterrorism. Knowing the decoded B.
anthracis genome with its more than 5,000 genes (Read et al.,
2002; Pilcher, 2003), CRISPR made more precise editing of
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multiple genes simultaneously possible. In addition, genetic
engineering for a fraction of the cost of predecessor technologies
became feasible. Genetic modifications were now possible that used
to be too demanding, laborious, or expensive in the past (Wang et al.,
2019).

A more elaborate approach to obtain an anthrax-causing agent
would be to modify a related microorganism, e.g., B. cereus, and convey
all the characteristics of B. anthracis. One candidate for such a method
could be B. cereusG9241, causing anthrax-like symptoms (Marston et al.,
2016; Baldwin, 2020). As of 2022, this particular strain was available for
purchase in limited amounts.WorkingwithB. cereus requires only BSL-2
conditions, whereas with B. anthracis BSL-3 conditions have to be
applied for intended aerosol production (Baldwin, 2020). Access
restrictions become stricter with higher biosafety levels. Therefore, it is
conceivable that such an organismmay bemisused by an actor aiming to
“reproduce” anthrax by exploiting advances in biotechnology. Based on
the information on the virulence factors given above, up to 14 genes may
require editing depending on the original organism to be engineered. The
chromosomal engineering could be conducted using the CRISPR/Cas
kits which are readily available. Wang and coworkers (Wang et al., 2019)
successfully edited the genomic DNA of B. cereus and B. anthracis using
CRISPR/Cas9 and showed its efficacy for genome editing in the B. cereus
group.

There are indeed certain genetic similarities between B.
anthracis and B. cereus G9241, both possess two plasmids in the
bacterial cytoplasm. One of the B. cereus plasmids, pBCX01, has a
99.63% homology with the pXO1 plasmid of B. anthracis, Ames
strain. However, B. cereus G9241 lacks the pXO2 plasmid
responsible for the formation of the polyglutamic acid capsule of
B. anthracis (Hoffmaster et al., 2006). This physiological trait allows
B. anthracis to evade immune response-mediated phagocytosis. The
pXO2 plasmid encoding the polyglutamic acid capsule can in
principle be synthesized de novo using oligonucleotides with
overlapping sequences, an approach also used for the de novo
synthesis of the polio virus (Cello et al., 2002). Oligos can be
combined using assembly PCR. Afterward, the plasmid can be
transferred into B. cereus G9421 by applying electroporation or
other established methods (Ehling-Schulz et al., 2019).

In the context of the genetic engineering of B. anthracis, the
incident around the Aum Shinrikyo cult might be of some interest.
The characterization of a B. anthracis strain associated with the
cult’s activities revealed no evidence of genetic modification (Keim
et al., 2001). According to the results of the molecular genetic typing,
the strain cultivated by Aum represented the Sterne vaccine strain,
known to lack the pXO2 plasmid. On the other hand, Danzig and
coworkers (Danzig et al., 2012) formulated a hypothesis that at some
stage during their biological weapons program, one of the members
of the Aum Shinrikyo cult attempted to transfer the genetic
information for the capsule formation into the Sterne strain.

This would parallel the hypothetical scenario of B. cereus
transformation discussed above. Both, B. cereus G9241 and B.
anthracis Sterne do not possess the important virulence factor,
the pXO2 plasmid for capsule formation. In principle, the
plasmid could be transferred into the respective microorganism
using the established tools of molecular biology. Without discussing
the plausibility and likelihood of such an experiment performed by
the Aum Shinrikyo cult, it can be insightful to compare the state of
knowledge and technological advancement at that time and today.

Already 1988, at the time, when supposedly the biological
weapons program of the Aum Shinrikyo cult was in progress,
Makino and coworkers demonstrated the possibility of cloning
the genetic region required for the encapsulation (Cap region)
into Escherichia coli and B. anthracis (Cap-), which resulted in
the encapsulation of both species in the presence of CO2 (Makino
et al., 1989). A year later Stepanov and coworkers performed the
transduction of pXO2 plasmid into different strains of B. anthracis
(STI-1, Sterne, KM33, KM35) and reported that a “dramatic increase
of virulence for white mice has been registered for B. anthracis
strains having acquired the pXO2 plasmid replicon” (Stepanov et al.,
1996). These experiments, among others, show that genetic
manipulation of non-pathogenic B. anthracis or other
microorganisms to convey the particular characteristics of lethal
wild type anthrax was already feasible at the end of the 20th century.

The de novo synthesis of the respective genetic material for the
encapsulation and the subsequent bacterial transformation would
spare the necessity of acquiring such a regulated strain in the first
place. In principle, a de novo synthesis of a Cap region could also be
performed using the solid-state phosphoramidite method developed
by Caruthers (Caruthers et al., 1987). The sequence of the 3.2 kbp
long Cap region was published by Makino et al., in 1989 (Makino
et al., 1989). By 1995, the longest DNA segment synthesized
chemically and assembled from a large number of
oligonucleotides was about 2.7 kbp (Stemmer et al., 1995).

No doubt, the possibilities for misuse of B. anthracis by terrorists
have been expanded by the advances in science and technology and
the huge amount of knowledge that has accumulated around B.
anthracis. The (mis-)use of emerging technologies to genetically
modify a harmless microorganism to produce anthrax toxins has
been well documented in prokaryotes as well as eukaryotes. One of
the candidates is E. coli, for which the expression of LF, EF, and PA
of B. anthracis and their subsequent purification from this Gram-
negative bacterium have been reported (Robertson and Leppla,
1986; Sharma et al., 1996; Kumar et al., 2001). Additionally, a
Gram-positive spore-forming bacterium, B. subtilis, was used in
one of the studies to produce recombinant LF (Gholami et al., 2021).
Since E. coli and B. subtilis are broadly used in biochemistry and
molecular, biology the barrier for an actor with malicious intent is
rather low. In addition, there are other alternative systems for the
expression of anthrax toxins. For instance, the yeast species Pichia
pastoris was used for the expression of the de novo synthesized toxin
of Bacillus thuringensis (Gurkan and Ellar, 2005). The advantage of
using a eukaryotic organism is the post-translational modification of
the toxins produced, which is lacking in prokaryotes.

