
Nanomaterials against
intracellular bacterial infection:
from drug delivery to intrinsic
biofunction

Yinglu Chen1,2†, Xiaoheng He3†, Qiuhong Chen1, Yi He4,
Fangman Chen5, Chao Yang1* and Liang Wang1*
1Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of
Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases,
The Third Affiliated Hospital, Southern Medical University, Guangzhou, China, 2School of Biology and
Biological Engineering, South China University of Technology, Guangzhou, China, 3Department of
Applied Chemistry, Xi’an University of Technology, Xi’an, China, 4Department of Rheumatology and
Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China, 5State Key
Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of
Macau, Macau, Macau SAR, China

Fighting intracellular bacteria with strong antibiotics evading remains a long-
standing challenge. Responding to and regulating the infectious
microenvironment is crucial for treating intracellular infections. Sophisticated
nanomaterials with unique physicochemical properties exhibit great potential
for precise drug delivery towards infection sites, along with modulating
infectious microenvironment via their instinct bioactivity. In this review, we first
identify the key characters and therapeutic targets of intracellular infection
microenvironment. Next, we illustrate how the nanomaterials physicochemical
properties, such as size, charge, shape and functionalization affect the interaction
between nanomaterials, cells and bacteria. We also introduce the recent progress
of nanomaterial-based targeted delivery and controlled release of antibiotics in
intracellular infection microenvironment. Notably, we highlight the nanomaterials
with unique intrinsic properties, such as metal toxicity and enzyme-like activity for
the treatment of intracellular bacteria. Finally, we discuss the opportunities and
challenges of bioactive nanomaterials in addressing intracellular infections.
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1 Introduction

In the territory of infectious disease, chronic and persistent infections caused by
intracellular bacteria pose a thorny threat to public health (Kamaruzzaman et al., 2017).
In these contexts, pathogens such as Staphylococcus aureus (S. aureus), Mycobacterium
tuberculosis (M. tuberculosis), Salmonella and Listeria are able to nestle in professional
phagocytic cells, particularly macrophages, which not only shield them from the host
immune system’s eradication but also from antibacterial agents. The most prominent
intracellular infections in clinic are associated with M. tuberculosis, which can require
prolonged and substantial antibiotic treatments. Over extended periods, intracellular
bacteria can act as a ‘Trojan horse’, resulting in a secondary relapsing infection
primarily due to their ability to survive and multiply rapidly within host cells. This
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category includes obligate intracellular bacteria that can reproduce
both inside and outside their cellular hosts, as well as facultative
intracellular bacteria that depend on host cells for their reproduction
(Briones et al., 2008).

To date, various families of antibiotics, such as rifampin,
isoniazid, and linezolid, are commonly used in clinical settings to
treat intracellular bacterial infections. However, these antibiotics are
often ineffective in completely eradicating intracellular pathogens.
This difficulty in treating intracellular infections is largely due to two
factors: the inability of sufficient antibiotics to penetrate infected
cells, and the various mechanisms by which bacteria can escape host
cells. On the one hand, many antibiotics are hydrophilic and have
poor intracellular permeability, which limits their effectiveness in
treating intracellular infections. On the other hand, even antibiotics
are able to diffuse into cells, they may be inactivated by several
factors within cells, such as degradation by acidic, redox, or multi-
enzymatic microenvironment, or discharge by efflux pumps
(Wright, 2005). Accordingly, the restricted cellular penetration
and intracellular instability of antibiotics cause sub-therapeutic
concentrations within cells, resulting in the failure of anti-
intracellular bacteria and the long-lasting persistence of pathogens.

Phagocytic systems are not only capable of killing invading
pathogens, but also acting as a natural shield in some cases,
preventing bacteria from being eliminated by antibiotics.
However, intracellular bacteria develop some mechanisms to
evade the innate immune response. These mechanisms include
escaping from endosomal/lysosomal/phagolysosomal
compartments to the cytoplasm, preventing the fusion of
phagosomes and lysosomes, or developing resistance to the
bactericidal microenvironments found in lysosomes/
phagolysosomes. For instance, Salmonella enterica is usually
located in late endosomes (Brouillette et al., 2003), while
Mycobacterium tuberculosis, the typical intracellular bacterium,
survives within phagosomes (Peng et al., 2016). This leads to
those antibiotics that can penetrate the cell membranes are
unable to eliminate evasive M. tuberculosis due to their failure to
concentrate in phagosomes (Onyeji et al., 1994). Taken together,
bacteria with different escape mechanisms survive in distinct cell
compartments, making it difficult for antibiotics to locate within the
appropriate compartments and resulting in inactive antibacterial
effects.

