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1 Introduction

Cryopreservation is a popular and crucial method for long-term storage of cells, tissues,
and other biological samples at low temperatures. During this process, the cells are in a state
of “suspended animation” to inhibit biological and chemical reactions (Pegg, 2015; Jang
et al., 2017; Chang and Zhao, 2021). Recently, there are two main strategies of
cryopreservation: slow freezing and vitrification (Kometas et al., 2021). Slow freezing
refers to the freezing of biological samples at a rate of 1°C/min. This can be achieved
through laboratory freezing tubes and programmed cooling boxes (Garcia-Flores et al.,
2023). Vitrification means that when a small biological sample cools at a very fast rate, the
internal water will be transformed into a glassy state (Schulz et al., 2020). The devices for
vitrification are various, such as cyrotop (for oocytes) (Miao et al., 2022), plastic straw (for
spermatids) (Patra et al., 2021), and cryomesh (for islets) (Zhan, Rao, et al., 2022). However,
low temperature can cause a range of damage to biological samples, including protein
denaturation (Chen et al., 2022), membrane damage (Lee et al., 2023), oxidative stress
(Gualtieri et al., 2021). Since DMSO was first used in bull sperm cryopreservation in 1959, it
has been found that the addition of a certain concentration of DMSO could resist these
cryodamages (Lovelock and Bishop, 1959; Stubbs et al., 2020). Unfortunately, DMSO can
lead to various problems such as differentiation of human stem cells (Davidson et al., 2015),
hemolysis (Yi et al., 2017), and alterations in DNA methylation (Verheijen et al., 2019) at
body temperature (37°C).Therefore, a series of novel CPAs, such as AFP, proline, etc., have
been developed for DMSO-free cryopreservation (Li et al., 2020; Weng and Beauchesne,
2020), and these CPAs can be classified as permeable or impermeable according to whether
they can enter cells (Weng et al., 2019; Yong et al., 2020). But none of them can replace
DMSO totally. Currently, the most common cryopreservation process involves three steps:
1) mixing DMSO with biological samples and storing them at low temperature; 2) thawing
by convection rewarming; and 3) removing DMSO by centrifugation and washing (Jang
et al., 2017; Whaley et al., 2021). Although this protocol is widely used in clinics and
laboratories, there are still some challenges.

Besides the toxicity of DMSO, commonly used convective rewarming can lead to ice
recrystallization and devitrification because of its slow rewarming rates (Marquez-Curtis
et al., 2015; Wang et al., 2016). Also, uneven temperature distribution and thermal gradients
can induce thermal stress and destroy the biological samples, especially for larger volumes
(Taylor et al., 2019). Finally, the manual centrifugation and washing to remove CPA is not
only demanding for operators, but may also lead to complex procedures and unintended cell
loss (Shu et al., 2014; Hornberger et al., 2019). In general, these procedures may cause
damage instead of thoroughly cleaning (Fois et al., 2007).

To solve the problems discussed above, advanced cryopreservation technologies must be
employed. Initially, impermeable CPA is widely used in cryopreserving biological samples
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such as oocytes and red blood cells due to its non-toxicity, high
efficiency, and stability (Stoll et al., 2012; Zhang et al., 2016; Huang
et al., 2017). However, its impermeability hinders its application in
preventing intracellular damage. The use of delivery methods like
nanoparticles (Rao et al., 2015) and membrane perturbation (Janis
et al., 2021) are required to ensure its presence inside or outside the
cells. In addition, novel warming methods such as nanowarming
offers a faster and more even heating option compared to convective
rewarming. It is especially important in cryopreserving large volume
biological samples (Manuchehrabadi et al., 2017). Furthermore,
high-quality washing methods have become effective way of
convenient removal of CPA (Lusianti and Higgins, 2014; Zhao
and Fu, 2017). Therefore, the adoption of these advanced
cryopreservation technologies provides an opportunity to achieve
efficient and high-quality cryopreservation (Figure 1).