It can be argued that the respective technical challenge of
genome synthesis in the laboratory is lower nowadays due to the
possibility of obtaining the corresponding oligos from commercial
suppliers. The cost of ordering such sequences has steadily decreased
over the years (Hoose et al., 2023), making the technology more
accessible for use in biolabs, but also for misuse for malicious
purposes. The beginning of the synthetic biology era marks the
possibility of ordering de novo synthesized DNA from a commercial
provider at desired concentrations and 100% purity. The orders of
synthetic DNA are not subjected to mandatory screening. However,
a vast majority of the companies working in this field have
voluntarily introduced screening procedures based on the
guidelines by the United States Department of Health and
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Human Services (HHS), e.g., Screening Framework Guidance for
Providers of Synthetic Double-Stranded DNA (U.S. Department of
Health and Human Services, 2010). The ordered sequences are
matched with databases regarding pathogen and toxin sequences.
Nevertheless, it is possible to evade such control mechanisms. One
novel way around this is re-coding, which can be done either, less
promisingly, by changing the codons, resulting in the same amino
acid sequence. Or with encryption, whereby ultimately codons code
for other amino acids (iGem Team, 2017). This would be a much
more promising way to circumvent such controls, although much
costlier, as all the gene sequences within the agent would have to be
encrypted in the same way to allow functionality. So far, large-scale
“rewiring” is not feasible, but research in this field advances rapidly.
These aspects show that current screening algorithms need to be
redesigned according to the developments in biotechnology.

But also the Engineering Biology research Consortium (EBRC
Engineering Biology Research Consortium, 2022) itself lists some
gaps, for instance, sequences of 200 bp or smaller are usually not
cross-checked, since the results of oligo screenings might be
ambiguous and expensive, compared to the cost of the DNA
synthesis itself. Such shorter sequences could be assembled into
longer sequences, thus creating a backdoor for abuse. Furthermore,
the guidance refers only and explicitly to double-stranded DNA
(dsDNA), not to single-stranded DNA or RNA. Both can be
converted to dsDNA in vitro. Furthermore, the working group
assumes that about 80% of the world’s DNA synthesis capacity is
combined under these provisions, which leaves out a significant
20%. This is a major loophole in biosecurity, which can result in the
synthesis and shipment of sequences of concern such as toxins.

Alternatively, the synthesis of oligos and short dsDNA can
nowadays be also performed fast and at relatively low costs
directly in the lab using state-of-the-art benchtop synthesizers.
For more details see Carter et al. (Carter et al., 2023). Some of
the devices synthesizing nucleic acids greater than 1,500 bp in length
are subjected to export controls under the AG (2021) (The
Australian Department of Foreign Affairs and Trade, 1958), but
this does neither apply to all commercially available instruments nor
national trade.

Even with all regulations in place, there remains the risk that an
order may evade screening. For example, the sequence in question
may be camouflaged by benign genes. Such a construct has a high
probability to circumvent the screening procedure. The
camouflaging genes can thereafter be removed through methods
such as CRISPR/Cas9, and the deletions repaired via homology-
directed repair (HDR), leaving a sequence encoding for a dangerous
toxin or a virulence factor. This scenario may sound technically
elaborate. However, proof of concept has been conducted by Puzis
et al. (Puzis et al., 2020). No respective obfuscated DNA encoding a
toxic peptide was detected by the screening algorithm, and the order
was moved to production.

3.4.4 Making bioagent antibiotic-resistant
It should be pointed out that B. anthracis is one of the most

extensively studied microorganisms. Several mitigation measures
and therapeutic strategies have been established over the years,
which can be efficiently applied in the case of a potential
outbreak (Supplementary Table S1). However, it is possible to
introduce antibiotic resistance genes into the bacterial genome to

circumvent these therapeutic strategies. Multidrug-resistant
bacterial strains have been successfully engineered in the past
(Dassanayake et al., 2021). In certain cases, multidrug resistance
can lead to loss of virulence due to pleiotropic effects, as reported for
the Francisella tularensis strain engineered to be resistant to multiple
antibiotics as part of the USSR’s BW program (Leitenberg et al.,
2012). There are also publications available, indicating that a B.
anthracis strain (STI-1 vaccine strain) was engineered to resist
several antibiotics (Stepanov et al., 1996). Therefore, the threat of
a biological attack involving a multidrug-resistant lethal strain of B.
anthracis cannot be understated.

3.4.5 Technology acquisition and infrastructure
No doubt, the emerging, converging and enabling technologies led to

a decrease in the requirement for sophisticated equipment thereby
expanding the realm of feasibility and hence the BW paradigm. In
addition, tools traditionally siloed in academic and government labs are
increasingly becoming accessible to a wider audience (Dunlap and
Pauwels, 2017; Sanz et al., 2022). Moreover, during the process of B.
anthracis weapon development, less dangerous and easily available
surrogate microorganisms can be used. Historically, the Japanise, the
United States, the UK, and Iraq used B. anthracis surrogates in biological
warfare test studies (Balmer, 2001; UnitedNations, 2007; Greenberg et al.,
2010). More recently, research data were generated that could be
exploited for B. anthracis BW development with a surrogate
microorganism. For example, B. thuringiensis was effectively used as
an appropriate model for B. anthracis in aerosol and re-aerosolization
testing allowing environmental release without pathogenicity concerns
(Tufts et al., 2014). In addition, using B. thuringiensis as a surrogate test
organism opens new possibilities even for alternative non-regulated
cultivation technologies such as solid-state fermentation (SSF)
application as a new production system (Lima-Pérez et al., 2019).

Furthermore, significant progress in frugal science, collectively
describing the attempt to create cheap, easy-to-use low cost and low
electricity-requiring scientific equipment alongside emerging
technologies made for anyone, anywhere could potentially be
exploited to develop biological weapons (Tennenbaum et al., 2021).

