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Boundary condition settings are key risk factors for the accuracy of noninvasive
quantification of fractional flow reserve (FFR) based on computed tomography
angiography (i.e., FFRCT). However, transient numerical simulation-based FFRCT
often ignores the three-dimensional (3D) model of coronary artery and clinical
statistics of hyperemia state set by boundary conditions, resulting in insufficient
computational accuracy and high computational cost. Therefore, it is necessary to
develop the custom function that combines the 3Dmodel of the coronary artery and
clinical statistics of hyperemia state for boundary condition setting, to accurately and
quickly quantify FFRCT under steady-state numerical simulations. The 3Dmodel of the
coronary artery was reconstructed by patient computed tomography angiography
(CTA), and coronary resting flowwas determined from the volume and diameter of the
3D model. Then, we developed the custom function that took into account the
interaction of stenotic resistance,microcirculation resistance, inlet aortic pressure, and
clinical statistics of resting to hyperemia state due to the effect of adenosine on
boundary condition settings, to accurately and rapidly identify coronary blood flow for
quantification of FFRCT calculation (FFRU). We tested the diagnostic accuracy of FFRU

calculation by comparing it with the existing methods (CTA, coronary angiography
(QCA), and diameter-flowmethod for calculating FFR (FFRD)) based on invasive FFR of
86 vessels in 73 patients. The average computational time for FFRU calculation was
greatly reduced from1–4 h for transient numerical simulations to 5min per simulation,
which was 2-fold less than the FFRD method. According to the results of the Bland-
Altman analysis, the consistency between FFRU and invasive FFR of 86 vessels was
better than that of FFRD. The area under the receiver operating characteristic curve
(AUC) for CTA, QCA, FFRD and FFRU at the lesion level were 0.62 (95% CI: 0.51–0.74),
0.67 (95% CI: 0.56–0.79), 0.85 (95% CI: 0.76–0.94), and 0.93 (95% CI: 0.87–0.98),
respectively. At the patient level, the AUC was 0.61 (95% CI: 0.48–0.74) for CTA, 0.65
(95% CI: 0.53–0.77) for QCA, 0.83 (95% CI: 0.74–0.92) for FFRD, and 0.92 (95% CI:
0.89–0.96) for FFRU. The proposed novelmethodmight accurately and rapidly identify
coronary blood flow, significantly improve the accuracy of FFRCT calculation, and
support its wide application as a diagnostic indicator in clinical practice.
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1 Introduction

Coronary heart disease, including coronary stenosis, has become
the disease with the highest mortality rate worldwide (Bruyne et al.,
2014; Zhang et al., 2021a; Li X. J. et al., 2021). Currently, pressure
field-based fractional flow reserve (FFR) is the gold standard for
clinical diagnosis of myocardial ischemia severity caused by
coronary stenosis (Cesaro et al., 2018; Zhang et al., 2021b). For
patients with invasive FFR, complex invasive surgical operations are
often required, with potential risks and high measurement costs
during catheter insertion. Many studies have been devoted to
exploring the noninvasive alternatives to invasive FFR.

