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One of the most important forces generated during gait is the vertical ground
reaction force (vGRF). This force can be measured using force plates, but these
can limit the scope of gait analysis. This paper presents a method to estimate the
vGRF using inertial measurement units (IMU) and machine learning techniques.
Four wearable IMUs were used to obtain flexion/extension angles of the hip, knee,
and ankle joints, and an IMU placed over the C7 vertebra to measure vertical
acceleration. We trained and compared the performance of twomachine learning
algorithms: feedforward neural networks (FNN) and random forest (RF). We
investigated the importance of the inputs introduced into the models and
analyzed in detail the contribution of lower limb kinematics and vertical
acceleration to model performance. The results suggest that the inclusion of
vertical acceleration increases the rootmean square error in the FNN, while the RF
appears to decrease it. We also analyzed the ability of the models to construct the
force signal, with particular emphasis on the magnitude and timing of the vGRF
peaks. Using the proposed method, we concluded that FNN and RF models can
estimate the vGRF with high accuracy.
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1 Introduction

The analysis of human kinematics and kinetics has great potential in the prevention of
injuries (Padua and DiStefano, 2009), and the analysis or prediction of musculoskeletal
disorders (Fineberg et al., 2013). The analysis of human kinematics requires the use of
motion capture data. Computer vision techniques (Graci et al., 2012), but also wearable
inertial sensors (Sy et al., 2020) can be used for estimating the angle of the human limbs. On
the other hand, when performing a kinetic analysis, the human joint forces and torques are
estimated by the forces exerted, using inverse dynamics methods (Moya-Angeler et al.,
2017).
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In a lower extremity biomechanical analysis, the kinetic data
must include the ground reaction forces produced (Lencioni et al.,
2019), which can be divided into the mediolateral ground reaction
force, the anteroposterior ground reaction force, and the vertical
ground reaction force (Kram et al., 1998). Vertical ground reaction
force (vGRF) is the largest component of the ground-generated
forces during gait. The vGRF is generated in the sagittal plane and
represents the magnitude and pattern of mechanical loading in the
vertical direction at the foot (Jacobs et al., 1972). During gait, three
main peaks can be distinguished in this force (Marasović et al.,
2009). First, the loading peak (LP) is produced, a local maximum
corresponding to the loading response. Then, there is a local
minimum corresponding to the mid-stance phase (MP). Finally,
there is a second local maximum during the terminal stance phase
(TP). The magnitude and timing of these peaks has influence in the
lower limb joints and muscle loads. For this reason, the analysis of
vGRF characteristic peaks could be essential to study
musculoskeletal disorders (Shafizadegan et al., 2016).

The vGRF measurement is usually performed by employing
force plates. The force plates can rest over the ground, but also they
can be embedded in treadmills. These plates might limit the space
for the gait analysis, and they also can be financially costly. As a
consequence of these limitations, some authors have studied the
possibility of estimating the vGRF.

To overcome these drawbacks, the use of inertial measurement
units (IMU) to estimate vGRF has been investigated. E. Sahabpoor
and A. Pavic showed that it is possible to estimate the vGRF with a
single IMU, using the subjects’ body mass and vertical acceleration
to estimate the vGRF exerted on the human body. (Shahabpoor and
Pavic, 2018). The authors compared several locations and concluded
that placing an IMU over the C7 vertebra was the better location to
achieve the lowest error in the vGRF estimation. However, the
method proposed by these authors is not able to determine the force
produced on the right and left lower limbs.

The development and improvement of machine learning
algorithms have led some authors to apply these techniques to
analyze gait kinematics and estimate vGRF.

In (Choi et al., 2013; Oh et al., 2013) the authors used human body
kinematics and artificial neural networks to perform vGRF prediction.
However, the main disadvantage is that they used several infrared
cameras to acquiremotion capture data, so thismethodmight also limit
the analysis space. On the other hand, other authors preferred to place
IMUs over the lower limbs tomonitor humanmovement. X. Jiang et al.
used a Random Forest model to estimate the vGRF during gait with a
single IMU using acceleration and gyroscope data (Jiang et al., 2020). F.
J. Wouda et al. also used IMU sensors over the lower limbs (pelvis and
lower legs) (Wouda et al., 2018). These authors used an artificial neural
network to estimate the knee angle and artificial neural networks to
estimate the vGRF during running using the estimated knee angle and
the vertical accelerations from the placed IMUs.

The scientific literature shows that progress in machine learning
algorithms has made it possible to achieve good accuracy when
estimating the vGRF by different approaches. When performing a
biomechanical analysis, we usually want to study not only the
kinetics but also the lower limb kinematics. Hence, we intend to
develop a Machine Learning model that makes use of the lower limb
joint kinematics to estimate the vGRF. Moreover, it has to be
mentioned that we have employed a method to estimate the hip,

knee, and ankle angles in the sagittal plane by employing IMUs, so
the gait analysis could be performed in any situation.

Moreover, as mentioned before, apart from the lower limb
kinematics, vertical acceleration has been used to estimate the vGRF
since there is a closed relation between them. However, when including
these features together, the contribution to the vGRF prediction of lower
limb kinematics and vertical acceleration has not been analyzed.

This work aims to develop a system to perform biomechanical
analysis of the lower limbs based on wearable inertial sensors. For
this purpose, we have used a method to measure the angle of the
lower limb joints, and we have trained and compared the
performance of machine learning models to estimate the vGRF
during gait. We have introduced the lower limb joint kinematics and
vertical acceleration measured at the C7 vertebra as inputs of the
machine learning models to estimate the vGRF. In addition, we have
analyzed the contribution to the vGRF estimation of this set of
features using different machine learning methods.

