AUTHOR=McMullin Paul , Emmett Darian , Gibbons Andrew , Clingo Kelly , Higbee Preston , Sykes Andrew , Fullwood David T. , Mitchell Ulrike H. , Bowden Anton E.
TITLE=Dynamic segmental kinematics of the lumbar spine during diagnostic movements
JOURNAL=Frontiers in Bioengineering and Biotechnology
VOLUME=11
YEAR=2023
URL=https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2023.1209472
DOI=10.3389/fbioe.2023.1209472
ISSN=2296-4185
ABSTRACT=
Background:In vivo measurements of segmental-level kinematics are a promising avenue for better understanding the relationship between pain and its underlying, multi-factorial basis. To date, the bulk of the reported segmental-level motion has been restricted to single plane motions.
Methods: The present work implemented a novel marker set used with an optical motion capture system to non-invasively measure dynamic, 3D in vivo segmental kinematics of the lower spine in a laboratory setting. Lumbar spinal kinematics were measured for 28 subjects during 17 diagnostic movements.
Results: Overall regional range of motion data and lumbar angular velocity measurement were consistent with previously published studies. Key findings from the work included measurement of differences in ascending versus descending segmental velocities during functional movements and observations of motion coupling paradigms in the lumbar spinal segments.
Conclusion: The work contributes to the task of establishing a baseline of segmental lumbar movement patterns in an asymptomatic cohort, which serves as a necessary pre-requisite for identifying pathological and symptomatic deviations from the baseline.