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Hepatocellular carcinoma (HCC), one of the most prevalent cancers, with a high
mortality rate worldwide, seriously impairs patient health. The lack of accurate
targets impedes the early screening and diagnosis of HCC and is associated with a
poor response to routine therapies. Extracellular vesicles (EVs), comprising
exosomes, microvesicles, and apoptotic bodies, are lipid bilayer membrane-
derived nanometer-sized vesicles. EVs can be secreted from various cancer cells
and release diverse biomolecules, such as DNA, RNA, proteins, metabolites, and
lipids, making them a potential source of biomarkers and regulators of the tumor
microenvironment. Emerging evidence suggests that EVs are involved in
intercellular communication by carrying biological information. These EVs elicit
physiological functions and are involved in the oncogenesis of HCC, such as
proliferation, invasion, metastasis, and chemoresistance of HCC. EVs have also
been considered promising biomarkers and nanotherapeutic targets for HCC.
Therefore, this review sheds light on the current understanding of the
interactions between EVs and HCC to propose potential biomarkers and
nanotherapeutic strategies.
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1 Introduction

Hepatocellular cancer ranks as the sixth most prevalent cancer globally and the fourth
leading cause of cancer-related death. It constitutes approximately 75%–85% of all liver tumors
(Siegel et al., 2023). Despite advancements in hepatocellular carcinoma (HCC) treatment
approaches, the therapeutic response of patients with intermediate to advanced HCC
remains low due to factors such as tumor recurrence, metastasis, and drug resistance,
resulting in a dismal prognosis (Wang et al., 2022; Zelli et al., 2022). Since their discovery in
1983 (Harding et al., 1983), extracellular vesicles (EVs) have evolved from being perceived as
mere cellular waste disposal systems to a novel mechanism of intercellular communication.
Notably, non-coding RNAs contained within EVs play a significant role in conveying
intercellular information and profoundly influencing tumor malignancy including in HCC
(Fabbiano et al., 2020; Kotani et al., 2021). Ning J et al. have found that miR-12–92 cluster
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originated from EVs of M2 tumor-associated macrophage significantly
contributed to the imbalance of TGF-β1/BMP-7 pathways in HCC cells
and promoted the invasion and metastasis of HCC by inhibiting
TGFBR2/Smad ubiquitylation regulatory factor 1 (Smurf1)/activin A
receptor type 1 (ACVR1) signal pathway (Ning et al., 2021). Besides,
Han S et al. found that miR-3190 was upregulated in EVs originated
from HCC cells which metastasized and colonized in bone tissues.
The bone-metastasized HCC-derived EVs which were loaded with
miR-3190 can be transferred into orthotopic tumor cells and promote
their metastasis by dereasing the expression of AlkB homolog 5
(ALKBH5) (Han et al., 2023). Further elucidation of the biological
functions of EVs not only revolutionizes our comprehension
of intercellular information exchange and tumor progression
regulatory mechanisms, but also offers novel perspectives for cancer
diagnosis and treatment, such as identifying tumor diagnostic
biomarkers based on EVs and developing innovative tumor
nanotherapy approaches (Aharon et al., 2021; Coffin et al., 2021).
These advances hold promise for early hepatocellular carcinoma (HCC)
detection and improved outcomes in HCC patients unresponsive to
conventional treatments. Consequently, this review aims to examine the
role of non-coding RNAs present in EVs in HCC progression, explore
the potential of EVs as HCC diagnostic biomarkers, and summarize
emerging EV-based nanotherapy strategies for HCC, thereby providing
valuable insights for clinical diagnosis and treatment of HCC.

