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In recent years, simulations have been used to great advantage to understand the
structural and dynamic aspects of distinct enzyme immobilization strategies, as
experimental techniques have limitations in establishing their impact at the
molecular level. In this review, we discuss how molecular dynamic simulations
have been employed to characterize the surface phenomenon in the enzyme
immobilization procedure, in an attempt to decipher its impact on the enzyme
features, such as activity and stability. In particular, computational studies on the
immobilization of enzymes using i) nanoparticles, ii) self-assembled monolayers,
iii) graphene and carbon nanotubes, and iv) other surfaces are covered.
Importantly, this thorough literature survey reveals that, while simulations have
been primarily performed to rationalize the molecular aspects of the
immobilization event, their use to predict adequate protocols that can control
its impact on the enzyme properties is, up to date, mostly missing.
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1 Introduction

Enzymes are diverse natural catalysts able to perform a wide range of chemical reactions
with high specificity and selectivity. In addition to these inherent properties, their ease of
production, sustainability and often low cost compared to several metal catalysts (Sheldon,
2018; Adams et al., 2019; Heckmann and Paradisi, 2020) has been steadily increased the
industrial use of enzymes (Choi et al., 2015; Singh R. et al., 2016; Chapman et al., 2018;
Abdelraheem et al., 2019; Wackett, 2019; Wu et al., 2021). Due to these advantages,
biocatalysis is nowadays applied in a wide variety of sectors, ranging from agrochemicals
(Aleu et al., 2006) to textiles (Madhu and Chakraborty, 2017), cosmetics (Sá et al., 2017;
Yarosh et al., 2019), commodity chemicals (Woodley, 2020), detergents (Al-Ghanayem and
Joseph, 2020), food (Raveendran et al., 2018), leather (Khambhaty, 2020), paper and pulp
(Hakala et al., 2013; Singh G. et al., 2016), biomaterials, and (bio)pharmaceutical
manufacture (Meghwanshi et al., 2020). However, despite their excellent features, a full
exploitation of enzymes’ industrial potential has not been yet achieved. This is due to many
reasons like instability in extreme pH, high temperature, presence of surfactants, solvents, or
metal ions; short shelf-life; and high substrate concentrations (Sheldon and Woodley, 2018;
Silva et al., 2018; Basso and Serban, 2019; Sheldon, 2019). In the last decades, the
development of enzyme engineering approaches has aided to overcome these issues
while bridging the gap between biocatalysis and industry. Enzyme tuning throughout
rational design, directed evolution and, more recently, by the use of in silico tools has
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been key to speed up the application of enzymes into industry. These
efforts aimed to specialize the enzymes towards their target reactions
have led to a wide range of examples in which properties like activity,
substrate specificity, selectivity and stability have been successfully
increased (Chen, 2001; Chowdhury and Maranas, 2020; Nirantar,
2021). Still, these strategies are in some cases not enough to meet the
industrial needs, especially when the experimental conditions are
too hazardous leading to enzyme inhibition or when the process is
not efficient enough due to limitations in enzyme recovery and
recycling. Enzyme immobilization has been used as one of the most
prominent methods to overcome these flaws and further boost the
enzyme’s application (Garcia-Galan et al., 2011; Tran and Balkus,
2011; Zdarta et al., 2018). The term “immobilized enzymes” have
been defined as “enzymes physically confined or localized in a
certain defined region of space with retention of their catalytic
activities, and which can be used repeatedly and continuously”
(Brena et al., 2013). This provides various practical advantages
which include cost savings, easier reusability, enzyme recovery,
generally improved enzyme stability under storage and operating
conditions, enhanced activity, optimized selectivity or specificity, etc
(Mateo et al., 2007a; 2007b; Barbosa et al., 2013; 2015; Secundo,
2013; Sheldon and van Pelt, 2013; Mohamad et al., 2015; Mehta
et al., 2016; Nguyen and Kim, 2017; Bernal et al., 2018; Rajangam
et al., 2018; Ramakrishna et al., 2018; Zdarta et al., 2018). The first
immobilized enzyme was discovered more than a century ago while
demonstrating that activity of an invertase enzyme is not hampered
when it is adsorbed on a solid matrix, such as charcoal or an
aluminum hydroxide (Nelson and Griffin, 1916). However, it was
not until the end of the twentieth century that considerable interest
in the combination of enzymes with materials was raised with the
path breaking work by Klibanov, Russell, Halling, and others on the
preparation and utilization of immobilized enzymes (Klibanov,

1979; 1983; Yang et al., 1995; Zacharis et al., 1997; LeJeune et al.,
1998), including strategies such as covalent attachment,
encapsulation, adsorption on solid supports, entrapment in
polymeric gels, cross-linking and PEGylation. Nowadays, the
enzyme immobilization has widely spread and has been used
successfully in applications like antibacterial or/and antifouling
coatings (Banerjee et al., 2011; Yu et al., 2011), industrial
catalysis (Liese and Hilterhaus, 2013), drug delivery (Liu et al.,
2009; Liese and Hilterhaus, 2013), biosensors (Rusmini et al., 2007;
Talbert and Goddard, 2012), and biofuel cells (Minteer et al., 2007).
Despite its potential, immobilizing enzymes is still a growing field
and there is no universal method or carrier material used for this
purpose. Instead, in accordance with different kinds of enzyme
attachment, enzyme immobilization strategies can be classified into
physical adsorption, encapsulation, entrapment, cross-linking,
covalent attachments, and bioaffinity interactions (Figure 1).

Although immobilization is nowadays widely used and
incorporated in standard experimental pipelines, the mechanism
of immobilization has not been satisfactorily clarified at the
microscopic level owing to the complexity of the immobilizing
agent and the molecular nature of the protein-surface
interactions. Furthermore, how the immobilization event can
ultimately affect the enzymatic efficiency is a complex process
which is poorly understood and difficult to rationalize. Molecular
simulations can help in deciphering the mechanisms of chemical
and biological processes as well as be used for design and
development of new products. Hence, with access to highly
developed fast computers in recent years, molecular simulation
techniques have become a powerful tool to investigate the
immobilization phenomenon at molecular level and can act as
strategic complement to experiments. Among the available
simulation techniques, Molecular Dynamics (MD) simulations,

FIGURE 1
An illustration for different types of enzyme immobilization methods.
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which can disclose the microscopic nature of intermolecular
interactions, have been used successfully to investigate the
immobilization of enzymes over the last two decades. Some
recent reviews have discussed adsorption, the initial step of
immobilization, using simulation techniques on various surfaces
(Ganazzoli and Raffaini, 2019; Quan et al., 2019). Other reviews have
highlighted the MD simulation studies of nanoparticle interactions
with proteins and other biomolecules (Khan and Nandi, 2014;
Brancolini and Tozzini, 2019; Casalini et al., 2019), or the
protein corona, which forms protein layers on the nanoparticle
surface (Lee, 2021). However, a detailed description on the use of in
silico methods to assess the structural aspects of the enzyme
immobilization is lacking.