Computed tomography angiography (CTA)-derived fractional flow
reserve (FFRCT) is a viable alternative method for the noninvasive
calculation of FFR. FFRCT combines a coronary model (typically
obtained from computed tomography angiography images) and
computational fluid dynamics (CFD), to visualize the pressure field
across the coronary tree (Taylor et al., 2013), and to further assess the
severity of myocardial ischemia. However, previous clinical studies have
shown that the diagnostic accuracy of FFRCT calculation obtained based
on a one-dimensional model (1D model) commonly used in clinics is
still insufficient compared with the method proposed by Taylor (84.3%).
Coenen et al. detected invasive FFR and FFRCT calculated by the 1D
model in 144 vessels with intermediate coronary stenosis, and the
accuracy of FFRCT calculation was 71.5% (Coenen et al., 2015).
Subsequently, the accuracy of FFRCT calculation was slightly
improved (75%) in a study by Coenen and colleagues, who
performed invasive FFR and FFRCT calculated by 1D model on
203 vessels with coronary stenosis (Coenen et al., 2016). In another
study, invasive FFR and FFRCT calculations were performed on
23 vessels with coronary stenosis, and the accuracy of FFRCT
calculation was 78% (Geer et al., 2016). In addition, Baumann et al.
performed invasive FFR and FFRCT calculated by a 1D model for
36 vessels with coronary stenosis, and the Pearson correlation
coefficient was only 0.74 (Baumann et al., 2015). Of these, the
insufficiency of the 1D model in the accuracy of FFRCT calculation is
that it only captures the variation of the vascular pressure along the axial
direction, as well as the impact of the minimum stenotic diameter and
stenotic length on the vascular pressure distribution, while ignoring the
impact of other characteristics of stenotic structures (e.g., eccentric,
continuous stenosis) on vascular pressure distribution. Based on this
situation, it is necessary to develop a novel method to improve the
accuracy of FFRCT calculation.

Many clinical studies have reported that, in addition to the
minimum stenotic diameter and stenotic length, the characteristics
of the stenotic structure have a significant impact on the accuracy of
FFRCT calculation. For example, Modi et al. proved the significant
impact of serial coronary stenosis on changes in FFRCT calculation
(Modi et al., 2019); Rajkumar et al. demonstrated that diffuse stenosis
has a significant impact on FFRCT calculation (Rajkumar et al., 2021).
Zaman et al. showed that changes in lesions located in bifurcated vessels
had a significant impact on changes in FFRCT calculation (Zaman et al.,
2021). In addition, many clinical studies have also shown that a three-
dimensional (3D) model of the coronary artery contains more model

characteristics of stenotic structures in CFD simulation, and has higher
accuracy of FFRCT calculation (84.3%) (Min et al., 2012; Gaur et al.,
2013; Nørgaard et al., 2014). So the 3D spatial structure of the coronary
artery should be comprehensively considered to improve the accuracy
of FFRCT calculation. However, since only the change of the outlet
microcirculation resistance caused by the effect of adenosine was
considered in the above studies, the boundary condition settings of
FFRCT calculation limited the calculation accuracy below 84.3%, and
FFRCT calculation based on transient numerical simulations required
significant time (1–4 h per simulation). Therefore, to further improve
the accuracy of FFRCT calculation and reduce the computational time
cost, it is necessary to set the boundary condition of FFRCT calculation
according to the clinical statistics of hyperemia state due to the effect of
adenosine, including decreased inlet aortic pressure, decreased
microcirculation resistance, and increased blood flow, and
considering the interaction of stenotic resistance, microcirculation
resistance and inlet aortic pressure to identify coronary blood flow
to quantify FFRCT calculation under steady-state numerical simulations.

In this study, to improve the accuracy of FFRCT calculation and
reduce the computational time cost, we developed a novel method
(FFRU) based on a 3D model of the coronary artery, integrating
boundary condition settings with clinical statistics of hyperemia state,
and the custom function taking into account the interaction of stenotic
resistance, microcirculation resistance and inlet aortic pressure to
identify coronary blood flow. Subsequently, we tested the diagnostic
accuracy of FFRU by comparison with existingmethods (CTA, coronary
angiography (QCA), and diameter-flow method for calculating FFR
(FFRD)) based on the invasive FFR of 86 vessels in 73 patients.