2 Materials and methods

2.1 Lower limb joints measurement

The method proposed by T. Seel et al. has been used to estimate
the joint angles of the lower limbs during gait (Seel et al., 2014). The
proposed method is based on the analysis of the movement of the
joints and it allows obtaining the joint angles with high accuracy
with IMUs even at low acquisition rates (from 40 Hz) (Seel et al.,
2012). This section describes the method and details the calibration
and angle measurement process.

2.1.1 Identification of the joint axis and position
coordinates

This method avoids developing an algorithm that assumes a
position and orientation of the different IMUs concerning the user’s
lower limb. Moreover, to estimate joint angles by this algorithm, we
must use gyroscope and accelerometer data from the IMUs, so it
does not depend on a uniform magnetic field. Hence, we assume we
have two IMUs attached to the upper and lower segment for each
joint, so we measure the accelerations a1(t), a2(t) ∈ R3 and the
angular rates g1(t), g2(t) ∈ R3 at a sample period Δt.

The gyroscope data are used to identify the direction vectors
j1, j2 ∈ R of the hip, knee, and ankle flexion/extension axis in the
local coordinates of the IMUs. Geometrically, g1(t) and g2(t) differ
only by the joint angular velocity and a rotation matrix, so their
projections into the joint plane have the same lengths for each
instant. This can be defined as:

‖g1 t( ) × j1‖2 − ‖g2 t( ) × j2‖2 � 0 ∀t (1)
where ‖ ·‖2 is the Euclidean norm.
Moreover, apart from the direction vectors, the joint center position

in the local coordinates of the IMUs must be calculated. These vectors
o1, o2 ∈ R are constant and only depend on the mounting position and
orientation over the leg segments. In order to calculate them, T. Seel et al.
propose that the acceleration of each sensor can be thought as the sum of
the center of the joint acceleration, and the accelerationdue to the rotation
of the sensor around the joint center. The acceleration of the joint center
should be the same in both IMU local frames, which can be expressed as:
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‖a1 t( ) − Γg1 t( ) o1( )‖2 − ‖a2 t( ) − Γg2 t( ) o2( )‖2 � 0 ∀t (2)
Γgi t( ) oi( ) ≔ gi t( ) × gi t( ) × oi( ) + _gi t( ) × oi , i � 1, 2 (3)

where Γgi(t)(oi) is the radial and tangential acceleration due to the
IMU rotation around the joint center.

It should be noted that the constraints defined must be fulfilled
by any given motion of the joint. Hence, we can identify j1, j2, o1, and
o2 by minimizing the left side of Eqs 1, 2.

To determine j1 and j2, if we restrict the axis to the unit length,
the problem becomes four-dimensional and we can express j1 and j2
in spherical coordinates:

j1 �
cos ϕ1( ) · cos θ1( )
cos ϕ1( ) · sin θ1( )

sin ϕ1( )
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, j2 � cos ϕ2( ) · cos θ2( )

cos ϕ2( ) · sin θ2( )
sin ϕ2( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (4)

where ϕi and θi are inclination and azimuth. We also can define the
sum of squared errors for N samples as:

Ψ ϕ1, θ1, ϕ2, θ2( ) ≔ ∑N
i�1

‖g1 ti( ) × j1‖2 − ‖g2 ti( ) × j2‖2( )2 (5)

and in the samemanner, we can also obtain o1 and o2 by defining
another sum of squared errors:

Ψ o1, o2( ) ≔ ∑N
i�1

‖a1 ti( ) − Γg1 ti( ) o1( )‖2 − ‖a2 ti( ) − Γg2 ti( ) o2( )‖2( )2
(6)

To minimize Ψ(ϕ1, θ1, ϕ2, θ2) and Ψ(o1, o2) we have employed
the Trust Region Reflective algorithm (Byrd et al., 1988), but the
problem could be resolved by employing any other algorithm, e.g., a
Gauss-Newton algorithm.

To obtain the hip, knee, and ankle joint position coordinates (o1,
o2), before the experimental session started the users were told to
perform circling arbitrary movements. Moreover, concerning the
estimation of the joint axis coordinates (j1, j2), we got data from the
users walking to identify the principal axis of motion, i.e., the
flexion/extension movements of the hip, knee, and ankle.

2.1.2 Flexion/extension angle measurement
Once we have successfully obtained the joint axis coordinates

(j1, j2) and the joint position coordinates (o1, o2) for each user, we
can estimate the angle of the joints with the placed IMUs. These
angles are calculated from accelerations and angular rates. Using
the gyroscope data, the flexion/extension angles can be estimated
by integrating the difference of the angular rates around the joint
axis:

αgyr t( ) � ∫t

0
g1 τ( ) · j1 − g2 τ( ) · j2( )dτ (7)

As T. Seel et al. mention, by knowing the axis coordinates we can
applymethods that need the axes of the sensor coincide with the joint or
the segment axes (Liu et al., 2009). First, we move the measured
accelerations from the local IMU coordinates to the joint axis:

~a1 � a1 t( ) − Γg1 t( ) o1( ), ~a2 � a2 t( ) − Γg2 t( ) o2( ) (8)

The flexion/extension can be estimated by the angle between the
projections of ã1 and ã2 into the joint plane. Then, we define a pair of
joint plane axes x1, y1, x2, y2 ∈ R3 for the local frames:

x1 � j1 × c, y1 � j1 × x1, x2 � j2 × c, y2 � j2 × x2 (9)
where c ∈ R3 could be any vector that makes none of the products

zero. Finally, we can estimate the joint angle by accelerometer readings:

αacc t( ) � ∠ ã1 t( ) · x1

ã1 t( ) · y1
[ ], ã2 t( ) · x2

ã2 t( ) · y2
[ ]( ) (10)

This αacc is not affected by drift as αgyr is, since we have not
employed any integration to compute the angle, but it is affected by
the accelerometer noise. Moreover, despite the drift, αgyr is precise in
short time scales. Hence, it could be appropriate to combine αacc and
αgyr. We have used a complementary filter (Young, 2009) defined as:

α t( ) � λ · αacc t( ) + 1 − λ( ) · α t − Δt( ) + αgyr t( ) − αgyr t − Δt( )( )
(11)

To obtain flexion/extension data from the participants, we have
used a sample period Δt = 0.016 (60 Hz) and λ = 0.02.