3.4.6 Biological agent amplification
Novel developments and contemporary lab practices make the

cultivation and scale-up of B. anthracismore feasible. For large-scale
cultivation, B. anthracis could be grown in submerged high-cell-
density fermenters, as shown for the comparable B. subtilis
(Grossman and Losick, 1988; Riesenberg and Guthke, 1999).
Further upscaling would usually require large liquid-state
fermenters which are subject to export controls under the AG
(The Australia Group, 2021). To circumvent this restriction, a
novel, unrestricted alternative SSF with polyurethane foams could
be performed. This method was developed for B. thuringensis but is
in principle applicable to B. anthracis (Lima-Pérez et al., 2019). SSF
would therefore represent an unrestricted alternative method. All
these aspects must be considered when discussing the imminent
threat of an anthrax attack.

3.4.7 Agent storage and transportation
There is also a large body of literature available on anthrax

sporulation. It can be induced by a lack of nutrients in a freely
available sporulation medium (Chen et al., 2020). Common
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histological stains (Moeller or Schaeffer-Fulton) are suitable to verify
sporulation. Once obtained, the spores can be stored for extended
timespans and disseminated by aerosolization. Not only can B.
anthracis spores be stored for a long time, since they remain
viable for decades, but they can also be easily transported in
sealed containers and survive exposure to the Sun, air, rain, and
violent dissemination methods. The spores are even so heat-
resistant, they could be disseminated using explosives (Fetter, 1991).

3.4.8 Stabilization and weapon-grade spore
preparations

Historical indices show that several state and non-state actors
transformed cultivated B. anthracis spores into a powder form as a
part of anthrax weaponization. The purpose of this step is to
improve the dissemination and aerosolization of this bioagent. It
was reported that the United States (Matsumoto, 2003) and USSR
(Zilinskas, 2014) produced dried anthrax spores in the scope of their
BW programs. Also, the Aum Shinrikyo cult attempted to obtain
anthrax in powder form (Danzig et al., 2012), while Iraq
experimented with lypholization (Mondange et al., 2022). The
best-known case of deploying anthrax as a powder is the
2001 anthrax attack (v. s. Amerithrax), where the spores were
dried to the concentration of 2.0 × 1012 colony-forming units per
Gram (USDOJ, 2010). Tufts and coworkers (Tufts et al., 2014)
showed that B. thuringensis can be used as a surrogate to optimize
the aerosolization of anthrax spores. Such a procedure requires
sufficient technical expertise and special freeze- or spray-drying
equipment. This category of dual-use equipment with a water
evaporation capacity between 0.4 and 400 kg/h, and the ability to
reach particle sizes below 10 µm or to sterilize or disinfect in situ is
subjected to export controls under the EU regulations (European
Union, 2021), implementing the AG-control lists (The Australia
Group, 2021). Additional safety precautions such as a glovebox with
negative pressure and protective clothing with an external oxygen
supply are also highly recommended when working with aerosols
containing pathogens. These items are also included in the AG
control list of dual-use equipment and technologies. However, it can
still be purchased within the country, second-hand, or crudely
manufactured, albeit with technical challenges. Thus, the Aum
Shinrikyo cult, although unsuccessfully employed a rudimentary
self-made drier. Thus, aerosolization may be considered a bottleneck
in the production of an anthrax BW. Probably the safest way to
circumvent the regulations and controls in this regard would be to
build the necessary equipment oneself, which would mean a
significant increase in the necessary know-how in the field of
engineering and infrastructure in the form of corresponding
clandestine production facilities.

Another aspect in the context of anthrax weaponization is the
encapsulation of the purified and dried spores. The encapsulation
would impart additional stability and prevent aggregation
(Matsumoto, 2003). It was suspected that the spores disseminated
in the Amerithrax case were coated, based on the high silica level
determined during the investigation. However, this hypothesis could
not be verified experimentally. According to the results of the
transmission electron microscopy, the silica was localized to the
spore coat within the exosporium, and not on the surface. Therefore,
it was concluded that silica was incorporated into the cells as a
natural part of cell formation, rather than by a deliberate attempt to

coat the spores. Despite this experimental evidence, the
controversial debate on the spore coating in the Amerithrax case
is still ongoing (Rosenberg, 2002; Bernstein, 2010; Epstein, 2010;
National Research Council, 2011a).

From the perspective of this manuscript, it is of interest to
evaluate the state of technology, which could in principle be applied
to encapsulate the anthrax spores. As previously mentioned, B.
subtilis can be used as a model organism for B. anthracis.
Therefore, the encapsulation procedure described by Balkundi
and coworkers (Balkundi et al., 2009) for B. subtilis has to be
considered in the discussion on the advances in knowledge and
technology, which might be misused for the weaponization of
anthrax.

3.4.9 Weapon deployment and agent dispersion
The method of BW deployment depends on the agent, its

preparation, its stability, and the route of infection. In 1970, a
World Health Organization (WHO) expert committee estimated
that “an aircraft release of 50 kg of anthrax over an urban, developed
population of 5 million would result in 250,000 casualties”. Medical
resource limitation and capacity strain in such a scenario is
enormous, ultimately requiring 13,000 hospital beds, 60-day of
antibiotics for 125,000 patients leaving 95,000 dead. This would
undoubtedly result in a quick and complete collapse of medical
resources and civilian infrastructure. More recent estimations have
confirmed the original WHO data (Congress, 1993). The CDC has
developed an economic model that puts forward costs of
$26.2 billion per 100,000 people exposed to an anthrax attack
(Kaufmann et al., 1997). Fetter (Fetter, 1991) estimated that a
missile armed with 30 kg of anthrax spores would affect an area
of 6–80 square kilometers, delivering doses greater than 0.1 mg/min/
m3 (the estimated ECt50 for anthrax) depending on the weather
conditions and kill an estimated 20,000–80,000 people if a large,
sparsely populated city was attacked. Alternatively, bioterrorists may
disperse B. anthracis spores through aerosols using knapsack
sprayers or a crop-spraying light aircraft to disseminate the
biological agent (Durrant, 2002; Haas, 2002; Aduojo et al., 2022).
The intimidating scenario of an attack with a UAV, commonly
known as a drone, on a vulnerable target delivering weaponized
anthrax can be considered increasingly realistic. In the Sverdlovsk
incident, 1 g of wind driven anthrax spores killed sheep at a distance
of up to 50 km (Durrant, 2002). Despite international regulations
such as well-established import-export control regimes, up-to-date
drones offer terrorists the convenience of anonymity and bypass
traditional security measures (Pethő-Kiss, 2022).