2 Methods

2.1 Geometry model of coronary artery

The study was conducted at Beijing Anzhen Hospital of the Capital
Medical University and Shengjing Hospital of China Medical
University. The inclusion criteria for patients in this study had
complete clinical data and underwent CTA, quantitative coronary
arteriography (QCA), transthoracic echocardiography, and invasive
FFR measurement within 30 days. The exclusion criteria for this
study were as follows: 1) Poor quality of CT images; 2) Unstable
angina; 3) Prior myocardial infarction; 4) Prior percutaneous coronary
intervention or coronary artery bypass grafting; 5) Diffuse coronary
stenosis; 6) Left ventricular ejection fraction (LVEF) < 50%; 7) Severe
valve disease; 8) Atrial fibrillation; 9) Severe microcirculation
disturbance; 10) Allergy to contrast agents and vasodilators. Finally,
73 patients with stable angina were enrolled between August 2013 and
April 2019 in this study. The quality of CT images in all patients was
examined and assessed by two experienced radiologists. Cardiac output
and left ventricular ejection fraction in all patients were measured and
calculated by two experienced echocardiographers based on the
structural characteristics of the heart (Li G. Y. et al., 2021).

The measurement of invasive FFR relied on three steps:
1) Adenosine (140 μg/kg/min) was administrated through
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intravenous infusion to induce maximum hyperemia of the
coronary artery; 2) We obtained pressure waveforms of aortic
pressure and distal arterial pressure using pressure wire
measurement; 3) We further calculated the invasive FFR for the
ratio of the mean pressure at a cross-Section 3 cm downstream of the
stenosis (Pd) to the aortic pressure (Pa) at least three cardiac cycles
(Taylor et al., 2013; Zhang et al., 2021a). Patient informed consent
was waived due to the retrospective nature of the study.

Based on the patient’s CT image information, the 3D model of
the coronary artery was reconstructed using the commercial
software MIMICS (Materialise, Leuven, Belgium). The coronary
arteries with diameters larger than 1 mm were reconstructed.
Subsequently, the coronary reconstructed noise was removed
using the Freeform tool (Artec 3d, Luxembourg). And the
reconstructed coronary surfaces were further repaired and
smoothed using the commercial software GEOMAGIC
(Geomagic, Research Triangle Park, North Carolina). Then, the
coronary centerline was identified to calculate the diameter and
length of the vessel using the MIMICS software. GEOMAGIC was
used to divide the reconstructed coronary surfaces into curved

surfaces for hemodynamics simulation. Later, the inlet and outlet
of the reconstructed coronary artery were cut into planes, and
boundary conditions for pressure or mass flow were loaded using
the SOLIDWORKS software (Dassault Systemes, Waltham,
Massachusetts). Finally, the reconstructed coronary artery was
imported into ANSYS CFX (ANSYS Corporation, Canonsburg,
Pennsylvania) for CFD simulation. The process of 3D
reconstruction of the coronary artery was shown in Figure 1.

2.2 Distribution of coronary branch blood
flow at resting state

Based on the available literature and clinical reports, coronary
blood flow was 4% of cardiac output (Kim et al., 2010), and we can
calculate coronary blood flow by transthoracic echocardiography
measurement. Based on Poiseuille’s and the law of minimum energy
dissipation, the allometric scaling law between coronary
morphological and functional parameters was quantified using
in vitro experiments (Taylor et al., 2013; Zhang et al., 2021b).

FIGURE 1
Technical flow chart of 3D reconstruction of the coronary artery. (A) 3D reconstruction based on CTA; (B) The reconstructedmodel for ANSYS CFX.
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We further established the distribution law of blood flow of the
coronary branch on the basis of the form-follow-function scaling
law described by Huo, in which the blood flow of the parent and
daughter branches of the coronary artery was related to their
respective effective diameters (Huo et al., 2012). These findings
had a good consistency with the earlier in vitro experimental results
of Zhou (Zhou et al., 1999). The allometric scaling law between
blood flow and the diameter of the coronary branch followed a
power-law relationship as shown in Eq. 1.

Qs

Q max
� Ds

Dmax
( )

7
3

(1)

In Eq 1,Qmax andDmax represent the blood flow and diameter of
the parent branch, and Qs and Ds represent the blood flow and
diameter of the daughter branch.

2.3 Calculation of microcirculation
resistance at resting state

Broadly speaking, vessel resistance was calculated using
morphological parameters (cross-sectional area and length)
according to Poiseuille’s law. The equation followed a power-law
relationship, as shown in Eq 2.