The method proposed by T. Seel et al. has shown a root mean
squared error (RMSE) of between 3 and 5° for the hip, knee, and
ankle flexion/extension movements (Kumar et al., 2018). Therefore,
we can assume that we are accurate enough to perform an adequate
gait analysis and vGRF.

2.2 Experimental setup

The equipment used during the experimental sessions is shown
in Figure 1.

Five XSens Dot IMUs were used to acquire kinematic data from the
participants at a sampling rate of 60 Hz. Four inertial sensors were
placed on the back of the hip, the thigh, the leg, and the foot to estimate
the joint angles of the lower limb. The remaining IMU was placed over
the C7 vertebra to provide vertical acceleration data. The hip, thigh, and
leg IMUs were placed with elastic straps, and the C7 and foot sensors
were attached to the skin and the user’s shoes with stickers.

A treadmill with an embedded force plate model h/p/cosmos
150/50 was used to measure the generated vGRF during gait. The
vGRF data were recorded at 100 Hz.

2.3 Subjects

Twelve volunteer able-bodied subjects participants were
involved in the experimental sessions, 10 male and 2 female. The
ages were between 23 and 52 years old (29.8 ± 7.4), with heights
ranging between 1.65 m and 1.87 m (176.2 ± 7.4 cm) and weights
between 56.1 kg and 90.2 kg (76 ± 12.5 kg). Written informed
consent was obtained from the individuals for the publication of
any potentially identifiable images or data included in this article.

2.4 Experimental protocol

At the beginning of the experimental session, the IMUs were
placed on the participants at the established locations, and the height
and weight of users were measured. Once the user wore the sensors,
we proceeded to obtain the calibration data to estimate the joint
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angles of the lower limb. First, the users were told to perform
arbitrary circling movements with the hip, knee, and ankle to obtain
the center position coordinates o1, o2 of each joint for 1 min. Then,
the participant walked for 1 min over the treadmill at a comfortable
speed to obtain the flexion/extension joint axis coordinates j1, j2.

After the calibration was carried out, the subjects walked over
the treadmill at four different speeds selected to cover a wide range of
normal gait speedsWeber (2016): 1.5 km/h, 2.5 km/h, 3.5 km/h, and
4.5 km/h. When the treadmill reached the desired speed, the
kinematics and vGRF data were recorded for 5 min. Between
each activity, 2 min were left for rest.

2.5 Acquired data and processing

The data acquired from each device and the signals processing to
be used as the machine learning models inputs are detailed in this
section and illustrated in Figure 2.

The vGRF was acquired from the plate-instrumented treadmill,
which has been normalized by the body weight of the participants (BW).

From the hip, thigh, leg, and ankle IMUs, we acquired
accelerometer and gyroscope data to estimate the lower limb
joint angles in the sagittal plane. Once the hip, knee, and ankle
angles were computed, we applied a forward-backward low-pass
filter (Gustafsson, 1996) with a 6 Hz cutoff and we obtain the
angular velocities of each joint.

To obtain the vertical acceleration we acquired the acceleration
and orientation of the IMU placed over the C7 vertebra (Esser et al.,
2009). First, by using the IMU orientation, we transform the
acceleration vector from the local to the global coordinates
system. Then, to obtain the vertical acceleration, we remove
gravity from the measured vertical acceleration, which
corresponds to the Z-axis acceleration in the global coordinates
system.

In addition, it is usual to identify the onset and end of the gait
cycle and transform the data from the temporal domain to the gait

cycle domain (0%–100%) when performing a gait analysis. Hence,
all signals have been transformed to the cycle gait domain. To detect
the onset of the steps we have detected the foot-ground contact
detection by two methods. To identify the foot contact in the IMU
data (inputs of the model) we have made use of the hip acceleration
(Zijlstra and Hof, 2003). We applied a forward-backward low-pass
filter with a 2 Hz cutoff. In the filtered signal, we detect the local
maxima, which correspond to the left and right ground foot
contacts. As a matter of convention, we employed the right foot
contact to calculate the gait cycle. Moreover, we detected the foot-
ground contact when the force value starts growing in the vGRF
signal.

Signal synchronization begins by detecting the first foot contact
with the ground in both the vGRF and the IMU system. In addition,
by detecting the ground-foot contact in the vGRF and the IMU
system the onset and end of each step can be detected. For each step,
each vGRF and lower limb kinematics data is assigned a label
according to the gait instant in which it occurs (gait cycle
percentage). Finally, to train the machine learning models, the
vGRF and leg kinematics data are synchronized from the gait
instant in which they occur, so that each lower limb kinematics
data is assigned a vGRF value.

The flexion/extension angles, the vertical acceleration, and the
vGRF acquired are shown in Figure 3 for each gait speed. When the
treadmill reached the desired speed, the kinematics and vGRF data
were recorded for 5 min. Between each activity, 2 min were left
for rest.