3.5 Monitoring, medication, and mitigation

Fortunately, technological advances not only serve the
development of bioweapons but also the development of
mitigation strategies. Before an attack, surveillance through
efficient bio-detection systems for environmental monitoring
informing early warning systems, and preventative measures
through vaccination as part of pre-exposure prophylaxis (PrEP)
can be implemented.

To respond to an anthrax BW attack and mitigate its effects,
multiple countermeasures including rapid detection, a
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comprehensive investigation and an effective response including
post-exposure prophylaxis (PEP) must be considered. Designing
rapid and reliable diagnostic systems by classical microbiology,
immunoassays, and nucleic acid-based methods, including
molecular forensics to identify B. anthracis or a related bacterial
strain as the biological anthrax threat agent is a prerequisite to
improve the response efforts (Blatny and Green, 2007) and to start
with the therapeutic countermeasures. The treatment of infected
people and animals with disease-specific interventions with
antibiotics and antitoxins for PEP is necessary to decrease
morbidity and mortality as much as possible (Honein and
Hoffmaster, 2022; Rathish et al., 2022). In addition, panic and
fear among the public must be managed by an interagency,
intersectoral and international cooperation (Beeching et al., 2002)
and proper public communication to minimize the disruptive
impact of an anthrax attack (Cameron et al., 2019). Finally,
containment and decontamination efforts after an anthrax event
are necessary. In the following section, we discuss the most
important of these aspects to draw conclusions considering
biosecurity management.

3.5.1 Detection
Shortly after the most recent bioterrorist Amerithrax attack and

the complete genome sequencing of B. anthracis (Read et al., 2002),
remarkable innovations and advances in the realm of anthrax
detection and the newly initiated field of microbial forensics
(Keim et al., 2001; Rasko et al., 2011) were made (Schmedes
et al., 2019; Revill et al., 2022).

Conventionally, samples are assessed via microbiological growth
analysis, Gram-, spore-, and capsule staining, microscopic analysis,
hemolysis tests and phage susceptibility (Zasada, 2020). These
methods require highly trained laboratory personnel, BSL-3
facilities, and practices. Novel detection methods are based on
diverse targets, from detection based on DNA (Pal and Alocilja,
2010; Hao et al., 2011; Kaittanis et al., 2011; Chen et al., 2020),
chemical reactions (Boyer et al., 2007; Duriez et al., 2009; Čapek
et al., 2010; Kuklenyik et al., 2011), antibodies (De et al., 2002;
Biagini et al., 2006; Campbell and Mutharasan, 2006; McGovern
et al., 2007; Hao et al., 2009; Mwilu et al., 2009; Tang et al., 2009;
Zahavy et al., 2010; Wang, 2013; Atabakhshi-Kashi et al., 2020),
phages (Schuch et al., 2002; Fujinami et al., 2007), peptides (Acharya
et al., 2007; Park et al., 2009), aptamers (Alibek and Handelman,
1999; Huan et al., 2009; Cella et al., 2010; Oh et al., 2011; Kim et al.,
2013) or even DNA-peptide chimeras (Zhang and Appella, 2007;
Kim et al., 2015; Wang D-B. et al., 2021). To date, a variety of
detection methods for environmental or clinical anthrax samples
emerged, each with distinct advantages over conventional culture
and PCR-based detection. Xu and coworkers (Xu et al., 2023)
developed a rapid (<40 min), easy-to-implement and accurate
DNA endonuclease targeted CRISPR trans reporter (DETECTR)-
based detection and identification method as a novel screening and
diagnostic user-friendly portable devices for pathogenic B. anthracis
(Xu et al., 2023). Overall, the speed, sensitivity and accuracy of
modern detection methods have increased, potentially saving
uncounted lives in case of an anthrax BW attack. Early detection
is the prerequisite for adequate treatment andmitigation. In order to
make a difference, these detection methods, must be widely
available.

3.5.2 Preparedness
In addition, the Amerithrax incident led to important

investments in medical funding for biodefense. In the following
decade, the United States, for example, spent 5.6 billion dollars on
biodefense known as the Project BioShield Act 2004 (US Congress,
2004). While many wealthy countries followed the United States in
an attempt to globally improve the capacity to face an emerging
outbreak, although, with budgets that were and are orders of
magnitudes lower (Mondange et al., 2022).

Currently, preparedness against the intentional use of B.
anthracis relies on increased disease as well as environmental
surveillance (US BioWatch program (National Research Council,
2011b)), laboratory capacity, information and system technology,
education, and workforce training as well as clinical practice that
integrates all accessible countermeasures such as new antimicrobials
and advances in critical care (Blatny and Green, 2007; Scales and
Horney, 2023). The armamentarium for PEP and treatment of
anthrax involves numerous effective antimicrobials, including
alternatives for resistant strains, antitoxins, and vaccines (Kaufer
et al., 2020; Honein andHoffmaster, 2022) that must be stockpiled in
adequate quantities. Protocols to deal with anticipated B. anthracis
scenarios are developed and tested in exercises.

Considering the preparedness towards anthrax attacks, there have
been efforts to adopt strategies by various countries. Some examples
are listed in the following: The US CDC (2015) published a clinical
framework and medical countermeasure use during an anthrax mass-
casualty incident. The focus was set on the allocation of scarce
resources with different treatment plans depending on whether
anthrax developed meningitis. The CDC recommends additional
treatment with antitoxin in meningeal anthrax cases. The
European Centre for Disease Prevention and Control (ECDC),
however, only monitors cases in EU/European Economic Area
countries and discusses them in their weekly Communicable
Disease Threat Reports (ECDC. COMMUNICABLE, 2022). In
their Annual Epidemiological Report for Anthrax, the ECDC also
discusses the complementary administration of antitoxins, albeit
additional benefits have been contested. The Department of Public
Health of the Australian Government published a Public Health
response plan for Anthrax (Australian Government Department of
Health, 2012). Next to the description of clinical etiology and different
treatment plans, this response plan entails measures for five different
response codes (threat levels), for deliberate anthrax releases, defining
the main actions and communication plans to be taken by the
government and jurisdiction for each threat level and the key
stakeholders.