2 CPA delivery methods

On the one hand, trehalose has the ability to form hydrogen
bonds with biomacromolecules and promote hydration, enabling
cell components to maintain functional conformations. It can also
slow metabolic activity by forming glassy substrates with extremely
low molecular mobility (He, 2011; Ntai et al., 2018; Hu et al., 2023).
On the other hand, AFP can enhance the resistance of cells to
cryoinjury by inhibiting ice crystal growth and interaction with
membranes (Kim et al., 2017; Baskaran et al., 2021). Due to these
properties, trehalose and AFP have gained attention as non-toxic
and reliable CPAs (Lee et al., 2013; Huang et al., 2017). However,
unlike DMSO, trehalose and AFP cannot penetrate the cell
membrane, which limits their use in protecting cells from
intracellular ice crystal damage (Chang and Zhao, 2021; Hu

et al., 2023). Therefore, effective methods for delivering trehalose
and AFP are essential for successful cryopreservation. These
methods include nanoparticles carriers and membrane
perturbation delivery, depending on cellular structure and
function. It must be noted that trehalose cannot be metabolized
in cells and the safety of intracellular AFP is unclear, which may
hinder their translation to clinic (Campbell and Brockbank, 2012;
Dovgan et al., 2017). Detailed information has been summarized in
Table 1.

2.1 Nanoparticles carriers

Endocytosis is one of the mechanisms by which nanoparticles
(NPs) can deliver trehalose into cells (Stewart and He, 2019). For
instance, cold-responsive nanocapsules (CR-NCs) encapsulated
trehalose by microfluidics have successfully maintained the
glucose-regulating function of pancreatic β cells after
cryopreservation (Cheng et al., 2019). Some pH-responsive
delivery systems, such as genipin-cross-linked Pluronic F127-
chitosan nanoparticles (GNPs) (Rao et al., 2015) and chitosan-
tripolyphosphate (CS-TPP) nanoparticles (Yao et al., 2020) have
also shown efficient intracellular delivery of trehalose. Remarkably,
Poly (l-alanine-co-l-lysine)-graft-trehalose (PAKT) was synthesized
as a natural antifreezing glycopolypeptide (AFGP). It can be used as
a carrier for trehalose delivery while also mimicking a CPA to inhibit
ice recrystallization and protecting cells (Piao et al., 2022).

2.2 Membrane perturbation delivery

Membrane perturbation is another method to deliver
impermeable CPAs into cells. The effectiveness of this approach
has been demonstrated by the delivery of AFPIII via the location of
cell-penetrating peptide pep-1 (Tomás et al., 2019). In non-
endocytic human red blood cells, trehalose can be delivered by
altering membrane permeability, which depends on the interaction
between the polymer attached to the hydrophobic side group and the
membrane lipid bilayer (Liu et al., 2022). Phenethylamine-grafted
PGA (PGA-g-PEA) synthesized from hydrophobic PEA-modified
PGA enhances trehalose loading capacity and reduce hemolysis of
red blood cells by self-forming nanoparticles in a phosphate buffer
solution (Zhang et al., 2020). Besides nanoparticles, ultrasound and
microbubbles can also induce transient perforations to achieve
trehalose loading into human red blood cells (Janis et al., 2021).

3 Warming methods

Convective rewarming, which means immersing biological
samples in a water bath heated to 37°C, is still considered the
gold standard for rewarming (Wolkers and Oldenhof, 2015).
However, the slow heating rate resulting from convective
rewarming can lead to ice recrystallization and devitrification
(Wang et al., 2016). Additionally, convective rewarming may not
provide even heating, particularly as the volume of biological
samples increases. The resulting thermal gradients can cause
biological samples to crack (Mfarrej et al., 2017; Sharma et al.,

FIGURE 1
The novel delivery, warming and washing methods for
cryopreservation of biological samples.
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TABLE 1 Examples of CPA delivery methods and warming methods.

Methods Cell types Positive effects References

CPA delivery
methods

pH-sensitive systems delivery GNPsa hADSCsb Cell viability↑ Rao et al. (2015)

Functional survival↑

Attachment efficiency↑

Proliferative potential↑

CSc–TPPd nanoparticles NK cellse Cell viability↑ Yao et al. (2020)

Survival rate↑

Cytotoxicity↑

Proliferative potential↑

Cold-responsive systems
delivery

PNPf MDA-MB-231 cancer cellsg and
hADSCs

Cell viability↑ Zhang et al. (2019)