2.6 Machine learning models training

2.6.1 Selected machine learning algorithms
Regression techniques can be used in order to estimate the

vGRF. We decided to train Random Forest (RF) models and Feed-
forward Neural Networks (FNN) since their use has been validated
in previous studies by different authors.

FIGURE 1
The devices employed during the experimental sessions. On the left image, the location of the IMUs placed tomeasure vertical acceleration (C7 IMU)
and estimate the joint angles of the lower limb (hip, thigh, leg and foot IMUs). On the right image, the treadmill h/p/cosmos 150/50, used to acquire the
vGRF during gait is shown.
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The RF models consist of multiple decision trees (Zhang and
Ma, 2012). These decision trees are trained independently with a
data subset, and the output of the model will be determined by the
best result given by the ensemble trees. This strategy allows the RF
models to achieve accurate predictions as well as better
generalizations, which come from the bagging scheme by
decreasing variance.

The RF models have been trained with SciKit Learn Python
Library (Pedregosa et al., 2011). RF training was performed with
170 decision trees, a tree maximum depth of 35, a minimum number
of samples of 1, a minimum number of samples required to split an
internal node of 2, and the number of inputs to consider when
looking for the best split were calculated by the logarithm base 2 of
the number of inputs.

The FNN models are a kind of artificial neural networks based
on neurons that receive an input signal and process them by the
activation function to an output signal (Svozil et al., 1997; Sharma
et al., 2017). These neurons are ordered into layers, where the first
layer is called the input layer, the last layer is called the output layer,
and the layers between them are called the hidden layers. Each

neuron of a particular layer is connected with all the neurons placed
in the next layer, connected by the weights coefficients. The
adjustment of the weights of the neural network is usually
performed by back-propagation, employing a non-linear
optimization method such as the gradient descent algorithm
(Andrychowicz et al., 2016).

The FNN models have been trained with Keras Python Library
(Gulli and Pal, 2017). We have employed FNN with one input layer
of a number of neurons equal to the number of inputs, 5 hidden
layers with 10 neurons, and an output layer with one neuron. We
have used the Rectified Linear Unit (ReLu) as the activation function
of the neurons, the Adam algorithm (Kingma and Ba, 2014) as the
optimizer to adjust the network weights, and the RMSE as the loss
function. To avoid overfitting, we have employed the dropout
regularization method (Srivastava et al., 2014). Moreover, as
recommended when using dropout, a constraint is imposed on
the weights for each hidden layer. We have imposed that the
maximum norm of the weights does not exceed a value of 4.

The hyperparameters tunned for both RF and FNN models are
the best performing based on the RMSE with the training data.

FIGURE 2
Signals obtained by the IMUs and the treadmill, and their processing before introducing them in themachine learningmodels. From the IMUs placed
on the lower limbs, we have acquired acceleration and angular velocity to estimate the flexion/extension angles (T. Seel et al. method). With the IMU
placed over the C7 vertebra, we measured the vertical acceleration. Moreover, the foot-ground contact has been detected using the anteroposterior
acceleration measured at the hip to compute the gait cycle. The generated vGRF during gait has been measured and normalized by body weight. In
the vGRF signal, the gait foot contact detection has been performed by finding the end of the stance phase (null force). The measured vGRF and the
kinematics data have been synced by using the cycle gait. The flexion/extension joint angles and velocities, the vertical acceleration, and the cycle gait
have been introduced as inputs of the models. The measured vGRF has been introduced as a reference for model learning.
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2.6.2 Preprocessing and training
For the training of the RF and FNNmodels, we introduced the joint

angles, angular velocities, vertical acceleration, and cycle gait as inputs
(Figure 2). In addition, the vGRF measured with the instrumented
treadmill was introduced as the reference of the model.

We divided the data into 3 subsets to evaluate the performance
of the models. First, we used data collected from 10 participants to
train the model (intra-participants). This data collection was
randomly divided into two subsets to validate the accuracy of the
models by cross-validation: 80% of the data for training and the
remaining 20% for validation. Data from 2 participants were also
used to evaluate the performance of the models on users not
involved in the learning process (inter-participants).

To train themodels, 8 inputs were used: the flexion/extension angles
and angular velocities of the hip, knee, and ankle; the vertical acceleration
measured at the C7 vertebra; and the instant of the gait cycle.

It must be noted that we have scaled each input of the training
data from its minimum and maximum, so we have numerical values
between 0 and 1. We have also used the training scaler to evaluate
the accuracy of the classifier with the test data.

As we introduced, one of the objectives of this work is to
examine the contribution of vertical acceleration and lower limb
kinematics in the vGRF estimation. To analyze the
contributions, we realized two different pieces of training for
each model.

• Training 1 (Kinematics). Joint angles, angular velocities, and
cycle gait have been included as inputs of the models.

• Training 2 (C7). Joint angles, angular velocities, vertical
acceleration, and cycle gait have been included as inputs of
the models.

2.6.3 Performance evaluation of the trained
models

The performance achieved by the trained models has been
analyzed as follows.

• vGRF RMSE (BW). A lower RMSE in the reproduction of the
vGRF signal is understood as a better performance of the
model.

FIGURE 3
Acquired data during the experimental session. We have represented the hip, knee, and ankle flexion/extension angles (first, second, and third row),
the vertical acceleration measured at the C7 vertebra (fourth row), and the measured vGRF (fifth row). The data is represented for different gait speeds
(1.5–4.5 km/h) and normalized by the cycle gait.
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• Normalized RMSE (BW). The Normalized RMSE (NRMSE)
is defined as (Shahabpoor and Pavic, 2018):

NRMSE � RMSE

max vGRFmeasured −min vGRFmeasured
(12)

A lower normalized RMSE (NRMSE) in the construction of the
vGRF is understood as a better performance of the model.