3.5.3 Pre- and postexposure treatments
Not surprisingly, the development of effective anthrax vaccines

was spurred on by the potentially nefarious use of B. anthracis as a
biological warfare agent. Already in 1953 and 1959 the USSR
licensed their live spore vaccine for scarification and
subcutaneous administration, respectively (Biselli et al., 2022). As
new biochemistry methods in the 1950s and 1960s, paved the way
for discovering and deciphering the capsule of B. anthracis (Smith
et al., 1953; Thorne, 1960; Stanley et al., 1961), responsible for the
toxin-mediated disease anthrax. In the 1970s, these breakthroughs
and biodefense endeavors lead to the successful development and
approval of a novel and enhanced cell-free human preparation of
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aluminum hydroxide gel adsorbed protective antigen, now known as
anthrax vaccine adsorbed (AVA) formulation in the 1970s
(Tournier et al., 2009; Tournier and Mohamadzadeh, 2010). At
the same time, the WHO declares anthrax one of high-impact
bioagents (World Health Organization, 1970).

Currently, the two primarily used culture filtrate vaccines, the
Europe- and US-licensed Anthrax Vaccine Adsorbed (AVA; trade
name BioThrax) and the United Kingdom-licensed vaccine, AVP,
contain PA and variable quantities of LF and EF. Guidelines
“recommend vaccination for people at risk, such as veterinarians,
abattoir workers, those working with animal hides or furs,
laboratory workers and the armed forces in areas with a high
risk of exposure. In addition to PrEP the anthrax vaccine is also
recommended for PEP, along with antibiotics” (ECDC, 2013). For
individuals 18–65 years of age, various Anthrax vaccines are licensed
or in development for PEP (Wolfe et al., 2020).

In addition, the antibiotics ciprofloxacin, penicillin, and
doxycycline were approved by the Food and Drug
Administration (FDA) for the treatment of anthrax and may be
also useful in combination with other antibiotics for the treatment of
inhalation anthrax (Inglesby et al., 2002). In B. anthracis antibiotic
resistance to, e.g., amoxicillin, penicillin G, and/or cotrimoxazole
has been documented. Although drug resistance mechanisms of B.
anthracis have not yet been fully exploited, beta-lactamases against
β-lactam antibiotics and efflux-pump mediating cross-resistance to
fluoroquinolone antibiotics like ciprofloxacin in B. anthracis have
been reported. Genetic modification of B. anthracis (to induce
resistance to vaccines or antimicrobial drugs) has not yet been
achieved by terrorists. Yet, the illicit Soviet program was
successful. Hence, the introduction of safer and more efficient
chemotherapeutic options are required (Dassanayake et al., 2021).

Moreover, antibiotics are effective against bacteremia caused by
antibiotic-susceptible strains of anthrax but not against the toxemia
that drives pathogenesis. In fact, the quantities of secreted anthrax
toxins in some cases lead to death despite efficient antibiotics
administration. The discovery of the biochemical structure of LF
and EF (Pannifer et al., 2001), of the cellular receptors of PA
(Bradley et al., 2001), and description of the precise effects of LF
and EF on the cell biology (Moayeri et al., 2015), therefore, were
important scientific achievements in the toxin field. In 2009, the first
monoclonal antibody targeting PA was finally authorized by the
FDA (Migone et al., 2015). Nowadays, three anthrax antitoxins have
been approved by the FDA and stockpiled by the United States: two
monoclonal antibodies (raxibacumab and obiltoxaximab
“Anthim”), and the human polyclonal purified IgG from
vaccinated humans (intravenous anthrax immune globulin AIG-
IV, also referred as Anthrasil) (Huang et al., 2015; Avril et al., 2022),
regardless of uncertainties associated with the clinical effectiveness
of antibodies. Hence, Anthim and Anthrasil can be administered
solo or in combination with antibiotics for a more effective anthrax
therapy. According to the CDC, the administration of both
antibiotics and antibodies is recommended, regardless of recent
studies doubting the efficiency of antibodies (Tournier et al., 2019;
Avril et al., 2022).

3.5.4 Decontamination
Generally, remediation following a B. anthracis BW attack

requires decontamination, confirmatory sampling, and testing.

The decontamination strategy should include the
decontamination of surfaces and affected areas (space), as well as
the proper disposal of any decontamination wastewater (Urban-
Sorensen, 2018). In the aftermath of the Amerithrax attack, both
private and government facilities were affected, and their cleaning
up was an unexpected challenge. The decontamination work was not
only high-profile but also very time-consuming and expensive. A
complete renovation of all facilities required over 3 years and cost
about $320 million (Urban-Sorensen, 2018). Meanwhile, specific
advances in nanotechnology and material sciences led to the
improvement of decontamination and decontamination
capabilities even against spore-forming bacilli. For
decontamination applications against B. anthracis with up to
100% efficacy after 10–15 min, Ginghina (Ginghina et al., 2022)
demonstrated the antimicrobial activity of organic solutions
enriched with ZnO, TiO2, and zeolite nanoparticles. Another
effective strategy is to incorporate different semiconductors to
enhance their bactericidal synergistic effects for water
disinfection. A maximum antimicrobial activity against B. subtilis
was shown by CuWO4/CuS CuS nanopowder (Dong et al., 2022).
Moreover, Nakonieczna (Nakonieczna et al., 2022) recently
identified three new siphophages that can specifically infect and
lyse siphophages that can specifically infect and lyse B. anthracis and
have applications as decontaminants or disinfectants (of skin,
surface, or clothes).