2 The non-coding RNA present in EVs
can regulate the progress of HCC and
affect its therapeutic sensitivity

Themajority of liver cancer patients are diagnosed at intermediate to
advanced stages of the disease. At this advanced stage, liver
transplantation is no longer viable. The primary treatment
alternatives currently available involve a combination of transhepatic
arterial chemoembolization (TACE) and systemic chemotherapeutic
agents (Cheng et al., 2020). However, prolonged use of
chemotherapeutic drugs inevitably leads to HCC treatment resistance.
Consequently, novel strategies to counteract the resistance of liver cancer
to chemotherapeutic drugs are urgently required (Wang et al., 2023).

Extracellular vesicles (EVs) derived from cancer-associated
fibroblasts (CAFs) transferred miR-1228-3p to HCC cells,
promoting HCC proliferation, migration, and invasion by activating
the PLAC8-mediated PI3K/AKT pathway, thereby increasing the
resistance of patients to sorafenib (Zhang Y. et al., 2023). Yu Z
et al. determined that miR-375, carried by EVs from bone marrow
mesenchymal stem cells (MSCs), hindersHCCprogression through the
HOXB3-mediated Wnt/β-Catenin pathway (Yu et al., 2022). Li Y. H.
et al. (2021). reported that miR-338-3p, secreted by bone marrow
MSCs-derived EVs, inhibits HCC proliferation, invasion, and
migration by targeting ETS1 and inducing cell apoptosis. Xu Y
et al. isolated miR-451a-enriched EVs from human MSCs and co-
cultured them with Hep3B and SMMC-7721 cell lines. Their findings
revealed that EVs containing miR-451a significantly suppressed
ADAM10 expression and epithelial-mesenchymal transition (EMT)
while reversing paclitaxel resistance and promoting apoptosis in HCC
cells (Xu et al., 2021). Zhou Y. et al. (2022). observed that CircZFR was
highly expressed in cisplatin-resistant HCC cells. Meanwhile, the
elevated expression of CircZFR in EVs originating from CAFs

impedes the STAT3/NF-κB pathway, thereby enhancing cisplatin
resistance in HCC cells. Liu C and colleagues discovered that
CircTTLL5 was abundantly present in HCC tissues and cell-derived
EVs. By inhibiting CircTTLL5 expression in EVs, HCC cell
proliferation, in vitro metastasis, and tumor growth in nude mice
were suppressed through the miR-136-5p/KIAA1522 signaling
pathway (Liu et al., 2023). Yuan P et al. identified that circ_
002136 found in HCC-derived EVs stimulates HCC progression
through the miR-19a-3p/RAB1A pathway (Yuan et al., 2022). Fu X
et al. found that EVs secreted by HCC cells downregulated
SIK1 expression and enhanced the Wnt/β-catenin pathway by
transporting miR-25, subsequently promoting HCC progression (Fu
et al., 2022). You LN et al. found that the LINC00161, carried by EVs
derived fromHCC cells, activates the ROCK2 signal by inhibiting miR-
590-3p, leading to increased proliferation, migration, and angiogenesis
of HCC cells (You et al., 2021). Liu C et al. found that EVs carrying
miR-30a-3p and deriving from HCC cells, reduced the migration,
invasion, and metastasis ability of HCC cells by directly targeting
SNAP23 (Liu et al., 2021). Li J et al. found that miR-15b from EVs
secreted by As-THP-1 cells when transferred to HCC cells, promotes
their proliferation, migration, and invasion through theHippo pathway
(Li J. et al., 2021). According to Huang M et al., circGSE1 from EVs
secreted by HCC promotes the progression of HCC by inducing Tregs
enrichment and inhibiting anti-tumor immune responses via the miR-
324-5p/TGFBR1/Smad3 pathway (Huang et al., 2022).