Attachment efficiency↑

Survival rate↑

Proliferative potential↑

Functional survival↑

Membrane perturbation
delivery

Apatite nanoparticles sRBCsh Survival rate↑ Stefanic et al. (2017)

Cell viability↑

ε-PLi and PVPj hRBCsk Trehalose permeability↑ Liu et al. (2022)

Survival rate↑

The amount of PSl

exposure↓

Sonoporation hRBCs Cell recovery rate↑ Janis et al. (2021)

Trehalose permeability↑

Ultrasound-integrated
PDMSm-based microfluidic

hRBCs Trehalose permeability↑ Centner et al. (2020)

Cell viability↑

Glycopeptide of saccharide-
grafted ε-poly (L-lysine)

hRBCs Survival rate↑ hemolysis↓ Gao et al. (2022)

Other delivery methods PAKT
n MSCso Cell viability↑ Piao et al. (2022)

Proliferative potential↑

Functional survival↑

Ice Recrystallization↓

EGFP-ApAFP752p HEK 293Tq Survival rate↑ Sreter et al. (2022)

Intracellular AFP
concentration↑

Warming
methods

Magnetoresponsive induction
heating

msIONPsr HDFss, porcine carotid arteries,
porcine heart valve leaflet, porcine

femoral arteries

Cell viability↑ Manuchehrabadi
et al. (2017)

Survival rate↑

Damaged cells↓

sIONPst Rabbit kidney Tissue integrity↑ Sharma et al. (2021)

Tissue viability↑

Photoresponsive induction
heating

Gold nanorods and pulsed
lasers

Zebrafish embryos Functional integrity↑ Khosla et al. (2020)

Survival rate↑

2D-GO-MoS2 NSs
u HUVECsv Warming rate↑ Panhwar et al. (2018)

(Continued on following page)
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2021; Sharma et al., 2023). To overcome these limitations, a
sequence of methods for rapid and even rewarming were
developed, such as nanowarming, rapid joule heating (Zhan,
Han, et al., 2022), infrared radiation heating (Bissoyi and
Braslavsky, 2021). These methods have been summarized in Table 1.

3.1 Magnetoresponsive induction heating

Néel and Brownian relaxations caused by magnetic moment
oscillation can induce the thermal effect of magnetic nanoparticle
under an alternating magnetic field (AMF) (Syme et al., 2004;
Cazares-Cortes et al., 2017). Therefore, the addition of magnetic
nanoparticles to the cryoprotectant solution under an AMF can
improve the thermal conductivity of biological samples, resulting in
relatively even and rapid heating. This method minimizes damage to
biological samples caused by slow and uneven rewarming (Etheridge
et al., 2014; Liu et al., 2018). The vitrified organs, including rat hearts
(Joshi et al., 2022) and rabbit kidneys (Sharma et al., 2021), have been
successfully rewarmed utilizing magnetic iron oxide nanoparticles

(IONPs), and the integrity of their structure and function is
maintained. But the potential cytotoxicity of nanoparticles must be
considered. However, due to the limitation of warming rate, the
application of magnetically responsive nanoheating requires high
molarity CPA, which brings potential toxicity to biological samples.

3.2 Photoresponsive induction heating

Gold nanorods and carbon black micron-sized particles have also
been utilized in rewarmingmethods to achieve photoresponsive inducing
heating (Khosla et al., 2020). Laser vibration in the gold nanoparticles
induces heat dissipation. This enables ultra-rapid rewarming of
cryopreserved zebrafish embryos and improves embryo survival.
However, physical damage from injection site increased the
probability of ice formation during rapid freezing (Khosla et al., 2019;
Khosla et al., 2020). Carbon black micron-sized particles can suddenly
heat up and emit heat after absorbing laser infrared energy. This hate will
be transferred to the biological sample through the solution to achieve
rapid and even heating (Panhwar et al., 2018).Nonetheless,

TABLE 1 (Continued) Examples of CPA delivery methods and warming methods.