R � 8πμL
A2

(2)

A � Ainlet + Aoutlet

2
(3)

In Eq 2, R, L, and A represent the resistance, length, and
cross-section area of the coronary branch, and μ represents the
dynamic viscosity of blood flow. In Eq 3, Ainlet and Aoutlet

represent the cross-section area at the inlet and outlet of the
coronary branch.

Ohm’s law describes the relationship between current, resistance,
and voltage in a circuit. The blood flow, resistance, and pressure drop
along the coronary arteries represent the corresponding parameters,
respectively (Li B. et al., 2021). So the pressure drop (ΔP) along the
coronary arteries was described by Eq 4.

ΔP � RQs (4)
Systolic and diastolic blood pressure measurements were

performed during the statistical process of clinical data. The
calculation of mean blood pressure was described by Eq 5.

PMBP � Psp + 2Pdp( )
3

(5)

In Eq 5, PMBP, Psp, and Pdp represent mean blood pressure,
systolic blood pressure, and diastolic blood pressure, respectively.

Based on the mean blood pressure and pressure drop along the
coronary arteries, the inlet pressure of the microcirculation was
calculated stepwise from the proximal to the distal end of coronary
arteries using Eqs 4, 5. The microcirculation resistance was
calculated using Eq 6.

Ri � Pi

Qs
(6)

In Eq 6, Ri and Pi represent the resistance and inlet pressure of
the microcirculation, and i represents the number of coronary
branches, i = 1, 2, 3. . .16.

2.4 Identifying boundary conditions for
coronary inlet and outlet at hyperemia state

Extensive literature and clinical cases have shown that mean
blood pressure and microcirculation resistance decrease as the
coronary circulation changes from a resting to a hyperemia state
(Wilson et al., 1990; Tang et al., 2020). Many pieces of literature have
reported that the severity of coronary epicardial stenosis has no
affected on minimal microvascular resistance (Asrnoudse et al.,
2004; Fearon et al., 2004; Zhang et al., 2016). In this study, mean
blood pressure was reduced by 12% (Wilson et al., 1990), and
microcirculation resistance was taken to be 0.23 times the resting
state to mimic the hyperemia state caused by the effect of adenosine
(Wilson et al., 1990).

P0 � PMBP − 0.12PMBP (7)
Rj � 0.23Ri (8)

In Eqs 7, 8, P0 and Rj represent mean blood pressure and
microcirculation resistance at hyperemia state, respectively, i = j = 1,
2, 3. . .16.

2.5 Identifying the blood flow at the outlet of
the coronary branch

Eqs 9, 10 were coded in Fortran by using the user-defined
function (UDF) of ANSYS CFX, running on an HP Z8 workstation.
Then, the fluid dynamics analysis of the coronary artery was updated
with the under-relaxation scheme as formulated in Eqs 9, 10. Eq. 9
until the sum of the pressure gradient of the epicardial coronary and
microcirculation resistance matched the inlet pressure at hyperemia,
and Eq. 10 until the target residual of the pressure gradient at the
outlet of the coronary branch was determined to be 1e-4. Finally, we
identified the blood flow at the outlet of the coronary branch under
the hyperemia state.

Qj,new � 1 − α( )Qj,old + α
Pj,old

Rj
( ) (9)

Pj,new � Pj,old + α P0 − Pj,old + Qj,newRj( ) (10)

In Eqs 9, 10, Pj,old, Pj,new, Qj,old, and Qj,new represent the
pressure and blood flow before and after iterative calculation at
the outlet of each coronary branch, respectively, and α represents the
under-relaxation factor.