• Correlation. A higher correlation (ρ) between the measured
and estimated vGRF signals is understood as a better
performance of the model. To calculate the correlation, the
Person’s correlation coefficient has been calculated.

• LP, MP, and TP error (BW).A lower error between measured
and estimated vGRF peaks is understood as a better
performance of the model. To find the LP and TP peaks
we searched the local maximum in the first and second periods
of the foot support. To calculate the MP peak we searched the
local minimum between LP and TP peaks.

• LP, MP, and TP delay (%). A delay or advance close to
0 between measured and estimated vGRF peaks is understood
as a better performance of the model. The delay is calculated as
the difference between the estimated and measured peaks. A
positive value means a delay of the estimated peak, and a
negative value means an advance of the estimated peak to the
measured peak.

2.6.4 Statistical data analysis
We performed statistical data analysis to compare the accuracy

of the models in estimating the vGRF with the validation and test
data. First, we compared the four trained models (FNN-Kinematics,
FNN-C7, RF-Kinematics, and RF-C7) in terms of RMSE. To
perform a deep analysis of the vGRF signal construction, we have
selected the best FNN and RF models, taking into account the
evaluation detailed previously. For each model, we compared the
vGRF estimation and peak reproduction with the validation and
test data.

In the statistical analysis, first, a normality test was performed
using the Kolmogorov-Smirnov test (Berger and Zhou, 2014). The
results of the test showed that data distribution was not normal
(p < 0.05).

The Friedman test was used to study the differences between the
accuracy of the models (Sheldon et al., 1996). In the post hoc analysis,
pairwise comparisons have been studied by the Wilcoxon signed-
rank test with the zero method proposed by Pratt (1959).

3 Results

3.1 Feature importance

To understand the influence of the angles, the angular velocities,
the vertical acceleration, and the cycle gait in the training of the FNN
and RFmodels, we have calculated the feature importance by feature
permutation (Altmann et al., 2010). This method is defined to be the
increase in the model error when a single feature is randomly
shuffled, so we could understand how much the vGRF depends
on each feature. The results obtained are shown in Figure 4, which
shows the increase of the RMSE in the vGRF prediction when a

feature is shuffled with the FNN-C7 model (Figure 4A and the
RF-C7 model (Figure 4B).

The feature permutation results show that the gait cycle has the
greatest influence on the performance of the models since the RMSE
increases by 0.2590 BW in the FNN-C7model and 0.1927 BW in the
RF-C7 model. Concerning the lower limb kinematics, it can be
observed that the knee and the ankle angles have the highest
relevance on the FNN-C7, followed by the hip and knee angular
velocity. By contrast, in the RF-C7 training the hip, knee, and ankle
angles take on greater significance than their angular velocities. In
both cases, the ankle angular velocity has lower importance than the
hip and knee kinematics.

According to the results, vertical acceleration has a low impact
on the training of the models compared to the lower limb
kinematics. In the FNN-C7 model, the vertical acceleration has
the second lowest importance, and in the RF-C7 model, it has the
lowest relevance.

3.2 Validation and test results

Once we performed the two established pieces of training
(Kinematics, C7), we evaluated the accuracy of the models with
the validation and test data. We have calculated the RMSE for each

FIGURE 4
Feature importance computed with feature permutation (A)
FNN-C7 model (Training 2) (B) RF-C7 model (Training 2)
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of the registered steps to evaluate the performance of the models
with the intra-participants and inter-participants. The mean and
standard deviations of the RMSE errors are shown in Figure 5, where
Figure 5A show the results with the intra-participants, and Figure 5B
the results with the inter-participants. In addition, Table 1 and
Table 2 show respectively the validation and test results.

The statistical analysis showed significant differences between
the performance of the models with the validation data for each gait
speed (Friedman test p < 0.0001 for all speeds). In the pairwise
comparison, the results show that there is not a significant difference
in the accuracy of the models when the users’ vertical acceleration is
included as an input of the model for each gait speed (p > 0.05).
However, the inclusion of the vertical acceleration seems to reduce
significantly the global error when using the FNNmodels (p < 0.05).
When we compare the FNN and RF performance, we see a
significant reduction of the RMSE when we employ the RF
models with the validation data for the global RMSE errors and
for all gait speeds. When we analyze the effect of the vertical
acceleration, despite there is not an statistical significance, we

observe a reduction of the RMSE errors in the RF training when
the vertical acceleration is included, specially for the gait speeds of
3.5 and 4.5 km/h. This behavior can also be seen when using the
FNN models. However, it should be noted that, when we employ a
FNN model, the inclusion of the vertical acceleration is detrimental
to the model performance at 1.5 km/h.

The analysis of the RMSE errors obtained with the inter-
participants shows that there is not a significant difference
between the accuracy of the models (Friedman test for global
RMSE p = 0.24, at 1.5 km/h p = 0.80, at 2.5 km/h p = 0.80, at
3.5 km/h p = 0.17, and at 4.5 km/h p = 0.24). Nevertheless, it can be
observed that there is also a reduction of errors in both models when
the vertical acceleration is included. Moreover, we can observe
similar results in terms of RMSE errors if we compare the FNN
and RF models.

The results suggest that the FNN-C7 model and the RF-C7
model have higher accuracy in terms of RMSE errors. Hence, both
models are analyzed deeply in the next section.