3.6 Threat evaluation

To assess vulnerability, a threat evaluation is necessary. The
prevention of unwanted events from occurring and/or protection,
the ability to react during an event, and the ability to mitigate its
subsequent impact are the goals of any good security measure
(Tennenbaum et al., 2021). Given i) the potentially very high
death toll due to an anthrax attack and the societal and
economic disruption in the aftermath of an attack, ii) the
demonstrated relative feasibility of acquisition, mass production
and weaponization of anthrax, partly by circumventing existing
regulations and governance measures, iii) the existence of
disseminating technology, iv) and the difficulty of effective
emergency response including the sufficient stockpiled antibiotics,
antitoxins and vaccines, it is crucial to strengthen preparedness,
prevention, and mitigation measures.

For an evaluation of the posed threat considering anthrax and
BW research, we identified many indicators in different fields with a
dual-use potential relevant to anthrax BW development
(Supplementary Table S1). As can be seen from the prominent
examples of Amerithrax and Aum Shinrikyo, foremost terrorists try
to use anthrax as a bioweapon. Based on identified indicators in
different relevant fields with a dual-use potential relevant to an
anthrax BW development, our analysis clearly showed the rapid
speed at which scientific achievements in the field of SynBio and
other emerging and converging technologies are taking place
(Supplementary Table S1), thereby paving the way for potential
novel and high consequence BW threats.

On the one hand, key technologies that could support efforts to
engineer a novel anthrax BW were identified. The indicators most
relevant to our pathway exploration were scientific achievements,
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advancements or discoveries that could be exploited to increase the
BW threat potential or to circumvent biosecurity measures aiming at
preventing BW proliferation and development. The essential
anthrax virulence factors are located on just two plasmids,
allowing their transfer from one bacterium to another (Makino
et al., 1988; Stepanov et al., 1996), as was already proven in E. coli
(Robertson and Leppla, 1986; Sharma et al., 1996; Kumar et al.,
2001). Together with the existence of phylogenetic closely related
and less dangerous surrogate species such as B. subtilis (Zhang et al.,
2019; Gholami et al., 2021), B. thuringiensis (Lima-Pérez et al., 2019)
and B. cereus (Manoharan et al., 2023), this presents a major
possibility for exploitation and potential for safer, low-cost and
undercover BW research. Furthermore, the advent of CRISPR made
genetic modification easier, quicker and cheaper, while toxin
sequences (GenBank, 1995) and protocols for the isolation of B.
anthracis from contaminated soil (Chikerema et al., 2012), high-cell
density cultivation (Zhang et al., 2019), sporulation (Chen et al.,
2020) and other techniques necessary for BW development are
readily available on the internet. To top this all off, there are
commercial suppliers for mail-order nucleic acid sequences,
which are not bound to perform mandatory screenings. And
even if they were mandated to perform screenings, there would
be ways to circumvent them (Atkins and Baranov, 2010; Engineering
Biology Research Consortium Security Working Group, 2022). In
addition, potential hazardous modifications include antibiotic
resistance, or heightened pathogenesis, an easier disseminatable
and enhanced aerosolization of the BW agent. Using
recombinant DNA technology even a non-regulated B. cereus
strain could be turned into an anthrax BW that could escape the
established bio-detection and biomedical defense strategies. In
addition, many of the identified technological advances are
explicitly designed to decrease the technical expertise required to
produce sufficient quantities of biological agents for a bioterrorist
group with nefarious intentions. Importantly, this can
fundamentally change signatures used to identify suspicious and
illegal activity by intelligence analysts and law enforcement
professionals.

On the other hand, technological advances also led to an
improvement in the realm of counterproliferation, detection, and
development of medical countermeasures, thereby raising the PrEP
and PEP targeted to counter and reduce threats. The
chemotherapeutic management of anthrax has become
challenging due to the global emergence of antibiotic-resistant
strains. However, a plethora of bioactive phytochemicals with an
antibiotic-potentiating ability and reversing antibiotic resistance in
B. anthracis have been identified (Dassanayake et al., 2021). In
addition, the discovery of potent new antibiotics such as
anthracimycin with a novel mechanism of action (inhibiting
DNA/RNA synthesis) and low toxicity to human cells represents
a major advance in the field of antibiotics against B. anthracis
helping to counter existing or future antibiotic resistance
problems (Tian et al., 2022). Moreover, three new siphophages
that can specifically infect and lyse B. anthracis were recently
isolated. Beside finding potential use in B. anthracis identification
and detection assays, the siphophages, after removing the genomic
modules essential for lysogeny, can be applied to treat human or
animal anthrax (likewise their endolysins), or as surface or skin
decontaminants or disinfectants (Nakonieczna et al., 2022).

However, in a large-scale bioterrorist anthrax incident, it is
especially critical to meet the need for anthrax vaccines and
antitoxins (Dassanayake et al., 2021; Hesse et al., 2022).
Representing a bottleneck for mitigation in case of an anthrax
attack, vaccines and antimicrobics have to be stockpiled for rapid
mobilization and distributed to large numbers of people (Beeching
et al., 2002).

The combination of these findings draws a sobering picture
implying a low-entry and potentially high-threat situation.
However, these advancements simultaneously also offer new
opportunities to address them.

3.7 Biosecurity measures

All of the BWC Review Conferences since the 1990s have failed
to take decisions that would help shaping biosecurity measures on
the international as well as national level or at public or private
biotechnology facilities. The here discussed measures were hence
developed through other mechanisms. The current technological
possibilities to weaponize B. anthracis discussed here highlight
several aspects which are of importance in the context of risks
posed by dual-use research (see Introduction).

• Misuse of results published openly in literature (e.g., creating
multidrug-resistant strains of B. anthracis, expressing anthrax
toxins in other microorganisms).

• Conducting gain-of-function experiments (GOF) for
malicious intent (e.g., genetic engineering of B. cereus to
convey the characteristics of wild type B. anthracis).

• Exploiting recent and emerging advances in technology for
malicious purposes (e.g., UAVs, modern aerosolizers or
ordering DNA sequences encoding for B. anthracis toxins
or virulence factors from a commercial provider).

These aspects present just a fraction of the dual-use research
problems in science and industry that need to be addressed by
designing and applying comprehensive ethical and legal
frameworks. However, in the scientific community, there is still
little awareness of the fact that research results and technological
achievements can be misused by certain actors for hostile purposes.