2.6 Application of the calculation of FFRU of
the coronary stenosis

Blood flow was modeled as a Newtonian fluid. The blood flow
state was steady, and the properties of the arterial walls were set to
non-slip rigid (Zhang et al., 2014). The density and viscosity of blood
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flow were set at 1,050 kg/m3 and 0.0035 Pa s, respectively (Zhang
et al., 2021a). The mesh of the coronary geometry model discretized
the computational domain into tetrahedral elements. In this study,
the CPU of an HP Z8 workstation is a Dual Intel Xeon Silver

4,210 processor, and the memory of the workstation is 128 GB. The
mesh of the geometries was generated by using nonstructural
tetrahedron elements. The maximum grid size was 0.23 mm
based on the grid independence test. Then, we used the 3D N-S

FIGURE 2
Process of calculating coronary FFRCT. (A) individualized settings of the boundary conditions; (B) CFD simulation postprocessing.
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function to calculate the pressure and blood flow field of the
coronary arteries.

We determined the pressure at the coronary inlet based on the
effect of adenosine on mean blood pressure. Then, we can quickly
identify the blood flow of each coronary branch by compiling a user-
defined function at the outlet of the coronary branch. Later,
combining the mean blood pressure as the inlet boundary
condition and the blood flow at the outlet of each coronary
branch to compile a user-defined function as the outlet boundary
condition, we implemented a CFD simulation of the coronary
arteries using ANSYS CFX. Finally, we extracted the pressure
field of the coronary arteries to calculate FFRU, the ratio of the
pressure at a cross-Section 3 cm downstream of the stenosis to the
aortic pressure, as shown in Figure 2.

2.7 Application of the calculation of FFRD
of the coronary stenosis

Based on the mean values of aortic diastolic pressure, myocardial
mass, and heart rate of the patient, we calculated a patient-specific
coronary blood flow rate according to the empirical formula of total
coronary blood flow rate. Based on the volume or diameter from
CCTA, we achieved patient-specific distribution of the blood flow of
the left and right coronary artery. Based on the blood flow of the left
and right coronary artery and the distribution rule, we achieved a
patient-specific coronary blood flow rate at each terminal branch.
Combining the mean value of aortic diastolic pressure as the inlet
boundary condition and the coronary blood flow rate at each terminal
branch as the outlet boundary condition, we obtained the patient-
specific boundary conditions of the fluid dynamics analysis. Based on
the fluid dynamics analysis of the coronary artery, we extracted the
pressure field of the coronary artery, andwe calculated the FFRD as the
ratio of the mean pressure at a cross-Section 3 cm downstream of the
stenosis to the mean arterial pressure.

In this study, to identify the blood flow at the outlet of the
coronary branch and accelerate the calculation convergence, a user-
defined function (UDF) was compiled to identify the blood flow and
pressure at the outlet of each coronary branch. Then, a user-defined
function was used to integrate the interaction of stenotic resistance,
microcirculation resistance, and inlet aortic pressure to identify
coronary blood flow to quantify FFRU calculation based on
boundary conditions of clinical statistics of hyperemia state. In
contrast, as for FFRD calculation, the blood flow at the outlet of
each coronary branch was distributed step by step along the
proximal to the distal blood flow direction based on the
hyperemia state, and it ignored the impact of coronary stenosis
on the distribution of coronary blood flow.

2.8 Statistical analysis

Clinical data analysis included clinical statistics, CTA, QCA,
transthoracic echocardiography, and invasive FFR. Continuous and
categorical were shown as mean, frequency, and/or percentage,
respectively.

To evaluate the diagnostic accuracy of the novel method for
calculating FFRU, we used the novel method to calculate FFRU for

86 vessels in 73 patients and then compared these data with those
derived from existing methods and invasive FFR.

Bland-Altman plot with 95% confidence intervals (CI) was used
to evaluate the consistency of the novel method for FFRU calculation
and the existing method (FFRD) with invasive FFR. Based on the
reference value of invasive FFR≤0.8 for the diagnosis of lesion-
specific myocardial ischemia, we adopted the metrics of receiver
operating characteristic curves (AUC) with 95% (CI), sensitivity,
specificity, positive predictive value (PPV), and negative predictive
value (NPV), to assess the diagnostic accuracy of FFRU calculation
and existing methods (CTA≥50% stenosis, QCA≥50% stenosis and
FFRD).