In this review, we discuss how MD simulations -either all atoms
or coarse grained- have been employed to understand the surface
phenomenon in the enzyme immobilization procedure, in an
attempt to decipher its impact on the enzyme activity. These are
presented in this article based upon different types of surfaces on
which the immobilization of the enzymes was carried out. The
subsequent part of the review begins with discussion of MD
simulations performed to study enzyme immobilization on
different types of nanoparticles followed by similar works done
on Self Assembled Monolayers (SAMs). Works involving graphene
or carbon nanotubes are presented thereafter. This is followed by
discussion on other surfaces used for enzyme immobilization and
have been rationalized by MD simulations. We also briefly discuss
surfaces used for immobilization for which simulation studies are
lacking, emphasizing possible difficulties in studying such surfaces.
These include polymers, metal-organic-framework (MOF) or metal
based affinity tags. A thorough literature survey performed for
writing this review revealed that, while the distinct studies have
been focused on rationalizing the molecular aspects of the
immobilization process, the use of computation to predict
adequate protocols that can control the impact on the enzyme
properties is very limited. The final section of this article
discusses the few recent proposals for predicting immobilization
protocols using MD simulations and future perspectives in this
direction.

2 Immobilization on nanoparticles

The immobilization of enzymes using nanoparticles offers some
advantages such as: high enzyme loading, improved enzyme
stability, and ease of separation from the reaction products (Cao
et al., 2003). Among these, the surface of silica nanoparticles (SNPs)
is often used for enzyme immobilization due to the high adsorption
capacity of the nanoporous silica particles. One example is the study
of the papain enzyme and its adsorption mechanism, that was
studied by classical MD simulations (He et al., 2014). The results
showed that papain, following initial binding to silica, optimizes its
structure which allows more of its atoms to come in contact with the
surface reaching the most favored immobilization mode. Although
the major secondary structures were preserved, small
rearrangements of structures at the entrance of the catalytic site
were observed. These led to an increase in the accessibility of the
active site for the solvent as well as the substrates, which could
therefore facilitate productive binding modes between the substrates

and the enzyme. In the same year, Sun et al. used MD simulations to
study the orientation and adsorption of three different enzymes,
namely, cytochrome c, RNase A and lysozyme on SNPs (Sun et al.,
2014b). These enzymes were found to be induced with greater
structural stabilization by small SNPs and the results indicated
selective interactions between the enzymes and SNPs, where
deprotonated silanol groups were used leading to silica with a
negative surface charge. Hildebrand et al. (2015) also showed,
through the use of MD simulation, that α-chymotrypsin and
lysozyme, both positively charged, have preferential binding
modes to the amorphous silica based on their surface residues.
They showed that α-chymotrypsin, with its α-helical domain turned
towards the surface, has a preferred adsorption orientation while
lysozyme shows not so clear preference in the orientation. This is
due to the fact that α-chymotrypsin has a large dipole moment,
leading to preferential adsorption through its positive surface-
potential region, while its negative surface-potential region is
exposed toward the solvent. However, lysozyme has more
homogeneously distributed surface-potential and hence much less
pronounced orientational preference. A schematic view of this is
shown in Figure 2. In a later work Yu and Zhou. (2016) used coarse
grain MD simulation to study the adsorption of lysozyme, which
showed a narrow orientation distribution on the silica surface.
Interestingly, with increasing nanoparticles size greater
conformational changes were observed. This indicates that a
decrease in the nanoparticle’s surface curvature may result in a
higher degree of electrostatic interactions with the enzyme which
can perturb the dynamics of the enzyme. These effects are not due to
the area of contact between lysozyme and SNPs. Instead, they are
because of the dissimilarities in the interfacial layer of hydration
found over the SNPs with different sizes. This is due to the fact that
strength of interfacial hydration is inversely proportional to the
nanoparticle curvature. Hence, a more ordered distribution of
interfacial water molecules is observed. In addition to that,
negatively charged SNPs are found to have less effect on the
conformation of lysozyme. This phenomenon is more
pronounced for larger SNPs at greater ionic strength. In a more
recent work, coarse grain MD and constant-pH Monte Carlo (MC)
simulations were used to study the lysozyme adsorption on
negatively charged SNPs. The results showed that the increase of
pH leads to changes in orientation of the adsorbed lysozyme when
the solution pH gets closer to the enzyme’s isoelectric point
(Caetano et al., 2021). MD simulations were also used by Wang
et al. (2020) to tune the immobilization of a lipase on SNPs. Along
with structural analysis and catalytic characterizations the results
confirmed that the reoriented lipase immobilized through
hydrophobic adsorption in its open conformation was crucial for
achieving the highest efficiency in the catalytic process.

Other types of nanoparticles, such as gold-, silver- or titanium-
based have been used for enzyme immobilization. All atom MD
simulations in combination with absorption, fluorescence and
infrared spectroscopy were used to investigate the interaction
between silver nanoparticles (AgNPs) and a catechol
O-methyltransferase (Usman et al., 2021). The results suggested
that AgNPs influence the catalytic activity of the catechol
O-methyltransferase by interacting with six amino acids from
four of the enzyme’s predominant helical structures which are in
close proximity to the active site, and therefore own the potential to
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control the enzyme features. Baig et al. (2015) studied the
immobilization of a yeast alcohol dehydrogenase on
polypyrrole–titanium(IV)phosphate (PPy–TiP) nanocomposite.
The hydrogen bonding and van der Waals interactions were
observed to play an important role in the formation of
complexes which are favored energetically. The estimated activity
of the enzyme was consistent with the experimental findings. More
recently, Tavanti et al. (2019) studied the adsorption of trypsin along
with myoglobin and hemoglobin over gold (Au) nanoparticles
(AuNPs) using coarse grained MD simulations. No significant
conformational changes were observed in this case and the
AuNP binding site did not interfere with important functional
sites of the enzyme. AuNPs were also prevalently functionalized
with organic thiol molecules prior immobilization leading to a self
assembled monolayer, which will be discussed in the next section.
Although out of the scope of the current review, in the last years,
these computational studies have not been limited only to the study
of enzymes, but they also have been applied to assess the binding of
antibodies, nanobodies and others with nanoparticle surfaces (Xiao
et al., 2018; Simões et al., 2021; Martí et al., 2022).