Zong QH et al. discovered that miR-452-5p, present in EVs
derived from HCC, enhances the migration, invasion, and
metastasis of HCC cells by targeting TIMP3 to induce
M2 macrophage polarization (Zongqiang et al., 2022). Zhou J et al.
found that EVs overexpressing PART1 promote M2 macrophage
polarization as well as proliferation, migration, invasion, and EMT of
HCC via the miR-372-3p/TLR4 pathway (Zhou J. et al., 2022). Zhang
L et al. also observed that EVs from RBPJ over-expressing
macrophages inhibit HCC progression through the hsa_circ_
0004658/miR-499b-5p/JAM3 pathway (Zhang L. et al., 2022).
Wang LP et al. identified that DLX6-AS1 secreted by EVs from
HCC cells induces M2 macrophage polarization, which in turn
promotes the migration and invasion of hepatocellular carcinoma
through the miR-15a-5p/CXCL17 signaling pathway (Wang L. P.
et al., 2021). Tian B et al. found that M2 macrophage-derived EVs
carrying miR-660-5p also promote HCC progression by regulating
KLF3 expression (Tian et al., 2021). Li W et al. found that EVs
secreted by M2 macrophages elevate the stem cell characteristics of
HCC through the miR-27a-3p/TXNIP pathway, thereby enhancing
HCCmalignancy (LiW. et al., 2021). In addition, Pu J et al. found that
EVs derived from M2 macrophages promote CD8+T cell depletion in
HCC through the miR-21-5p/YOD1/YAP/β-catenin pathway,
contributing to HCC immune evasion (Pu et al., 2021).

Hepatic stellate cells (HSCs) serve as the primary source of CAFs
in the liver, promoting liver fibrogenesis through extracellular
matrix remodeling (Higashi et al., 2017; Wu et al., 2021). Zhang
X et al. discovered through in vitro co-culture of HCC cells and
HSCs, that miR-148a-3p in EVs derived from HSCs impedes HCC
malignancy through the PI3K/Akt/ITGA5 signaling pathway
(Zhang X. et al., 2022). Moreover, Liu L et al. determined that
circWDR25 in EVs secreted by HSCs stimulates the proliferation
and invasion of HCC cells throughmiR-4474-3p/ALOX15 and EMT
pathway while significantly increasing PD-L1 and CTLA-4
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expression in HCC and HSC cells to promote immune escape (Liu
et al., 2022). Xia Y et al. found that SMO can be transferred from
HCC cells to HSCs via EVs. This transfer further elevates SMO
expression and stimulates HSC activation by activating the
Hedgehog pathway, which in turn regulates the GLI1/
MIRLET7BHG/miR-330-5p/SMO pathway. Activated HSCs then
stimulate HCC malignancy (Xia et al., 2021).

These findings suggest that non-coding RNAs in EVs not only
modulate HCCmalignancy and chemotherapeutic sensitivity through
related pathways but also mediate the biological behavior of HCC by
regulating macrophage polarization and affecting HSC activity. These
non-coding RNAs which were loaded in EVs and can regulate the
malignant progress of HCC were also summarized in Table 1.

3 EVs can serve as biomarkers for HCC
diagnosis

HCC is themost prevalent type of primary liver cancer. Due to the
limited sensitivity and specificity of serum α- Fetal protein (AFP)
diagnostic methods, further screening of HCC diagnostic markers
with enhanced accuracy is still required. Numerous studies have
confirmed that EVs can serve as biomarkers for HCC diagnosis
and demonstrate great potential for practical applications. Sun N
et al. devised a scoring system based on membrane proteins found in
HCC-secreted EVs, which proved effective in diagnosing early HCC
(Sun et al., 2023). In addition, abnormal membrane protein
glycosylation has been proven to be a marker for diagnosing
malignant tumors. Li D et al. conducted a comprehensive analysis
and screening of urinary EVs focusing on N-glycosylation levels.
Their results showed that the expression of glycoproteins LG3BP,
PIGR, and KNG1 were significantly upregulated in these EVs derived
from the urine of patients with HCC, while the expression of
ASPP2 was significantly downregulated in these EVs.