3.3 Validation and test vGRF signal
reconstruction

In Figure 6 we have represented the measured vGRF, the vGRF
estimated with the FNN-C7model, and the vGRF estimated with the
RF-C7 model. In these graphs, the median value of the vGRF is
represented during the gait cycle, and the shaded areas correspond
to the vGRF values between the first and third quartiles.

Table 3 and Table 4 collects the correlation (ρ) and NRMSE
between the measured and estimated vGRF with the selected models
for the intra-participants and the inter-participants, respectively.
Figure 7 shows heatmaps with the mean of the peaks magnitude
errors and delays with the intra-participants and inter-participants.
Moreover, the Supplemental Data collects detailed information
about the magnitude error and delay of the characteristic peaks,
and the pairwise comparison results between the selected models
(FNN-C7 and RF-C7).

With the intra-participants, the results show ρ values in the
vGRF reconstruction between 0.9676 and 0.9886 with the FNN-C7
model, and coefficients between 0.9966 and 0.9988 with the RF-C7
model. In addition, the results show NRMSE values between
0.0399 BW and 0.0651 BW with the FNN-C7 model, and values
between 0.0127 BW and 0.0210 BW with the RF-C7 model. When
the vGRF is predicted with the inter-participants the correlation is
reduced, with ρ values between 0.9705 and 0.9876 with the FFN-C7
model, and values between 0.9746 and 0.9849 with the RF-C7model.
According to the NRMSE results, values are between 0.0560 BW and
0.0853 BW with the FNN-C7 model, and values are between
0.0691 BW and 0.0792 BW with the RF-C7 model.

The analysis of the vGRF peaks shows statistical differences with
the intra-participants for all the characteristic peaks (p < 0.0001).
The results collected in Figure 7 show that all the peak magnitude
errors obtained with the RF-C7 model are lower than errors
obtained with the FNN-C7 model. The RF-C7 achieves
magnitude errors lower than 0.0210 BW for the LP, 0.0161 BW
for the MP, and 0.0171 BW for the TP. Otherwise, the FNN-C7
model errors are up to 0.0900 BW in the LP, 0.0793 BW for the MP,
and 0.0491 BW for the TP. By contrast, when the models are

FIGURE 5
Mean RMSE (BW) and standard deviation for each training of the
FNN and RF models. The graphs show the global RMSE and the RMSE
per gait speed with (A) The intra-participant data (B) the inter-
participant data.
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evaluated with the inter-participant data, the statistical analysis has
shown that there are differences in the prediction of the peak
magnitude errors between models except for the MP at 3.5 km/h
(p = 0.1825) and TP at 4.5 km/h (p = 0.0834). In the case of the FNN-
C7 model, we can find errors between to 0.0206 BW and 0.0619 BW
in the LP, between 0.0263 BW and 0.0810 BW in the MP, and
between 0.0249 BW and 0.0922 BW in the TP. By contrast, the
obtained errors with the RF-C7 model are between 0.0225 BW and
0.0611 BW in the LP, between 0.0399 BW and 0.0983 BW in theMP,
and between 0.0316 BW and 0.1256 BW in the TP.

The analysis of the delay of the predicted vGRF peaks with the
intra-participants shows that the lags achieved by the RF-C7 model
are closely 0%, with mean lags lower than 0.18% (advance in LP at
1.5 km/h), while the timing errors with the FNN-C7 range
from −0.21% to 1.6% in the LP, from −0.3% to 3.4% in the MP,

and −0.92% to −3% in the TP. Furthermore, an increase in the
timing errors can be appreciated for both models when they are
evaluated with the inter-participant data. The timing errors obtained
with the FNN-C7 model range from −0.84% to −2.2% in the LP,
from 1.3% to 4.1% in the MP, and −2.3%–0.73% in the TP, while the
RF-C7 model errors range from −2.3% to −4.9% in the LP,
from −2.6% to 3% in the MP, and −2.4% to 5.4 in the TP estimation.

4 Discussion

This work presents a method to estimate vGRF using diverse
inertial sensors placed over the lower limbs and the C7 vertebra.

The IMUs placed on the hip, thigh, shank, and foot are used to
measure the flexion/extension angles of the hip, knee, and ankle joints.
For this purpose, the method developed by T. Seel et al. was used to
estimate the joint angles by means of the accelerometer and gyroscope
data provided by the sensors (Seel et al., 2014). One of the main
advantages of this method is that the position and orientation of the
IMUs do not influence the estimation of joint angles. Therefore, we can
assume that variations in sensor placement will not affect the error
made in the estimation of vGRF. Furthermore, the calibration method
of this algorithm is simple and does not require precise movements, as
the calibration is based onwalking and performing randommovements
with the legs for a short period.

We have trained and evaluated the performance of two machine
learning models in order to estimate the vGRF during gait. First, we
have calculated the feature importance for the FNN-C7 and RF-C7
models to understand the relevance of each input (Figure 4). For
both models, the results show that the gait cycle has the biggest
influence on the training of the model, which suggests that the
proposed method for estimating vGRF has a strong dependence on

TABLE 1 Validation mean (standard deviation) RMSE (BW) for each training of the FNN and RF models. The global RMSE errors for each model are shown.
In addition, the table collects the RMSE errors obtained for each gait speed.