3 Immobilization on self assembled
monolayers (SAMs)

Self assembled monolayers (SAMs) are formed by a pool of thiol
molecules located over gold surfaces in an organized manner. SAMs
offer a perfect platform for studying immobilization of enzymes due
to their adjustable structures and ease of functionalization. These
properties allow SAMs not only to be used as immobilizing material
but also as membrane mimics to better understand the nature of the
protein-membrane interactions (Ulman, 1996; Smith et al., 2003;

Yeung et al., 2018). One of the earliest in silico studies of a protein
interacting with a SAM was performed by Tobias et al. (1996). They
investigated the behavior of cytochrome (cyt) c covalently attached
with hydrophilic (SH-terminated) and hydrophobic (CH3-
terminated) SAMs. The results suggested that the enzyme
undergoes minor structural changes when attached to these
surfaces. However, the changes are still significant with the
enzyme being less spherical when attached to the hydrophilic
SAM with the polar surface residues reaching out for making
interactions with the SAM surface. Regarding the orientation of
the enzyme, it is such that the heme plane is almost parallel to the
surface when attached to the hydrophobic SAM, whereas it is nearer
to the perpendicular orientation when attached to the hydrophilic
surface (Figure 3). Subsequent studies have further investigated the
nature of the interactions between cyt c and different types of SAMs
(Nordgren et al., 2002; Zhou et al., 2004; Rivas et al., 2005; Xie et al.,
2015; Peng et al., 2016). Nordgren et al. (2002) further studied the
effect of SAMs in the enzyme properties by introducing several
modifications such as tuning the polarity of the SAM end groups, the
degree of hydration around the monolayer and the coordination
number of the heme iron present on the cyt c. The overall structure
of the enzyme was found to be preserved, while the SAM structure
was perturbed only in regions with direct contact to the enzyme. The
work of Zhou et al. (2004) have shed more light on the orientation of
cyt c with respect to negatively charged carboxyl-terminated SAM.
They have shown that the most efficient orientation of the enzyme
places the heme group perpendicular to the SAM surface. In
combination with spectroscopic experiments Rivas et al. (2005)
performed MD simulations of cyt c docked into negatively
charged SAM via its lysine rich domain. The results from the
work suggested that cyt c, upon binding to biomembranes or
partner proteins, may have electric-field-induced redox potential

FIGURE 2
Schematic view of most (bottom) and least (top) attractive orientations of chymotrypsin (left) and lysozyme (right) placed over the SiO2 surface. The
scheme is based upon Figure 4 from Hildebrand et al., 2015.
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shift and hence may affect the biological electron transfer process of
cyt c. Xie et al. (2015) performed MD simulations to further probe
the modulation of cyt c behaviors on the zwitterionic
phosphorylcholine SAMs which are electrically responsive. The
results showed that it is possible to regulate enzyme behavior
through observing deformation of the enzyme and application of
electric fields on responsive surfaces, The behaviors regulated were
promotion or retardation of enzyme adsorption and regulation of
enzyme orientation. Peng et al. (2016) studied the phosphate and
chloride ions effect on the adsorption of cyt c using MD simulations.
The results showed unstable adsorption of cyt c on the surface in
presence of chloride ions despite relatively high ionic strength.
Alternatively, the presence of phosphate ions was found to
promote stable adsorption.

In addition to cyt c, the Zhou group have studied adsorption
behaviors of other enzymes upon immobilization on SAMs using a
protocol which combines both MC and MD simulations (Xie et al.,
2013; 2020; Liu et al., 2015a; Liu et al., 2015b; Zhao et al., 2015; Liu
et al., 2017; Yang et al., 2018; Yang et al., 2020). The protocol
involves first a quick sampling of the protein over the surface using
MC for predicting which is the dominant orientation of the enzyme.
Then, MD simulation is used to obtain atomic level adsorption
details such as contacting residues, conformational changes,
interaction energy, etc. Using this protocol, the adsorption of
lysozyme on carboxylated SAMs under the effect of an external
electric field was studied by Xie et al. (2013). It was observed that
lysozyme is adsorbed with “bottom end-on” or “side-on” orientation
in absence of electric fields. However, when an electric field is
applied, it preferes “side-on”, “back-on” and “top end-on”
orientations. This supported the possibility of tuning the
immobilization process of a protein with the desired orientation
by applying different electric fields. Zheng et al. (2004), Zheng et al.
(2005) studied the interaction of lysozyme with alkanethiolate SAMs
terminating with different chemical and observed that the flexibility
and the conformation of the SAMs together with bound water near
the interface are features responsible for strengthening the
interaction between the enzyme and the SAM. A similar
observation was made by He et al. (2008) while studying the
nature of the lysozyme interactions with zwitterionic
phosphorylcholine-terminated SAMs. In a more recent work, Xie
et al., 2020 studied the lysozyme adsorption on electrically