Furthermore, it was shown that the abnormal glycosylation of EV
membrane proteins holds potential as an effective noninvasive
biomarker for HCC diagnosis (Li et al., 2023). Lin J et al. isolated
EVs from HCC and adjacent liver tissues for miRNA-level
sequencing. miRNA levels were also sequenced using EVs isolated
from the serum of HCC patients and healthy volunteers. Analysis of
sequencing results and experimental validation revealed that hsa-
miR-483-5p was the only differentially expressed miRNA detected in
EVs from both HCC tissue and the plasma of HCC patients. Further
research found that miR-483-5p was highly expressed in EVs of HCC
and promoted HCC cell proliferation by binding to CDK15 and
downregulating CDK15 expression, ultimately mediating the
malignant progression of HCC. This study demonstrated that hsa-
miR-483-5p is a potential biomarker for the diagnosis of HCC (Lin
et al., 2022). In addition, Yokota Y et al. found that miR-638 in EVs
secreted from highly metastatic HCC cells increased vascular
permeability by downregulating the expression of VE cadherin and
ZO-1 in vascular endothelial cells and then promoted HCC cell
metastasis to affect the progression of HCC.

Simultaneously, miR-638 in EVs has been shown to serve as an
independent prognostic factor for HCC patients and a biomarker for
HCC diagnosis (Yokota et al., 2021). The above results indicated that
EVs hold potential as efficient biomarkers for HCC diagnosis.
However, further research is necessary to screen and identify more

effective and noninvasive EV-related biomarkers for early diagnosis
of HCC.

4 Novel methods for HCC nanotherapy
based on EVs

Numerous studies have explored new EV-based methods of
HCC nanotherapy. Zhang J et al. constructed an extracellular
delivery platform using EVs derived from HEK293F. They
improved the pharmacokinetic curve of IL-12 targeting HCC by
optimizing the surface integrins and N-glycans of EVs. The resulting
EVs exhibited better bioavailability and enhanced the cyclic half-life
of IL-12. Furthermore, single peptide antibodies targeting
GPC3 significantly improved the targeting efficiency and
accuracy of EVs in HCC cells loaded with IL-12, achieving more
significant anti-tumor effects (Zhang J. et al., 2023). Wang C et al.
loaded the Norcantharidin (NCTD) anti-tumor drug into EVs
derived from bone marrow MSCs. They found that the BMSC-
Exo-NCTD delivery system effectively promoted the absorption of
NCTD by HCC HepG2 cells, induced HepG2 cell cycle arrest,
reduced HepG2 proliferation, and increased HepG2 apoptosis.
Moreover, compared to treatment with NCTD alone, BMSC-Exo-
NCTD exhibited better anti-tumor effects (Liang et al., 2021). In
addition, in vivo detection results using probe Cy5.5 showed that the
BMSC-Exos vector had an in situ homing effect on mouse HCC and
did not exhibit physical toxicity (Liang et al., 2021). Thapa N et al.
loaded miR-335, which exerted the anticancer effect of HCC, into
EVs to prevent its degradation and promote its effective delivery to
the target site, thereby inhibiting the growth of HCC cells (Thapa
et al., 2023). Chen et al. loaded asiatic acid into EVs derived from
HCC and found through in vitro experiments that EVs loaded with
asiatic acid exerted significant anti-HCC effects by regulating the
TGF signaling pathway to inhibit the EMT process. Zhou X et al.
isolated EVs derived from HCC and then fused EVs membranes
with phospholipids to create new EVs membrane mixed lipid
nanocapsules, achieving precise tumor targeting and efficient
siRNA transfection. Compared with liposomes, EV membrane
containing siRNA mixed with lipid nanocapsules increased
transfection efficiency by 1.7 times. In addition, effective
oncogene silencing at the tumor site further enhances its anti-
HCC effect (Zhou X. et al., 2022). Deng J et al. found that
CD38 was highly expressed in HCC tissues and cell lines.
Lowering CD38 levels promotes macrophage phagocytosis by
inhibiting adenosine, which leads to the inhibition of growth and
metastasis in HCC. Deng J et al. used EVs derived from MSCs as
carriers for siCD38, enabling its efficient and precise delivery to
HCC cells. The results showed that EVs/siCD38 inhibited HCC
progression and reversed the therapeutic resistance to PD-1/PD-
L1 inhibitors (Deng and Ke, 2023). Yang C et al. loaded Doxorubicin
into purified MSC-EVs and improved encapsulation and drug
loading efficiency through ultrasound technology, forming a
delivery system E-Dox. After removing sialic acid from MSC-EVs
by neuraminidase, the receptor cells showed increased endocytosis
of E-Dox. They effectively transported Dox to HCC cells, inhibiting
their proliferation and migration and promoting their apoptosis.
The safety of E-Dox in the treatment of HCC has been verified using
a mouse model (Yang et al., 2022). CRISPR-Cas9 genome editing
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has emerged as a powerful therapeutic tool. However, its clinical
application has been limited by the lack of a safe and efficient in vivo
delivery system, particularly for tissue-specific vectors.
Cas9 ribonucleoprotein (RNP) was loaded into EVs isolated and
purified from HSC. The resulting EVs-RNP significantly enhanced
the accumulation of RNP in HCC cells.