FNN - Kinematics (a) FNN - C7 (b) RF - Kinematics (c) RF - C7 (d)

Global 0.076 (0.039) ***c,d 0.072 (0.040) ***c,d 0.037 (0.027) ***a,b,d 0.036 (0.026) ***a,b,c

1.5 km/h 0.070 (0.027) ***c,d 0.073 (0.030) ***c,d 0.030 (0.014) ***a,b*d, 0.030 (0.015) ***a,b*c,

2.5 km/h 0.067 (0.020) ***c,d 0.062 (0.020) ***c,d 0.033 (0.013) ***a,b,d 0.032 (0.013) ***a,b,c

3.5 km/h 0.067 (0.030) ***c,d 0.064 (0.030) ***c,d 0.036 (0.023) ***a,b,d 0.035 (0.023) ***a,b,c

4.5 km/h 0.095 (0.050) ***c,d 0.086 (0.056) ***c,d 0.045 (0.038) ***a,b,d 0.044 (0.037) ***a,b,c

Statistical differences are represented by * (p < = 0.05), ** (p < = 0.01), *** (p < = 0.001), and **** (p < = 0.0001).

TABLE 2 Test mean (standard deviation) RMSE (BW) for each training of the FNN and RFmodels. The global RMSE errors for each model are shown. In addition, the
table collects the RMSE errors obtained for each gait speed.

FNN - Kinematics FNN - C7 RF - Kinematics RF - C7

Global 0.077 (0.022) 0.074 (0.028) 0.083 (0.026) 0.077 (0.024)

1.5 km/h 0.069 (0.030) 0.070 (0.029) 0.070 (0.029) 0.067 (0.030)

2.5 km/h 0.062 (0.014) 0.062 (0.013) 0.074 (0.029) 0.072 (0.027)

3.5 km/h 0.075 (0.010) 0.068 (0.010) 0.082 (0.012) 0.075 (0.018)

4.5 km/h 0.096 (0.014) 0.092 (0.025) 0.102 (0.019) 0.087 (0.019)

No statistical differences were found.

TABLE 3 Correlation (ρ) and normalized RMSE (NRMSE) results obtained
between the measured and estimated vGRF with the intra-participants using
the FNN-C7 and RF-C7 models.

Gait speed (km/h) ρ NRMSE

FNN-C7 1.5 0.9817 0.0483

2.5 0.9886 0.0399

3.5 0.9847 0.0449

4.5 0.9676 0.0651

RF-C7 1.5 0.9988 0.0118

2.5 0.9987 0.0127

3.5 0.9980 0.0155

4.5 0.9966 0.0210
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time. This makes sense since the values of angles, angular velocities,
and vertical acceleration can take the same value for different
instants of the gait cycle, but the vGRF takes different values.
Moreover, from the results, it also can be extracted that hip and
knee kinematics have a bigger importance than ankle kinematics.

We introduced that vertical acceleration is strongly related to the
vGRF. However, when the feature importance is calculated, we can
observe that vertical acceleration has a small influence on the model
training compared to the kinematics of the lower limbs. Despite the
vertical acceleration seems to have low relevance in the models, the
results suggest that this input could modify the performance of the
FNN and RF models (Figure 5; Table 1; Table 2). Although no
statistical differences were found, according to the validation and

test results represented in Figure 5, we can observe that the vertical
acceleration appears to improve the performance in the FNN and RF
models in terms of RMSE. By contrast, the RMSE obtained with the
FNN models when the vertical acceleration is included seems to
increase. Hence, it could be concluded that vertical acceleration is
not crucial to estimate the vGRF with the method proposed if we are
able to measure the lower limb kinematics, but it might help to
improve the performance of certain models.

In addition, when we compare the performance of the four models
trained (FNN-Kinematics, FNN-C7, RF-Kinematics, and RF-C7)
some differences can be observed in terms of RMSE. When we
employ the validation data (i.e., data from the intra-participants),
the RMSE obtained with the RF models (0.030–0.045 BW) is almost
half the RMSE of obtained with the FNN models (0.067–0.095 BW).
However, when we evaluate the models with the inter-participants,
these differences are not statistically significant, and we obtain similar
RMSE with the four models. It is usual to obtain an increase in the
error with inter-participant data, but the behavior of the RF models
might indicate that they tend to overfit more than the FNN models,
which is a known problem on algorithms based on decision trees
(Dietterich, 1995). Despite the overfitting, the results suggest that the
RF models achieve similar accuracy, with a global RMSE of 0.077 BW
for the RF-C7model, and 0.074 BW for the FNN-C7model, which are
the best FNN and RF models in terms of RMSE.

If we analyze further the FNN-C7 and the RF-C7, Table 4 shows
that the measured and estimated vGRF are strongly correlated for
both intra-participants and inter-participants. In the same manner, as
can be seen in the results obtained for RMSE, RF-C7 achieves higher
correlation coefficients than the one achieved by the FNN-C7 model
with the intra-participant data, but with the inter-participants, the

FIGURE 6
Epoch graphs with the measured and estimated vGRF (intra-participants and inter-participants) according to the cycle gait (%) for different gait
speeds. The median data value has been represented, and the values between the first and third quartiles have been colored. The first row collects the
measured vGRF, the second row the estimated vGRFwith the selected FNNmodel (Training 2, C7), and the third row the estimated vGRFwith the selected
RF model (Training 2, C7). The vGRF representations include all participant users (intra-participants and inter-participants).

TABLE 4 Correlation (ρ) and normalized RMSE (NRMSE) results obtained
between the measured and estimated vGRF with the inter-participants using
the FNN-C7 and RF-C7 models.