While such efforts have no bearing on terrorists, many initiatives
for the scientific codes of conduct have been recently developed to
minimize biosafety and biosecurity risks. They include the
Recommendations for Handling Security-Relevant Research
drafted by the German Research Foundation and the National
Academy of Sciences Leopoldina (Deutsche
Forschungsgemeinschaft and Deutsche Akademie der
Naturforscher Leopoldina, 2014) and the Global guidance
framework for the responsible use of the life sciences (World
Health Organization, 2022). Another prominent example is the
Tianjin Biosecurity Guidelines for Codes of Conduct for
Scientists (Wang L. et al., 2021), which were, however, not
endorsed by the Ninth Review Conference of the BWC in
December 2022. All these promising ethical tools urge that “[m]
easures should be taken to prevent the misuse and negative impacts of
biological products, data, expertise, or equipment” (WHO, 2022).
This also implies a responsible publication of results in scientific
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literature. Transparency and knowledge sharing are undoubtedly
important driving forces in high-quality research. Nevertheless, as
we illustrate in this manuscript, some published data might pose a
great risk of misuse. Examples include investigating the sporulation
process of B. anthraciswhile using other related organisms such as B.
thuringensis or B. subtilis. A more striking example is the publication
on the genetically engineered multidrug-resistant B. anthracis strain.
The data on this experiment was published in the 90s, prior to the
“Fink Report” (National Research Council, 2004). However, the
open-access body of literature on some research areas of concern
outlined in this report continues to grow, as demonstrated by the
recent pre-print publication on the chimeric recombinant Sars-
CoV-2 (Chen et al., 2023). This clearly indicates the need for a
more sophisticated review mechanism for scientific journals and
addresses the issue of making publications openly available in
preprint repositories before they undergo a review process.

In addition to the research results published in scientific
journals and preprint repositories, other sources of scientific
data can be potentially subjected to misuse. This for instance
applies to open-access genomic and proteomic databases. The
National Institute of Health GenBank contains complete
genome sequences of various microorganisms and viruses with
varying data quality, including B. anthracis Ames, Hepatitis B
virus, Influenza A (segments 1–8), Yersinia pestis, etc. The fact that
this information can be misused for the de novo synthesis of some
of the genes, or even for the recreation of an entire organism (see
cases of poliovirus and horsepox virus) cannot be denied. One of
the possible mitigation strategies could be more restricted access to
the data banks through a licensing policy. A preregistration of
research for biosecurity risk assessment earlier in the research
process and eventually access-controlled repositories or
application programming interfaces after completion of research
has already been demanded (Smith and Sandbrink, 2022). These
steps, however, require scrutiny and a solid proof-of-principle in
order not to create a serious bureaucratic obstacle to peaceful
science, while making a minimal contribution to biosecurity (due
to the existence of possible backdoors for misuse, etc.).

Another important aspect is the highly controversial GOF
research area. It has sparked numerous debates in the past
(Kaiser, 2022). A more in-depth analysis of the matter is beyond
the scope of this manuscript. Nevertheless, it is of relevance to our
discussion on weaponizing anthrax. Modifying B. cereus in such a
way that it would express anthrax toxins and important virulence
factors would meet the definition of “enhancing” an agent. Recently,
the United States National Science Advisory Board for Biosecurity
approved a report on amending the review process of GOF
experiments in the United States and abroad (in cooperation
with United States research institutions) (Reardon, 2023).
According to it, all studies should be subjected to a meticulous
review, if they could be “reasonably anticipated” to make a pathogen
more dangerous. The guidelines are still vague and will undergo
several modifications before being finalized. Even if applied in a
consequent manner, there remains the question, of which impact, if
any, these regulations would have on other GOF experiments
conducted worldwide. The current frameworks do not appear to
be effective in limiting dissemination of research that could enhance
the dangers posed by a future use of B. anthracis. This matter
requires an open dialogue on a multinational level.

In the broad discussion about the ethical obligations of the
scientific community, little attention is paid to the responsibility of
other stakeholders, such as the private sector. As the bioeconomy
grows, privately funded life science research with dual-use potential
is on the rise (Epstein, 2023). A major drawback there is, for
example, the lack of standardized guidelines and customer
screening mechanisms to reduce the risk of misuse of advanced
medical and biotechnological applications and devices supplied.
Thus, companies providing dual-use equipment should
implement reliable mechanisms to check their customers’ and
cooperation partners’ backgrounds. Full-scale training in
biosecurity, international norms, and ethical issues should be
provided in both non-commercial research institutions and
industrial biotechnology facilities.

In the pathway analysis, we focus on the case of commercial
providers of synthetic DNA and indicate that the guidelines
proposed by HHS are, for now, still voluntary and bear some
limitations concerning biosecurity. A unified easy-applicable and
low-cost mechanism for screening both the customer and the
ordered DNA is of utmost importance. Several proposals for
such mechanisms have been developed over the years, including
the implementation of a harmonized database for the “sequences of
concern” (sequences encoding for toxins and virulence factors,
excluding other housekeeping genes of an organism, to make the
screening less ambiguous and time-consuming). In particular, the
Nuclear Threat Initiative (NTI) is making laudable progress in
establishing an international common mechanism for DNA
synthesis screening based on the above criteria, which should be
operational soon (The Nuclear Threat Initiative, 2023). However, all
guidelines will have limited effectiveness unless they are declared
mandatory worldwide. To the best of our knowledge, only the
California government has taken an initial step in the direction
of strengthening SynBio-security, requiring scientists to develop
systemwide guidance for purchasing gene synthesis equipment
and products from “providers who prevent the misuse of
synthetic genes” (LegiScan. California Assembly Bill, 1963, 2022).
However, more stringent (international) legislation, including also
legally binding regulations for the industry is still needed.

In summary, we support the overarching proposals made by the
above-mentioned ethical frameworks and would like to emphasize
the following.