responsive carboxyl/hydroxyl SAM, further supporting that the
behavior of the lysozyme over the SAM surface is affected by the
nature of the applied electric field to the system. The combined MC
and MD protocol was also used by Liu et al. (2015a), Liu et al.
(2015b), Liu et al. (2017) to study the conformation and orientation
of a feruloyl esterase, laccase and ribonuclease A (RNase A)
adsorbed on SAMs. Two different types of SAMs-positively
charged NH2−SAM and negatively charged COOH−SAM-were
used for these studies. RNase A was found to adsorb on both the
charged SAMs in opposite orientations, i.e., when adsorbed on
COOH−SAM RNase A it was oriented towards the surface, while
on NH2−SAM, the active site was oriented towards the solution (Liu
et al., 2015b). Figure 4 schematically shows this active site
orientation with respect to different types of SAMs. Based on
these studies, they concluded that the adsorption over negatively
charged surfaces could be used to remove the redundant RNase A,
while the adsorption over positively charged surfaces favors the
enzymatic activity of RNase A. This control of the orientation by
using different charged surfaces was also observed for feruloyl
esterase from Aspergillus niger (AnFaeA) (Liu et al., 2015a). In
addition, ionic strength (IS) and surface charge density (SCD) effects
were also considered and the results suggested that positively
charged surfaces at high IS and low SCD can maximize the
immobilized AnFaeA utilization. In a later work by Liu et al.
(2017), it was observed that for a laccase the orientation of the
electrodes is very important for achieving a fast direct electron
transfer (DET)-and hence to find a small pathway-between the
substrate and the T1 copper site during the immobilization of
laccase immobilization. They studied the Trametes versicolor
laccase (TvL) immobilized on COOH−SAM and NH2−SAM,
showing that the T1 copper site of TvL is closer to the positively
charged surface. This is due to the TvL orientation on a negatively
charged surface being broader in comparison to its orientation on a
positively charged surface, which leads to more conductivity in the
latter’s case. In contrast, a similar work using bilirubin oxidase
showed that negatively charged surfaces were more favorable for the
direct electron transfer (Yang et al., 2018). In another separate work,
it was shown that the enhanced catalytic activity of a laccase
immobilized in SAM was ascribed to high hydrophobic
interaction energy (Miyazawa et al., 2017). The combined MC
and MD protocol was also used to study Candida antarctica

FIGURE 3
Diagrammatic representation of cytochrome c heme group orientation with respect to different SAM surfaces. The scheme is based upon
Figure 2 from Zhou et al., 2004, Figure 12 from Xie et al., 2015, Figure 3 from Rivas et al., 2005 and Figure 6 from Peng et al., 2016.
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lipase B (CalB) adsorption on hydrophobic graphite surface and
hydrophilic TiO2 surface, as well as on both positively and negatively
charged (NH2- and COOH-) SAMs (Zhao et al., 2015). The results
show that CalB forms strong adsorption on both hydrophobic and
hydrophilic surfaces. When adsorbed to NH2-SAM the catalytic
center of CalB is oriented towards the surface and hence not
preferable for binding of the substrate. While when it is adsorbed
on the COOH-SAM the catalytic center is facing the solution and is
preferable for substrate binding. In a more recent work, Yang et al.
(2020) have performed simulations of acetylcholinesterase from
Torpedo californica (TcAChE) immobilized on COOH- and
NH2- SAMs. Positively charged NH2-SAM surface was able to
provide a better microenvironment needed for coherent bio-
catalytic reaction of the enzyme. This led to quicker DET
between the enzyme and the electrode surface. A more recent
work emphasized the orientation and activity of enzymes while
tethered into SAMs. Li et al. (2018) studied the immobilization of
two variants of β-glactocidase tethered on a SAM surface terminated
with pure maleimide and mixed hydrophilic surface made of
hydroxyl groups and maleimide. Using coarse-grained MD
simulations together with sum frequency generation (SFG)
vibrational spectroscopy, they showed that the orientation of the
immobilized enzyme plays an important role in its activity: A
significant increase in activity was observed upon immobilization
on mixed SAM in comparison to pure SAM. In further advanced
work by the same group using a nitro-reductase (NfsB) as a model
enzyme it was shown that two strategically placed surface tethering
points could provide a better catalytic efficiency and stability (Zou
et al., 2018). These immobilization sites were designed based upon
the coarse-grained MD simulation results, and variants of the
enzyme with cysteinyl residues at these sites were expressed and
purified. These variants were thereafter immobilized upon
maleimide terminated SAM. The results showed that in
comparison to the enzyme tethered at a single site, immobilizing
variants of NfsB using two tethering positions display general
improvement in thermal stability.

Other studies have been focused on the immobilization of
enzymes over SAM coated Au nanoparticles. The catalytic
activity and structural integrity of an oxygen-tolerant [NiFe]
hydrogenase on Au electrodes coated with SAM were studied
using surface enhanced infrared adsorption (SEIRA)

spectroscopy, atomic force microscopy (AFM), and protein field
voltammetry (PFV) in combination with short all-atom MD
simulations (Heidary et al., 2015). A more recent multiscale
simulation work merging all-atom MD and coarse-grained
Brownian dynamics simulation to study the adsorption of β-
glucosidase A (βGA) on SAM-functionalized as well as bare gold
surfaces (Bourassin et al., 2022). In this work it was observed that
although there was little impact on the enzyme conformation, the
adsorption process perturbed the mechanical properties and the
catalytic activity of the enzyme. Although the βGA adsorption on
SAM-functionalized surfaces is less stable than the bare gold, it is
more specific and causes less disruption to enzymatic function.

4 Immobilization on graphene oxide
and carbon nanotube

In the recent past, graphene and graphene oxide (GO), a
graphene derivative which is soluble in water, have captivated
immense attention due to their interesting chemical and physical
properties. In particular, GO is found to be an ideal candidate for
enzyme immobilization since it needs neither modification of the
surface nor coupling reagents because it is enriched with oxygen-
containing groups. Sun et al. (2014a) studied the interaction of α-
chymotrypsin (ChT) with both graphene and GO. Although ChT
was found to be adsorbed onto both surfaces, the hydrophobic and
cationic residues of ChT interact stronger with GO, leading to the
active site deformation and therefore its inhibition. In another work,
Zhao et al. (2018) studied the orientation of cyt c on graphene and
GO, supporting the hypothesis elucidated in the previous section
which states that the orientation of cyt c on immobilizing surfaces is
crucial for the electron transfer (ET). Using MD simulations, they
investigated the conformational change, the pathways of ET, and
dominant driving forces to understand the conformation, binding,
and bioactivity of cyt c. It was observed that, in comparison to
graphene, the cyt c heme plane was deviated moderately from the
standard location andMet-80, the axial ligand, was more adjacent to
the GO surface, facilitating the ET. Another enzyme family that has
been immobilized using GO includes lipases. The immobilization of
lipases, enzymes with several industrial applications, faces a key
challenge related to opening the enzyme lid domain and