Gait speed (km/h) ρ NRMSE

FNN-C7 1.5 0.9777 0.0718

2.5 0.9876 0.0560

3.5 0.9859 0.0604

4.5 0.9705 0.0853

RF-C7 1.5 0.9776 0.0716

2.5 0.9797 0.0708

3.5 0.9797 0.0691

4.5 0.9746 0.0792
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FNN-C7 correlations are higher than the achieved by the RF-C7 for
gait speeds between 1.5 and 4.5 km/h. The NRMSE results show the
same behavior, where the FNN-C7 achieves higher errors than the RF-
C7 model. However, with the inter-participant data, the NRMSE for
2.5 and 3.5 km/h are lower with the FNN-C7, while the RF-C7 obtains
lower errors for 1.5 and 4.5 km/h.

The estimated vGRF signals shown in Figure 6 indicate that both
selected models can replicate the measured vGRF. It can be observed
that the FNN-C7 and the RF-C7 models can differentiate the cycle

gait phases, as the graphs show that they might estimate the
characteristic peaks and the swing phase (vGRF = 0 BW).

It must be noted that the magnitude and timing of the vGRF
peaks are important parameters to perform gait analysis. For this
reason, these peaks are deeply analyzed (Figure 7, Supplemental
Data). The RF-C7 model has shown a significantly higher accuracy
than the FNN-C7 model according to the magnitude errors in intra-
participant users for all the peaks at each gait speed. Nevertheless,
the errors of the peaks obtained with the inter-participants are
similar between both models. We must remark that the errors
obtained with the FNN-C7 in the LP at 1.5, 2.5, and 4.5 km/h,
and the TP at 1.5 and 2.5 km/h are lower with the inter-participant
data than the intra-participants. Although, it can be observed that
the errors obtained with RF-C7 for the inter-participants are higher
than the intra-participants for all the peaks and gait speeds. These
results would be in agreement with what was seen previously with
the RMSE and could be due to the overfitting of the RF models.

Concerning the timing errors of the vGRF peaks, the RF-C7
model presents a high accuracy in the timing prediction of the peaks
at all gait speeds with the intra-participant data, with a maximum lag
of 0.18% of the cycle gait. On the other hand, the FNN-C7 model
appears to make a larger error at the peak timing, especially in the
MP with mean delays up to 3.4%. The results obtained for the inter-
participants show larger delays and advances in the estimation of the
peaks with respect to the measured vGRF, specially with the RF-C7
model. We must mention that all the mean lags obtained with the
RF-C7 are greater than the FNN-C7 except for the MP peak at
1.5 and 2.5 km/h.

It must be highlighted that we can assume that both FNN-C7
and RF-C7 models are robust and they have good accuracy to
estimate the vGRF by using the kinematics of the lower limbs and
the vertical acceleration. This conclusion can be extracted since the
RMSE and ρ of our models are in a similar range to studies made by
other authors when the vGRF was estimated during gait. In (Oh
et al., 2013) the authors obtained an RMSE of around 0.066 BW and
ρ of 0.991 with intra-participants; in (Choi et al., 2013) the authors
obtained an RMSE of around 0.074 BW and ρ of 0.99 with intra-
participants; in (Jiang et al., 2020) the authors obtained an RMSE of
0.02 BW and ρ of 1.00 with intra-participants, and an RMSE of
0.10 BW and ρ of 0.97 with inter-participants. Despite the RF model
trained by Jiang et al. seems to achieve a higher accuracy than our
models with intra-participants, the results with inter-participants
suggest that our RF and FNN models achieve a lower RMSE and
higher ρ, so they would have a higher generalization than those
proposed by Jiang et al.

It should be noted that, although the FNN-C7 model and the
RF-C7 model achieve good accuracy compared to previous works,
the results show differences between them. First, the mean of the
RMSE obtained with the intra-participants is lower with the RF-C7
model, but the global RMSE achieved by the FNN-C7 is lower than
the RF models. However, the calculated ρ and NRMSE show that
coefficients and errors obtained are lower at 1.5 and 4.5 km/h with
the RF-C7, but lower at walking speeds of 2.5 and 3.5 km/h with the
FNN-C7. Finally, the mean magnitude errors of the characteristic
peaks show similar results for the inter-participants. Furthermore,
the FNN-C7 seems to achieve higher performance than the RF-C7 in
estimating the timing of the peaks. Therefore, based on these

FIGURE 7
Heatmaps with the vGRF peak errors for gait speeds of 1.5 km/h,
2.5 km/h, 3.5 km/h, and 4.5 km/h. (A) Mean magnitude errors of the
vGRF peaks (BW) (B) Mean delays of the vGRF peaks (%).
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differences, we could assume that the FNN-C7 model overcomes the
accuracy of the trained RF-C7 model.

5 Conclusion

This work aims to present a method to estimate the vGRF using
wearable IMUs. We used inertial sensors to estimate the kinematics
of the lower limbs and the vertical acceleration of the users,
which were employed to train two types of machine learning
models: Feedforward Neural Networks (FNN) and Random
Forest (RF).

The results show that the trained models have a big influence on
the temporal variable (cycle gait), followed by the hip, knee, and
ankle kinematics. The inclusion of vertical acceleration has a small
influence on the training of the FNN and RF models compared to
the rest of the inputs. However, the results suggest that the inclusion
of vertical acceleration can modify the performance of the model. In
the case of the FNN and RF models, the inclusion of this feature
appears to increase the performance.

Moreover, we can assume that the method proposed to estimate
the vGRF has good accuracy for biomechanical analysis, as the
estimate of vGRF, including its peaks, is in a similar range of
accuracy to that reported in other studies, and even the results
suggest that a smaller error is obtained in the estimation of VGRF.
Furthermore, the RMSE, ρ, and the errors in the characteristic peaks
suggest that the FNN-C7 model achieves the highest accuracy of the
trained machine learning models.
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