• Comprehensive training for raising awareness in the scientific
community should become a mandatory part of any
curriculum at academic institutions; it should also be
included in annual training of the scientific staff at non-
profit research and industrial facilities;

• Biosecurity relevant research should be registered for
biosecurity risk assessment;

• A background check should be considered for scientific staff
members working on biosecurity-relevant research;

• Ethical and policy recommendation committees should be
convened at institutions to monitor and evaluate the proposed
research projects and to guide them during their progress;

• Access-controlled repositories or application programming
interfaces for open science should be implied while access
to genome/proteome databanks should be better supervised
(through e.g., licensing);
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• A broader and stricter mechanism for reviewing the submitted
manuscripts and research proposals should be put in place by
the funding agencies and the scientific journals (since Some
journals are published by for-profit publishers and may not be
as rigorous);

• Screening procedures of the synthetic DNA ordered from
commercial suppliers should be unified and mandatory;

• Strict and continuous documentation, monitoring, and
accountability of laboratory storage, and utilization of
pathogens, toxins, biosecurity-relevant substances, and
sequences

• BWC states parties using the intersessional process towards
the 10th review conference in 2027 to develop sufficient
multilateral activities, such as the installation of a Science
and Technology advisory board, a verification system shaped
to the progress in the field, adopting a significant code of
conduct for the life sciences, adopting and strengthening the
system of Confidence Building Measures, etc. Such a
verification system should consider the fundament of the
draft BWC verification protocol of 2001, might be
conceived similarly to that of the Chemical Weapons
Convention (CWC) but should but must be extended due
to the different technology and stakeholder environment
(i.e., mail order, DIY labs, cloud labs, etc.). Furthermore,
transparency toward DURC and GOF research should be
included in a monitoring and verification system.

These steps should be openly discussed with and accepted by the
scientific community and other stakeholders. Otherwise, they might
result in a patchwork-like loose implementation that hampers
scientific progress, while making little contribution to biosecurity.

4 Conclusion

Biological weapons do not only pose a threat through state-
sponsored programs but also in bioterrorism and bio-crime
incidents. Globally, huge efforts are being made to strengthen the
norm against biological weapons and to implement effective
biological arms control strategies. These include binding laws
prohibiting the development, production, stockpiling and use of
biological weapons. In fact, many states have been historically
financially and technically capable of engaging in clandestine
biological warfare programs including B. anthracis BWs. Two
decades have past since the Amerithrax attacks without any
further comparable incidents. Throughout the entire time period,
however, the narrative developed that the threat is constantly
growing. This article, investigates the anthrax BW threat by
terrorists in the here and now.

In our pathway analysis, we analyzed three different acquisition
pathways, isolation, illegal procurement and various routes of
genetic engineering. These pathways vary greatly in labor
intensity, necessary secrecy levels and biosafety requirements, as
well as costs. While it may be possible to steal already weaponized
spores from legitimate facilities, isolation and genetic engineering
requires much more work. Similarly, biosafety requirements may
widely differ depending mostly on the level of readiness of the
illegally procured bioagent. Hence, costs may scale where the highest

costs would be expected for the genetic engineering pathway. We
would refrain from estimating explicit cost ranges, since they mostly
depend on the number of people involved and their monetary
compensation, as well as the necessary infrastructure which may
vary situationally and geographically. Also, it is hardly possible to
determine a number of person labor hours since this kind of work,
especially genetic engineering, is more breakthrough-dependent. On
the other hand, secrecy would likely be least sensitive in the isolation
pathway and most sensitive in the illegal procurement pathway
while depending on the number of people involved and the timespan
of production.

Since terrorists do not comply with the existing strong global
norm that rejects development of such weapons, raising
preparedness and implementing preventive measures are the
only effective strategies. Despite improvements in treatment,
inhalation anthrax remains a deadly infection. Prevention,
therefore, foremost implies promt detection, timely diagnosis,
and immediate treatment of disease, as well as providing
sufficient intensive-care facilities and effective antimicrobials, to
significantly reduce the morbidity and mortality of inhalational
anthrax. In fact, achievements have been made in all these areas
including the discovery of new and effective antibiotics and
bacteriophages as well as improvements in vaccination
strategies and the invention of rapid portable detection devices
and sensors. However, the question remains, whether they are
capable of compensating the existing elevated threat level of a
potential B. anthracis BW development and deployment by
terrorists identified through our aforementioned pathway
analysis. In addition, the past failures of terrorists in pursuing
anthrax BWs should not be a source of consolation, but rather a
warning of an activity that, if persistently pursued with the aid of
advances in emerging and converging sciences, could eventually
lead to success.
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Glossary

3D Three dimensional

AG Australia Group

AI Artificial Intelligence

AIG-IV Intrevenous Anthrax immune globulin

AVA Anthrax vaccine adsorbed

AVP Anthrax vacinne precipitated bp Base pairs

BSAT Biological Select Agents and Toxin

BSL Biosafety level

BW Biological weapon(s)

BWC Biological Weapons Convention

CDC Centers for Disease Control and Prevention

CRISPR Clustered regularly interspaced short palindromic repeats

CRISPR/
cas9

Clustered regularly interspaced short palindromic repeats/CRISPR-
associated protein 9

DETECTR DNA endonuclease targeted CRISPR trans reporter

DIY Do-It-Yourself

DIY-Bio Do-It-Yourself Biology

DNA Desoxyribonucleic acid

dsDNA Double-stranded desoxyribonucleic acid

DURC Dual-Use research of concern

ECDC European Centre for Disease Prevention and Control

EF Edema factor

EU European Union

FDA Food and Drug Administration

GOF Gain-of-function

HCD High cell density

HDR Homology-directed repair

HHS United States Department of Health and Human Services

JoVE Journal of Visualized Experiments

LF Lethal factor

MERCs Multi export regime controls

mRNA Messenger ribonucleic acid

NTI Nuclear Threat Initiative

PA Protective antigen

PCR Polymerase Chain Reaction

PEP Post-exposure prophylaxis

PrEP Pre-exposure prophylaxis

RNA Ribonucleic acid

rRNA Ribosomal ribonucleic acid

SSF Solid-state fermentation

SynBio Synthetic Biology

UAV Unmanned aerial vehicles

UK United Kingdom

UNSC United Nations Security Council

US United States of America

USSR Union of Soviet Socialist Republics

WHO Worls Health Organization
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