FIGURE 4
Scheme showing orientation of the RNase A active site with respect to different types of SAM surfaces. The scheme is based upon Figure 3 from Liu
et al., 2015b.
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maintaining this open conformation for its active site exposure. This
can be achieved and tuned through chemical reduction of GO, which
allows modulating the enzyme activity. MD simulations were used
to study the molecular mechanisms driving the lid-opening,
shedding light on the key role of the hydrophobic interactions
occurring between the interface of the lipase and GO (Mathesh
et al., 2016). Additionally, Zhuang et al. (2020) observed that the
lipase immobilized on functionalized GO is around 20 times more
active than when immobilized on GO. Regarding the effect of GO on
enzyme stability, Li et al. (2021) showed that the thermal stability of
D-psicose 3-epimerase (DPEase) enzyme is improved upon
immobilization. Aiming to rationalize this effect all atom MD
simulations of DPEase complexed with its natural substrate
D-Fructose were performed with and without anchoring to GO.
It was observed that the active site of DPEase is stabilized at high
temperature in presence of GO. This is due to the fact that strong
interaction between DPEase and GO can prevent the loops α1′-α1
and β4-α4 of the DPEase, which contains the active site residues, to
drastically fluctuate. The simulation results supported previous
experimental observations about the improvement in thermal
stability of DPEase upon immobilization on GO. In contrast, the
immobilization of the hen egg white lysozyme (HEWL) on GO led to
active site blocking, affecting the flexibility of surrounding residues
and hampering the activity (Bera et al., 2018). In a separate work,
Ray et al. (2018) used GO to study the structure-function
relationship of the nucleoside diphosphate kinase (NDPK), whose
inhibition may be a potential therapy for patients with end-stage
heart failure. MD simulations suggested that the interaction of GO
with the NDPK His118 residue is very favorable, leading to the
inhibition of adenosine triphosphate (ATP) binding to the enzyme,
which can otherwise trigger mutated G protein phosphorylation.
More recently, the interaction between COVID-19 protein from
severe acute respiratory coronavirus (SARS-CoV-2), 3C-like (3CL)
main protease (Mpro), with intact graphene (IG), defective graphene
(DG) and GO, was investigated (Wang et al., 2022). It was observed
that DG and GO interact withMpro more intensely making its overall
structure to become more flexible. Furthermore, it was shown that,
in contrast to IG and GO, DG can inactivate Mpro and inhibit its
expression effectively by hampering its active pocket.

Due to their unique thermal, mechanical and biocompatible
characteristics, carbon nanotubes (CNTs), among all nanomaterials,
are a very promising surface for supporting enzymes (Zaboli et al.,
2019). Some of the first MD simulation studies elucidating protein-
CNT interactions include proteins such as the Coxsackie-
Adenovirus Receptor (CAR) (Johnson et al., 2009), human serum
proteins (Ge et al., 2011), lysozyme (Vaitheeswaran and Garcia,
2011). Johnson et al. used all-atom MD simulations of the CAR and
the CAR-Knob complex covalently attached to CNT to assess the
degree of structural deformation upon binding. It was observed that,
despite significant structural fluctuations, the overall structure of
CAR underwent minor deformation from its native structure and
did not affect the CAR’s ability to bind Knob. These results
supported that CAR retains its biological functionality when
attached to CNT. Ge et al. performed all-atom MD simulations
in conjugation with experimental approaches to investigate the
interactions of human serum proteins with single-wall CNTs
(SWCNTs), finding a binding competitiveness of these proteins
with different adsorption capacities and packing modes. They

observed that π-π stacking interactions between SWCNTs and
the aromatic residues of the protein are critical to the adsorption
capacity. This in turn affects cellular responses resulting in different
degrees of cytotoxicity. Vaitheeswaran and Garcia used coarse-
grained replica exchange MD simulations to study the stability of
lysozyme on CNT and found that it is dependent on the equilibrium
between the unfavorable enthalpy and favorable entropy change
upon adsorption. Subsequent work using all-atom MD simulations
showed that the lysozyme-CNT interacting region is far away from
the catalytic site, leading to intact catalytic activity. It was also
observed that the Aminic and Amidic moieties of the protein behave
like surfactants, blocking the access of the solvent to the CNT
(Calvaresi et al., 2012). In a separate study, Zhang et al. (2015)
studied the α-chymotrypsin-CNT system both in aqueous and
heptane media. The results showed that, although the
immobilization of the enzyme caused significant structure
deviation from the native structure, insignificant changes in
secondary structure were observed. Moreover, CNT was found to
display a stabilization role in retaining the catalytic H-bond network,
which was associated with the enhanced activity observed. Zhao and
Zhou. (2017) studied the structure-function relationship of α-
chymotrypsin (α-ChT) in interaction with pristine CNTs and
carboxylated CNTs. It was observed that while interacting with
the pristine CNTs through hydrophobic forces the active site of α-
ChT is facing towards the solution and hence shows a non-
competitive arrangement. However, the active pocket of the
enzyme binds to carboxylated CNTs through a dominant
electrostatic interaction which inhibits the enzyme in a
competitive-like mode. In addition to this work, Di Giosia et al.
(2020) studied the α-chymotrypsin-pristine CNT interactions using
MD simulations together with spectroscopic, microscopic and
kinetics experiments. They showed that CNT was occupying the
α-chymotrypsin substrate binding site, reducing its available volume
and therefore competing with the substrate and hampering the
activity of the enzyme. The pristine and carboxyl-functionalized
CNTs were further studied as immobilizing agents using the
D-lactate dehydrogenase enzyme (Zaboli et al., 2019). It was
observed that D-lactate dehydrogenase displayed an improved
thermal stability when immobilized in comparison to the free
enzyme. The simulations showed that the hydrogen bonding
networks occurring between the enzyme and the functional
groups of fCNT were responsible for maintaining the enzyme
conformation more than was observed for pristine CNT. CNT
surfaces were also used in order to understand the enzyme
activation mechanism in non-aqueous media. The subtilisin
carlsberg (SC) enzyme was immobilized onto CNT using water,
acetonitrile and heptane as solvents (Zhang et al., 2016). It was found
that the affinity of SC on CNT decreases with acetonitrile and in
more degree with heptane, in contrast to water. This was explained
by observing that the substrate binding pocket appeared significantly
expanded by immobilization in the presence of acetonitrile and
heptane. In a very recent work, Xu et al. (2022) studied the structural
basis for the immobilization of a laccase enzyme on SWCNT. They
used multi-scale simulations to gain insight into the direct electron
transfer (DET) event of the Thermus thermophilus laccase (TtLac)
adsorbed on carboxyl- and amino-functionalized CNTs (COOH-
CIN and NH2-CNT respectively). It was observed that the laccase
stability and its catalytic efficiency are more preserved when
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immobilized on NH2- than in COOH-CNT, since the enzyme
undergoes less conformational perturbation. Other recent studies
have focused on the interaction of CNTs with other biomolecules
such as hormones and receptors (Mahmoodi et al., 2018; Zhang
et al., 2018).