Subsequently, Wan T et al. designed sgRNA to target the lysine
acetyltransferase 5 (KAT5) required for HCC growth. After loading
sgKAT5 into EVs-RNP, the resulting EVs-RNP- sgKAT5 efficiently
accumulated in HCC cells. By targeting KAT5 and downregulating
its expression, the EVs-RNP- sgKAT5 was able to inhibit HCC
growth (Kwan et al., 2020; Wan et al., 2022). Su K et al. found that
compared to the potent antagonist AZD5582 using apoptotic
protein inhibitors alone, loading AZD5582 into EVs significantly
enhanced its anti-HCC effect and overcame TRAIL resistance
without any significant adverse reactions (Su et al., 2022).
Sinomenine (SIN) demonstrated significant anti-HCC activity
in vitro. However, its clinical efficacy is limited due to its low
bioavailability. Wang Y et al. prepared EVs (Exo-SIN) loaded

with SIN. Exo-SIN could release SIN in a continuous and slow
manner in an experimental model simulating body fluid and the
tumor microenvironment. Moreover, compared to the solo use of
SIN, Exo-SIN significantly inhibited the proliferation and migration
of HepG2 cells, caused cell cycle arrest, and induced apoptosis.
Furthermore, after treatment with Exo-SIN, the expression of
survivin (a key protein for HCC cell survival) decreased
significantly. The above results indicated that Exo-SIN based on
EV nanocarriers improved the bioavailability of SIN in the
treatment of HCC and provided an effective treatment platform
for HCC (Wang Y. et al., 2021). As for other advantages of these new
methods for HCC nanotherapy based on EVs, they may be more
effective and safer compared with traditional therapeutic methods.
Also, they huged the ability of targeting capabilities, low toxicity and
modifiability. Nanotherapy based on EVs may even regulate
angiogenesis, immune response, and tumor metastasis to control
the development of HCC and significantly improve the survival
outcomes of patients with HCC. We believe that these new methods
for HCC nanotherapy based on EVs have excellent application

TABLE 1 The non-coding RNA loaded in EVs can regulate the malignant progress of HCC.