3 Results

3.1 Patient characteristics

The baseline demographics of the patients were shown in
Table 1. Of these, more than half of the patients were men
(69.86%), and the mean patient age was 59 ± 16 years.

3.2 Measurement of QCA and invasive FFR

QCA and invasive FFR measurements were successfully
performed in 86 vessels. The coronary arteries of most patients
(79.45%) were right-dominant patterns by QCA. Among the
86 vessels, more than half of the lesions (68.6%) occurred in the
left anterior descending artery (LAD), and 67 vessels (77.91%) had
luminal stenosis≥50%. Of these, only 32 vessels (37.21%) showed
significant ischemia (FFR≤0.8), as shown in Table 2.

3.3 Calculation of FFRU and FFRD

The calculation of FFRU and FFRD was successfully performed
on 86 vessels using a HP Z8 workstation. The average computational
time for FFRU was significantly reduced, taking only 5 min per

TABLE 1 Baseline demographic and clinical characteristics.

Study population

Variable Number Percent (%)

Gender

Male 51 69.86

Female 22 30.14

Age (years) 59 ± 16

Body mass index (kg/m2) 28.4 ± 5.6

HR (beat per minute) 68 ± 24

Mean blood pressure 95.5 ± 10.8

Cardiac output (L/min) 4.2 ± 1.6

Left myocardial mass (g) 142.5 ± 46.6
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simulation, which was 2-fold less than the FFRD method. Table 3
shows the distribution of FFRD and FFRU calculated by the two
approaches in 86 vessels. Regarding the calculation of FFRD, the
numbers 27 and 5 represent that 27 vessels were calculated as having
FFRD≤0.8 and 5 vessels were FFRD>0.8 among the vessels with
invasive FFR≤0.8 in 32 vessels. Concerning FFRCT calculated by the

proposed approach, the numbers 4 and 50 represent that 4 vessels
were calculated as having FFRU≤0.8, and 50 vessels were
FFRU>0.8 among those with invasive FFR>0.8.

3.4 Consistency evaluation of FFRU and FFRD
with invasive FFR

Bland-Altman analysis was used to test the consistency of FFRU

and FFRD with invasive FFR, respectively. The mean difference in
FFRU-FFR (0.006) for all vessels was less than FFRD-FFR (0.018).
The 95% CI of FFRU and FFRD was [-0.073, 0.085] and [-0.191,
0.228], respectively, and most of the data fell within the interval,
indicating that FFRU and FFRD were in good agreement with
invasive FFR, as shown in Figure 3.

3.5 Accuracy

The AUC of the receiver operating characteristics curve analysis
at the lesion level for CTA, QCA, FFRD and FFRU were 0.62 (95%CI:
0.51–0.74), 0.67 (95% CI: 0.56–0.79), 0.85 (95% CI: 0.76–0.94), and
0.93 (95% CI: 0.87–0.98). At the patient level, the AUC was 0.61
(95% CI: 0.48–0.74) for CTA, 0.65 (95% CI: 0.53–0.77) for QCA,
0.83 (95% CI: 0.74–0.92) for FFRD, and 0.92 (95% CI: 0.89–0.96) for
FFRU, as shown in Figure 4. The AUC at the lesion level
demonstrated the diagnostic accuracy of FFRU was higher than
that of CTA, QCA, and FFRD. Similar results were observed at the
patient level with FFRU (AUC, 0.92) compared with CTA, QCA,
and FFRD.

Table 4 shows that the per-vessel level sensitivity analysis of
CTA, QCA, FFRD, and FFRU were 71.87%, 93.75%, 84.38%, and
93.75%; specificity of 51.85%, 40.74%, 85.19%, and 92.59%; PPV of
46.94%, 48.39%, 77.14%, and 88.24%; and NPV of 75.68%, 91.67%,
90.2%, and 96.15%. The diagnostic accuracy of the four metrics of
FFRU was higher than that of CTA, QCA, and FFRD. Similar
phenomena were observed at the patient level in FFRU compared
with CTA, QCA, and FFRD.