5 Immobilization on other surfaces

This section of the review covers structural studies of enzymes
that have been immobilized on other surfaces such as polymers,
membranes or zeolite. Petrosino et al. (2019) used a polysulfone
(PSU) membrane surface to immobilize a phosphotriesterase (PTE)
at a fixed pH. Hybrid quantum mechanics/molecular mechanics
(QM/MM) was used to calculate the interaction energies between
the enzyme and the surface, finding good agreement with the
experimental adsorption free energies and supporting that PTE
was effectively adsorbed on PSU. Interestingly, it was also
observed that, with respect to the orientation observed onto
pristine PTE, there was less accessibility for the immobilized
enzyme binding site. This is because of the steric hindrance to
the polymer, which may lead to a reduction in catalytic efficiency of
the enzyme. In a recent work, the adsorption-desorption
mechanisms of lysozyme over three antifouling polymer
membranes were studied through MD simulations (Zhang et al.,
2022). These are poly(3-(methacryloyloxy)propane-1-sulfonate)
(T4-SP), poly(sulfobetaine methacrylate) (T4-SB), and poly(2-
(dimethylamino)ethyl methacrylate) (T4-DM) which are grafted
on polysiloxane membranes. The antifouling membranes lie in
the core to prevent membrane fouling. The results showed that,
after adsorption of lysozyme, the interaction is higher for T4-SP than
T4-SB, being T4-DM showing the least interaction. The overall
structure of the enzyme was not observed to change during the
adsorption. However, slight fluctuation was noticed near the binding
sites which was caused by structural adjustment for tighter
combination. Although T4-DM has lowest interaction energy
with lysozyme, the desorption of lysozyme on T4-DM is the
hardest due to its larger hydrodynamic radius. The simulation
results from this study are consistent with the experimental
observation that T4-SB and T4-SP have good antifouling effects.
Regarding other synthetic surfaces, Wei et al. (2011) studied the
adsorption of lysozyme onto a polyethylene (PE) surface via MD
simulations. The long axis of lysozyme, while adsorbed, was found to
be parallel to the surface and displayed an anisotropic mobility over
the surface. Interestingly, this observation is contrary to what was
observed in the lysozyme adsorption to SNP (Hildebrand et al.,
2015), but analogous to its adsorption on SAMs (Xie et al., 2013), as
discussed in the previous sections. Additionally (Kubiak-Ossowska
and Mulheran, 2010), also studied lysozyme adsorption on a model
charged surface using MD simulations (Kubiak-Ossowska and
Mulheran, 2010). The results showed that, although electrostatics
steer the enzyme to a favorable binding orientation with respect to
the surface, immobilization only occurs through the strong
interaction of Arg128, a charged residue in a flexible location of
the protein surface, with the model charge surface. More recently,
the Zhou group combined MC and MD simulations to study the
lysozyme adsorption on porous organic cages and MXenes (Zhao
et al., 2020; 2021). For both surfaces van der Waals interactions-as

well as electrostatics interactions for the later-played an important
role in adsorption, while the conformation of the lysozyme remained
stable suggesting a good biocompatibility. It was also observed that
the interfacial water layer present over the surface plays a significant
impact on adsorption. Regarding covalent attachment, an effective
technique for irreversible enzyme immobilization, the cross-linking
by glutaraldehyde (GA) is one of the most popular immobilization
techniques. Hozhabr Araghi et al. (2021) combined MD simulations
and quantum calculations to get a comprehensive molecular
understanding of the interactions between the β-glucosidase
(BGL) enzyme with propylamine-GA molecules. The results
observed that all propylamine-GA molecules interacted with the
lysine residues of BGL through their head side with Lys384,
Lys376 and Lys247 being the most interactive residues. In
another recent work Li et al. (2023) performed MD simulations
along with surface residue microenvironment analysis to study
thrombin adsorption on Ca2+ -exchanged LTA-type (CaA)
zeolite. The observed thrombin deactivation on CaA zeolite
seemed to be due to changes in the thrombin secondary
structure upon adsorption. Additionally, some substrate binding
sites of the enzyme are blocked by the zeolite surface after adsorption
leading to the deactivation of thrombin. Moreover, few of the sites
which bind heparin and fibrinogen are part of the positively charged
area of thrombin which forms electrostatic interaction with CaA
zeolite and plays an important role in thrombin adsorption. Since
these sites are in vicinity to the catalytic sites of thrombin, this
further affects thrombin coagulation activity on the CaA zeolite
surface.

6 Immobilization on surfaces lacking
molecular dynamics simulations

There are several surfaces on which immobilization of enzymes
are studied experimentally but no detailed computational studies
exist for them. For instance, due to several of their inherent
properties, polymer brushes have received considerable attention
as enzyme immobilization agents. Several studies have used brush
polymers to immobilize lipase (Weltz et al., 2019; Weltz et al., 2020;
Sánchez-Morán et al., 2021). A significant enhancement of the
catalytic performance of Bacillus subtilis lipase A (lipA) was
observed when immobilized on poly(sulfobetaine methacrylate)
brushes, PSBMA. This was because of the stabilization of lipA
structure through changes in its conformational dynamics, which
resulted in the enhancement of its catalytic performance, which
strongly depends on the chemistry of the brush. The basic
mechanism for this structural stabilization by multipoint covalent
immobilization to the brush polymer was also studied. The results
showed that, with the increase in the number of lipA-brush
attachments, the enzyme stability is increased and it is correlated
directly with the enzyme rigidification. Additionally, several
structurally diverse but related lipases were immobilized on
random copolymer brush surfaces made up of sulfobetaine
methacrylate (SBMA) and poly(ethylene glycol) methacrylate
(PEGMA) aiming to shed light on the design of synthetic
materials for enzyme stabilization. The results showed that the
thermal stability of each lipase was strongly dependent on the
fraction of PEGMA with respect to SBMA in the brush layer.
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TABLE 1 Summary of Molecular Dynamics simulation studies of immobilization of different enzymes on different surfaces.