Methods Cell types Positive effects References

Cell viability↑

Survival rate↑

Functional integrity↑

Photo- and
magnetoresponsive induction

heating

Graphene Oxide-Fe3O4

Nanocomposite
MSCs Proliferative potential↑ Cao et al. (2019)

Cell viability↑

Functional integrity↑

Rapid joule heating Electrical conductor and
voltage pulse generator

Adherent fibroblast cells, Drosophila
embryos and rat kidney slices

Survival rate↑ Zhan, Han, et al.
(2022)

The structural integrity of
the kidney slices↑

Radiofrequency Heated Metal
Forms

Al foil metal 2 mm thick porcine aortas Tissue viability↑ Han et al. (2020)

Infrared radiation heating Focused halogen IR lamp Heterogeneous human epithelial
Caco2w and RPEx cell lines

Cell viability↑ Bissoyi and
Braslavsky (2021)

Cell adhesion ↑
aGNPs: genipin-cross-linked Pluronic F127-chitosan nanoparticles.
bhADSCs: human adipose-derived stem cells.
cCS: chitosan.
dTPP: tripolyphosphate.
eNK cells: natural killer cells.
fPNP: PLGA (poly (lactic-co-glycolic acid))—pNIPAM-B (poly (N-isopropylacrylamide-co-butyl acrylate)) —PF127(Pluronic F127).
gMDA-MB-231 cancer cells: human breast cancer cells.
hsRBCs: sheep red blood cells.
iε-PL: ε-poly (L-lysine).
jPVP: poly (vinyl pyrrolidone).
khRBCs: human red blood cells.
lPS: protoplasmic surface.
mPDMS: polydimethylsiloxanenPAKT:poly (l-alanine-co-l-lysine)-graft-trehalose.
oMSCs: mesenchymal stem cellspEGFP-ApAFP752: enhanced green fluorescent protein (EGFP) -tagged antifreeze protein.
qHEK 293T: human embryonic kidney cell line.
rmsIONPs: mesoporous silica coated iron oxide nanoparticles sHDFs: human dermal fibroblasts.
tsIONPs: silica-coated iron oxide nanoparticles.
u2D-GO-MoS2 NSs: Two-dimensional graphene oxide molybdenum disulfide nanosheets.
vHUVECs: human umbilical vein endothelial cells.
wCaco2: colorectal adenocarcinoma.
xRPE: retinal pigment epithelium.
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photoresponsive nanoheating is difficult to apply to large-scale biological
samples (Zhan, Han, et al., 2022).

4 Washing methods

Currently, the removal of DMSO from biological samples still relies
onmanual centrifugation, which requires skilled operators to remove the
supernatant and replace it with a washing solution (Shu et al., 2014).
However, cell loss is unavoidable during centrifugation, and residual
DMSO can be highly toxic (Syme et al., 2004). Fortunately, several
techniques for DMSO removal have been developed to address these
challenges.

The hollow fiber module with semi-permeable membrane uses
the pressure and concentration difference between the cell
membrane and the fiber membrane to remove CPA from cells.
This technique can also be scaled up for large cryopreserved cell
suspensions (Ding et al., 2010). Dual-flow microfluidic devices have
been specifically designed to remove intracellular DMSO in a limited
time, which is essential for clinical applications (Fleming Glass et al.,
2008). Dilution filtration system has been demonstrated to be more
efficient and cost-effective than conventional multistep
centrifugation or automated centrifugation (Zhou et al., 2011).
Sepax-2 and Lovo devices have also been proven effective in
removing DMSO from thawed hematopoietic progenitor cells
(HPC), while maintaining the viability of CD34 cells before
clinical infusion. However, the washing scheme must be flexible,
convenient and low-cost for more common applications (Abonnenc
et al., 2017; Mfarrej et al., 2017).

5 Conclusion

With the advancement of modern biotechnology, conventional
cryopreservation obviously failed to keep pace with current needs.
This review generalized the recent advances of delivery, warming
and washing methods used in cryopreservation. Delivery methods
helped to overcome the major limitation of the ultra-low
permeability of impermeable CPAs, enabling their intracellular
and extracellular cryopreservation. The use of novel warming
methods can achieve rapid and even rewarming while avoiding

the adverse effects of devitrification on biological samples. The
emergence of various washing methods created a novel platform
for convenient and efficient CPA removal. It must be noted that all
the novel methods for cryopreservation have not been widely used
neither in laboratory nor in clinic due to the high cost and complex
operation protocol. Future studies need to focus on making new
methods less difficult to perform without reducing their
effectiveness, so that they can be applied by more researchers.
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