TABLE 2 Type of coronary artery distribution and the vessels with measured
QCA and invasive FFR.

Variable Number Percent (%)

Type of coronary artery distribution

Left dominant pattern 8 10.96

Right dominant pattern 58 79.45

Balanced dominant pattern 7 9.59

Measured FFR vessels 86

LAD 59 68.6

LCX 19 22.09

RCA 8 9.31

Luminal stenosis≥50% 67 77.91

Invasive FFR≤0.8 32 37.21

LCX, is left circumflex artery; RCA, is right coronary artery.

TABLE 3 The distribution of FFRD and FFRU calculated by the two approaches.

Invasive FFR

FFRCT calculation ≤0.8 >0.8

FFRD calculation ≤0.8 27 8

>0.8 5 46

FFRU calculation ≤0.8 30 4

>0.8 2 50

TABLE 4 The accuracy performance of CTA, QCA, FFRD, and FFRU on the vessel and patient level.

Parameter CTA≥50% stenosis QCA≥50% stenosis FFRD≤0.8 FFRU≤0.8

Per-vessel level

Sensitivity (%) 71.87 93.75 84.38 93.75

Specificity (%) 51.85 40.74 85.19 92.59

PPV (%) 46.94 48.39 77.14 88.24

NPV (%) 75.68 91.67 90.2 96.15

Per-patient level

CTA≥50% stenosis QCA≥50% stenosis FFRD≤0.8 FFRU≤0.8

Sensitivity (%) 74.19 96.77 83.87 93.54

Specificity (%) 47.62 33.33 83.33 95.24

PPV (%) 51.11 51.72 78.79 93.55

NPV (%) 71.43 93.33 87.5 95.24

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Zhang et al. 10.3389/fbioe.2023.1207300

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1207300


4 Discussion

In this study, we developed a novel method that integrated
boundary condition settings with clinical statistics of hyperemia
state, and the custom function took into account the interaction
of stenotic resistance, microcirculation resistance, and inlet
aortic pressure to identify coronary blood flow, further
improving the accuracy of FFRU calculation. Statistical results
showed that the AUC of FFRU calculation was 0.92 at the patient
level and the computational time was 5 min per simulation,

which was higher and faster than previous methods based on
the same data. The main contributors to this study leading to
higher diagnostic accuracy were: 1) the adoption of a 3D model
instead of a 1D model to reflect the characteristics of stenotic
structures, and 2) the adoption of the custom function to
integrate the interaction of stenotic resistance,
microcirculation resistance and inlet aortic pressure set based
on boundary conditions of clinical statistics of hyperemia state.

A large number of clinical studies have shown that FFRCT

calculation had certain limitations when only a 1D model of

FIGURE 3
The distribution of Bland-Altman diagrams of FFRD and FFRU. (A) the method of FFRD; (B) the method of FFRU.
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coronary artery considering diameter stenosis and stenotic length
was used for CFD simulation (Fossan et al., 2018; Ge et al., 2019;
Müller et al., 2019). The accuracy of FFRCT calculation was
insufficient to be applied when compared with the method
proposed by Taylor (84.3%). In this study, our method adopted a
3D model instead of a 1D model to reflect the characteristics of
stenotic structures in CFD simulation to improve the accuracy of
FFRCT calculation. Based on the 3D model, the detailed
characteristics of coronary stenotic structures were systematically
and comprehensively considered and applied to FFRCT calculation.
The advantage of using a 3D model was that the pressure
distribution of coronary arteries can be calculated intuitively and

accurately, which depended on the frictional head loss caused by the
coronary distribution, as well as the local head loss caused by the
structural characteristics of the stenosis (especially irregular
geometric). The 3D model can deeply analyze hemodynamic
parameters such as pressure and blood flow at any axial and
radial positions of the model, and evaluate the impact of local
geometric structure on FFRCT calculation from a qualitative or
quantitative perspective. The FFRCT calculation mainly explored
the impact of the local geometric structure of the coronary stenotic
structure on the pressure distribution. Therefore, the 3D model
should be considered to improve the diagnostic accuracy of FFRCT

calculation.