Nanoparticles

Enzyme Material Simulation method Experiment References

Papain SNPs MD, MM-PBSA SDS-PAGE He et al. (2014)

Cytochrome C SNPs MD None Sun et al. (2014b)

RNase A SNPs MD None Sun et al. (2014b)

Lysozyme SNPs MD None Sun et al. (2014b)

SNPs MD Adsorption Hildebrand et al. (2015)

SNPs CG-MD None Yu and Zhou (2016)

Charged silica pore CG-CpHMD None Caetano et al. (2021)

α-chymotrypsin SNPs MD Adsorption Hildebrand et al. (2015)

Lipase SNPs MD FTIR-ATR Wang et al. (2020)

Catechol
O-methyltransferase

AgNPs MD SDS-PAGE, Adsorption, Fluorescence,
FTIR

Usman et al. (2021)

Alcohol dehydrogenase PPY-Tip nanocomposite MD FTIR, FE-SEM, TGA Baig et al. (2015)

Tripsine AuNPs CG-MD None Tavanti et al. (2019)

Self Assembled Monolayer (SAM)

Enzyme Material Simulation method Experiment References

Cytochrome C CH3-&SH-SAMs MD None Tobias et al. (1996)

Organic SAM MD None Nordgren et al. (2002)

COOH-SAM MC + MD None Zhou et al. (2004)

Mercaptoundec-anoic acid SAM MD None Rivas et al. (2005)

PC-SAMs MC + MD None Xie et al. (2015)

NH2-SAM MD None Peng et al. (2016)

Lysozyme COOH-SAM MC + MD None Xie et al. (2013)

Mixed & methyl terminated SAMs MC + MD None Zheng et al. (2004)

OEG-,OH-& CH3-SAMs MC + MD None Zheng et al. (2005)

PC-SAM MC + MD None He et al. (2008)

COOH-&OH-SAMs MC + MD None Xie et al. (2020)

Feruloyl esterase COOH-&NH2-SAMs MC + MD None Liu et al. (2015a)

Laccase COOH-&NH2-SAMs MC + MD None Liu et al. (2015b)

4-ATP SAM MD, MM-PBSA None Miyazawa et al. (2017)

RNase A COOH-&NH2-SAMs MC + MD, CG-MD None Liu et al. (2017)

COOH-&NH2-SAMs and bare AuNPs CG-BD None Bourassin et al. (2022)

Bilirubin oxidase COOH-&NH2-SAMs MC + MD None Yang et al. (2018)

Lipase COOH-&NH2-SAMs MC + MD None Zhao et al. (2015)

β-galactosidase Maleimide/hydroxyl SAMs CG-MD SFG spectroscopy Li et al. (2018)

Nitro-reductase Maleimide/hydroxyl SAMs CG-MD SFG spectroscopy Zou et al. (2018)

COOH-&NH2-SAMs and bare AuNP CG-BD None Bourassin et al. (2022)

Hydrogenase SH-SAM MD SEIRA, AFM, PFV Heidary et al. (2015)

(Continued on following page)
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TABLE 1 (Continued) Summary of Molecular Dynamics simulation studies of immobilization of different enzymes on different surfaces.

Self Assembled Monolayer (SAM)

Enzyme Material Simulation method Experiment References

Bilirubin oxidase COOH-& NH2- SAMs and bare
AuNPs

CG-BD None Bourassin et al. (2022)

Torpedo californica COOH-& NH2-SAMs MC + MD None Yang et al. (2020)

Graphene and Carbon nanotube (CNT)

Enzyme Material Simulation method Experiment References

α-chymotrypsin Graphene & GO MD None Sun et al. (2014a)

CNT MD None Zhang et al. (2015)

Pristine & carboxylated CNT MC + MD None Zhao and Zhou (2017)

Pristine SWCNT MD, MM-GBSA None Di Giosia et al. (2020)

Cytochrome C Graphene & GO MD None Zhao et al. (2018)

Lipase GO MD AFM, UV, CD Mathesh et al. (2016)

GO MD SEM, TEM, TGA, MS, XPS, XRD Zhuang et al. (2020)

D-psicose 3-epimerase GO MD None Li et al. (2021)

Lysozyme GO MD, MM-GBSA UV-Vis, ITC, Fluorescence, CD, DSC Bera et al. (2018)

SWCNT CG-MD, REMD None Vaitheeswaran and
Garcia (2011)

CNT MD, MM-PBSA None Calvaresi et al. (2012)

Nucleoside diphosphate
kinase

GO MD None Ray et al. (2018)

Coxsackie-Adenovirus
Receptor

CNT MD None Johnson et al. (2009)

Human serum proteins SWCNT MD AFM, Fluorescence spectroscopy, CD,
SDS-PAGE

Ge et al. (2011)

D-lactate
dehydrogenase

Pristine and carboxylated CNT MD Fluorescence spectroscopy Zaboli et al. (2019)

Subtilisin Carlsberg CNT MD None Zhang et al. (2016)

Laccase SWCNT MC + MD None Xu et al. (2022)

Others

Enzyme Material Simulation method Experiment References

Phosphotriesterase PSU QM/MM None Petrosino et al. (2019)

Lysozyme Antifouling membranes MD None Zhang et al. (2022)

Polyethylene MD None Wei et al. (2011)

Porous organic cage MC + MD None Zhao et al. (2020)

Mxenes MC + MD None Zhao et al. (2021)

β-glucosidase Propylamine-GA MD, quantum calculations None Hozhabr Araghi et al.
(2021)