Name Origin Biological function Regulation mechanism Reference

miR-
1228-3p

EVs derived from cancer-
associated fibroblasts

Promoting HCC proliferation, migration, and
invasion

Activating the PLAC8-mediated PI3K/AKT
pathway

Zhang J. et al.
(2023)

miR-375 EVs from bone marrow
mesenchymal stem cells

Hindering HCC progression Activating the HOXB3-mediated Wnt/β-Catenin
pathway

Yu et al. (2022)

miR-338-3p EVs from bone marrow
mesenchymal stem cells

Inhibiting HCC proliferation, invasion,
migration, and inducing apoptosis

Targeting ETS1 Li J. et al. (2021)

miR-451a EVs from bone marrow
mesenchymal stem cells

Reversing paclitaxel resistance and promoting
apoptosis in HCC cells

Suppressing ADAM10 expression and epithelial-
mesenchymal transition

Xu et al. (2021)

CircZFR EVs derived from cancer-
associated fibroblasts

Enhancing cisplatin resistance in HCC cells Impeding the STAT3/NF-κB pathway Zhou J. et al.
(2022)

CircTTLL5 EVs derived from HCC cells Promoting HCC cell proliferation, in vitro
metastasis, and tumor growth in nude mice

miR-136-5p/KIAA1522 signaling pathway Liu et al. (2023)

Circ_002136 EVs derived from HCC cells Stimulating HCC progression miR-19a-3p/RAB1A pathway Yuan et al. (2022)

miR-25 EVs derived from HCC cells Promoting HCC progression Downregulating SIK1 expression and enhancing
the Wnt/β-catenin pathway

Fu et al. (2022)

LINC00161 EVs derived from HCC cells Leading to increased proliferation, migration,
and angiogenesis of HCC cells

Activating the ROCK2 signal by inhibiting miR-
590-3p

You et al. (2021)

miR-30a-3p EVs derived from HCC cells Reducing the migration, invasion, and
metastasis ability of HCC cells

Targeting SNAP23 Liu et al. (2021)

miR-15b EVs secreted by As-THP-1 cells Promoting HCC cells proliferation, migration,
and invasion

Through the Hippo pathway Li W. et al. (2021)

circGSE1 EVs derived from HCC cells Promoting the progression of HCC Inducing Tregs enrichment and inhibiting anti-
tumor immune responses via the miR-324-5p/
TGFBR1/Smad3 pathway

Huang et al.
(2022)

miR-452-5p EVs derived from HCC cells Enhancing the migration, invasion, and
metastasis of HCC cells

Targeting TIMP3 to induce M2 macrophage
polarization

Zongqiang et al.
(2022)

miR-660-5p EVs derived from M2 macrophage Promoting HCC progression Regulating KLF3 expression Tian et al. (2021)

miR-
148a-3p

EVs derived from hepatic stellate
cells

Impeding HCC malignancy Through the PI3K/Akt/ITGA5 signaling pathway Zhang X. et al.
(2022)

circWDR25 EVs derived from hepatic stellate
cells

Stimulating the proliferation and invasion of
HCC cells

Through activating miR-4474-3p/ALOX15 and
epithelial-mesenchymal transition pathway

Liu et al. (2022)
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prospects. These new methods for HCC nanotherapy based on EVs
were also summarized and presented in Figure 1.

5 Summary and outlook

This article focuses on the important role of the non-coding RNA
carried by EVs in HCC progression, the potential of EVs as biomarkers
for HCC diagnosis, and provides an overview of the current EV-based
nanotherapy for HCC, hoping to provide a reference for clinical
diagnosis and treatment of HCC. However, the current EV-based
HCC nanotherapy methods are limited in certain aspects. Similar to
most conventional therapeutic nanoparticles, even with EV-based drug
delivery systems, challenges such as rapid half-life liver clearance after
intravenous injection and limited bioavailability persist. Consequently,
future research should focus on developing novel nanotherapymethods
based on EVs with longer half-lives, slower liver clearance rates, and
higher bioavailability. Ultimately, this will pave the way for new clinical
treatment options for HCC, significantly improving its efficacy.
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FIGURE 1
Newmethods for HCC nanotherapy based on EVs. The nine kinds of newmethods for HCC nanotherapy based on EVs were summarized. These EVs
loaded with responding drugs could significantly inhibit cell proliferation, invasion, and migration and induce cell apoptosis and cell cycle arrest. As a
result, HCC development was significantly suppressed.
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