FIGURE 4
Receiver operating-characteristic (ROC) curve analysis for determining the area under the curve (AUC). (A) per-vessel level; (B) per-patient level.
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Many studies have proved that the boundary condition settings
had a significant impact on the accuracy of FFRCT calculation
(Sankaran et al., 2016; Ernest et al., 2020; Liu et al., 2020).
Previous studies have explored the boundary condition settings
based on clinical statistics of hyperemia state to improve the
accuracy of FFRCT calculation (Nørgaard et al., 2014; Zhang
et al., 2021b; Chandola et al., 2021). However, the boundary
condition settings of these studies ignored the interaction of
stenotic resistance, microcirculation resistance, and inlet aortic
pressure to improve the accuracy of FFRCT calculation. In this
study, based on clinical statistics of hyperemia state, we
developed a novel method to couple the interaction of stenotic
resistance, microcirculation resistance, and inlet aortic pressure by
loading the custom function for the boundary condition settings of
FFRU calculation. Based on the custom function, the boundary
condition settings and FFRU calculation were carried out in an
individual, systematic, and integrated manner. The advantage of
using the custom function was to quantitatively analyze the effect of
stenotic resistance, microcirculation resistance, and inlet aortic
pressure on the blood flow set by the outlet boundary condition,
so as to accurately and rapidly identify coronary blood flow, and this
further improved the accuracy of FFRU calculation. Consequently,
based on the boundary condition settings using the custom function,
our proposed method can accurately and rapidly identify coronary
blood flow, enabling digital non-invasive assessment of myocardial
ischemia caused by coronary stenosis. The results of improved levels
of the accuracy of FFRU calculation, compared with previous
methods, indicate that our proposed method can be used as a
reference index for the diagnosis of myocardial ischemia caused
by coronary stenosis in clinical practice.

4.1 Limitations and future work

Although the valuable information derived from our novel
method, improved the diagnostic accuracy and reduced the
computational time for FFRU calculation, several limitations are
notable. First, 73 patients undergoing CTA, QCA, and invasive FFR
were enrolled from two central databases. The diversity and number
of patients were relatively small. So the diversity and number of
patients are enrolled from multiple centers in our future work.
Second, the compliance of the epicardial coronary artery was
neglected from resting to hyperemia state, and some studies had
reported that the compliance of the epicardial coronary artery had
almost no difference in the changes of coronary blood flow and
pressure (Zeng et al., 2008; Zhang et al., 2014). Third, mean blood
pressure was reduced by 12% to mimic the mean blood pressure
changes from resting to hyperemia state in all patients. It ignored the
effect of patient-special mean blood pressure changes on FFRU

calculation, and Zhang et al. reported that the mean blood
pressure changes had almost no difference for FFRCT calculation
(Zhang et al., 2020). Finally, the steady-state numerical simulation
employed in this study calculated the FFRU, ignoring the effect of the
pulsatile flow characteristics on FFRU calculation. And the pulsatile
flow was reported to be less important in FFRCT calculation (Zhang
et al., 2014).

5 Conclusion

In this study, we developed a novel method for FFRU calculation
using the custom function. Based on the comparison results of
existing methods and FFRU calculation with invasive FFR, our
proposed method can accurately and rapidly identify coronary
blood flow, significantly improving the accuracy of FFRCT

calculation. This study indicates that the proposed novel method
might realize digital non-invasive evaluation of myocardial ischemia
caused by coronary stenosis, supporting its wide clinical application
in the diagnosis of myocardial ischemia caused by coronary stenosis.
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