Thrombin Zeolite MD None Li et al. (2023)
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However, a detailed structural understanding of this observation is
lacking. The use of affinity tags or protein tags is another well
established strategy used for enzyme immobilization (Ley et al.,
2011). These are peptide sequences that are appended to proteins-
normally at the N-terminus- so that they can be purified from their
crude biological source. Polyhistidine tag, also known as His-tag, is
one of the most commonly used affinity tags which is a string of
usually between six to nine histidine residues. His-tag was used in
recent works to immobilize β-glucosidase (Zhou et al., 2017),
transketolase (Kulsharova et al., 2018), glucose dehydrogenase
(Zhou et al., 2021), ketoreductase (Basso et al., 2022), and
phosphomannose isomerase (Wang et al., 2023), between others.
In a recent work, MD simulations were performed to study
immobilization of fluorescent proteins through His-tag
(Wasserberg et al., 2017). However, the application of this
pipeline to predict sites for enzyme immobilization is still
lacking. Metal-organic frameworks (MOFs) appeared recently as
a promising immobilization material due to their attractive
properties such as a high surface area, excellent stability,
designable functionality, and tunable porosity (Ye et al., 2020).
However, MOF-immobilization is still in its infancy and its
mechanistic knowhow is still under development. Computational
studies based on MD simulations may emerge as a tool to shed some
light on these mechanisms and improve this arising immobilization
strategy. Separately, recent studies have shown that magnetic
nanoparticles (MNPs), which gained a special place as supporting
matrices and versatile carriers, are considered a future trend for
enzyme immobilization (Aber et al., 2016; Atacan et al., 2016;
Mehrasbi et al., 2017; Zhou et al., 2017; Darwesh et al., 2019;
Muley et al., 2020; Zanker et al., 2021; Zou et al., 2021). This is
due to the easy recovery and reuse of MNPs by applying an external
magnetic field in addition to their exceptional properties as
nanoparticles like large surface-to-volume ratio, large surface
area, high mass transfer and mobility (Bilal et al., 2018; Darwesh
et al., 2020). However, molecular modeling studies in this field are
still lacking and could shed light on the usage of MNPs, which paves
the way towards an efficient green chemistry approach.

7 Computational protocols for
predicting immobilization sites

The literature survey shown in above sections conveys that the
computational studies were done primarily to rationalize the
molecular aspects of the immobilization experiments. However,
the use of state-of-the-art protocols that allow controlling the
impact of immobilization on the enzyme properties is, up to
date, very limited. In a recent work in this regard, the Knotts
group tried to devise a reliable heuristics to identify optimal
attachment locations in typical proteins (Smith et al., 2021), a
protocol which may be promising when applied to enzyme
immobilization. Using coarse-grained MD simulations they
initially predicted how external factors-like confinement,
tethering configuration, surface hydrophobicity and binding site
valency-may affect protein stability and folding pathways (Rathore
et al., 2006; Bush et al., 2015; Bush et al., 2017; Bush et al., 2018).
Additionally, they performed tethering and PEGylation at a limited
number of sites in the loop regions of lysozyme to prove the

capability of predicting well-performing functionalization sites
(Wei et al., 2010; Wei et al., 2011; Wei et al., 2013). Although no
rigorous testing was performed for these heuristics, later they
suggested regions involving secondary structures can be optimal
functionalization sites (Wilding et al., 2018; Wilkerson et al., 2020).
Very recently, they provided a screening protocol to search for
accessible sites for functionalization on β-lactamase (TEM-1), either
for tethering onto a surface or for PEGylation (Smith et al., 2021).
The proposed heuristics of finding the accessible sites was also later
validated through experiments (Soltani et al., 2022; Zhao et al.,
2022). Overall, these studies may be a stepping stone to further
design an adequate prediction protocol that helps to control and
understand the structural and functional implications of the enzyme
immobilization process, which will be key for its rapid
implementation.

8 Conclusion

Immobilization of enzymes refers to physically confining or
localizing enzymes in a defined region of space while preserving
their catalytic performance. This phenomenon can significantly
improve the stability, reusability, and enzyme lifetime. In
addition to that, immobilization can also widen the enzyme
application by further improving their stability under extreme
conditions. Enzyme immobilization is often performed due to
their use in applications like antimicrobial or/and antifouling
coatings, drug delivery, industrial catalysis, biosensors or biofuel
cells. Based on the different materials employed, various enzyme
immobilization methods such as covalent bonding, adsorption,
entrapment, and cross-linking were developed over the years.
Although immobilization of enzymes has been a successful
strategy to improve the catalytic properties of enzymes, in
detailed understanding towards the correlation between the
enzyme attachment site, the chemical properties of the attached
surface, and activity of the enzyme remains elusive.

Over the past two decades, in silico investigations-in particular
MD simulations-have emerged as an important tool to study the
immobilization of enzymes that can disclose the microscopic nature
of intermolecular interactions. Both all-atoms and coarse-grained
MD simulations have been extensively used to study mechanistic
details of enzyme immobilization on different surfaces like
nanoparticles, SAM, graphene, CNT and others (summary
presented in Table 1), often in combination with MC based
approaches to study adsorption, the initial step of
immobilization. These studies have revealed that enzyme
performance can be tuned by controlling their orientation on a
charged surface by the electric dipole. In the same manner, an
hydrophobic dipole of the enzyme could be used as a criterion to
predict its orientation on hydrophobic surfaces. Additionally, apart
from the nature of the surface, the electrostatic potential distribution
on the enzyme surface is also responsible for its orientation on the
immobilizing material. Simulation studies of tethered enzymes show
that tethering to multiple sites increases thermal stability of the
enzyme. In addition, as speculated, they also reveal that
immobilizing enzymes through positions that are far away from
the active site leads to less disturbances in the catalytic regions, as
well as that the choice of the solvent can also affect the enzyme
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immobilization, facts which are in accordance with the experimental
observations.

In spite of tremendous efforts made on investigating the
enzyme immobilization phenomenon through in silico
simulations, several key issues still require further exploration.
The fact that a large variety of immobilizing agents exists, makes it
difficult to decide which is the most adequate for a particular
enzyme, and in silico strategies helping in this direction could
speed up this selection process. Moreover, the simulations
performed till date in this regard were primarily to rationalize
the molecular aspects of the immobilization experiments. Only a
very limited effort has been made in the use of computation to
predict adequate protocols that can control the impact on the
enzyme properties and the research field is still in its infancy.
Overall, state-of-the-art force-field based computational methods
like MD simulations are tedious and might not be the best
approach to meet the industrial needs for predicting
immobilization sites. In contrast, data driven methods like
Machine Learning (ML)-based approaches might be key in the
near future to design better pipelines that can aid in the growing
immobilization field. For the time being, developing pipelines
based on distinct levels of accuracy allowing a proper sampling
and determination of the enzymatic performance might
profoundly minimize the time consumption, costly trials, and
investigation errors when developing highly efficient immobilized
enzymes.
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