Compared with the deficiency of traditional antibiotics against
intracellular bacteria, targeted drug delivery systems show
promising potentials for the management of intracellular
infections through improving the cellular uptake and distribution
of antibiotics. With the advances in nanotechnology, a wide variety
of nanomaterials have been designed for controlled delivery of anti-
bacterial agents, achievingmaximal therapeutic efficiency along with
minimizing potential adverse effects. Furthermore, the unique
intracellular microenvironment at infected sites, with a low pH,
redox potential, abundant H2O2, bacterial and cellular enzymes, can
serve as responsive stimulus to realize spatiotemporal drug release of
nanomaterials. Thus, exploring sophisticated nanomaterials with
unique bioactivities in response to the factors or cues of intracellular
microenvironment offers great potentials in eliciting specific
responses and functions to kill intracellular bacteria. In these
contexts, a deep understanding of the interactions between cells,
intracellular bacteria and nanomaterials may provide guidance to

develop intelligent nanomaterials with precise environmental
responsiveness for efficient and safe management of intracellular
infections.

In this review, we identify the key characters and therapeutic
targets of intracellular infection microenvironment. We illustrate
how the nanomaterials physicochemical properties, such as size,
charge, shape and surface functionalization affect the interaction
between nanomaterials, cells and bacteria. We introduce the recent
progress of nanomaterial-based targeted delivery and controlled
release of antibiotics in intracellular infection microenvironment.
We highlight the nanomaterials with unique intrinsic properties,
such as metal toxicity and enzyme-like activity for the treatment of
intracellular bacteria (Figure 1). We discuss the opportunities and
challenges of bioactive nanomaterials in addressing intracellular
infections.

2 Intracellular bacteria and
microenvironment

2.1 Host bactericidal mechanisms

When pathogens invade, macrophages, as one of the major
immune cells, fight against infection by expressing a series of
receptors to trigger innate immunity. This surveillance
recognition is achieved through sensors called pattern recognition
receptors (PRRs) that detect pathogen-associated molecular patterns
(PAMPs) and damage-related molecular patterns (DAMPs)
(Plüddemann et al., 2011; Broz and Monack, 2013). After the
detection of pathogens, phagocytosis plays an essential role in
anti-bacterial host defense, which is mainly manifested by the
effective internalization of pathogens. In such a conversion, the
engulfment of pathogens by macrophages and a series of sequent
membrane remodeling leads to the formation of a membrane-bound
vesicle named phagosome. Following the internalization, it is a
clearance process in which the phagosome acquires bactericidal
and degradative functions termed phagosomal maturation. At the
terminal stage of its maturation, the microenvironment of the
phagosome becomes highly acidic, degradative, and oxidative,
which all contribute to clearing the invaded pathogens. The low
pH in phagosomes is related to the progressive acidification within
the vacuole, which is realized by the V-ATPase-mediated proton
pump (Flannagan et al., 2009). Meanwhile, this acidic condition
favors the subsequent formation of phagolysosomes and optimal
enzymatic activity of hydrolases in lysosomes.

Another mechanism to kill bacteria is the delivery of molecules
with degradative functions, such as defensins, cathelicidins,
lysozyme and hydrolases, into phagosomes. Defensins are able to
permeabilize bacteria membranes due to the formation of ion
transport channels. Cathelicidins, on the other hand, induce
permeabilization acting on the cell wall as well as both the outer
and inner membranes of bacteria. In addition, hydrolases targeting
carbohydrates and lipids also exist in phagosomes, which degrade a
wide range of invading bacterial components (Flannagan et al.,
2009).

Phagocytes could also act through a large amount of reactive
oxygen species (ROS) and reactive nitrogen species (RNS) produced
by the NOX2 NADPH oxidase (Quinn and Gauss, 2004; Minakami
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and Sumimoto, 2006) and NOS2 nitric oxide synthase (Fang, 2004).
The transfer of electrons from NADPH to molecular oxygen results
in the formation of superoxide radicals (O2·−), which are released
into phagosomes (Quinn and Gauss, 2004; Mizushima et al., 2011).
After that, O2·− in phagosomes react with H2O2 to produce hydroxyl
radicals (·OH) and singlet oxygen (1O2) (Minakami and Sumimoto,
2006). It is worth noting that the fusion of the lysosomes and
vacuoles leads to partial disruption of the membrane connection,
releasing the contents, such as myeloperoxidase, into the
phagosomes. Myeloperoxidase within the phagosomes can
catalyze abundant H2O2 and halogen ions to highly bactericide
hypochlorous acid (HClO) and chloramines (Thomas, 1979;
Shepherd, 1986). RNS is also essential antimicrobial effectors,
which reacts with ROS to destroy pathogens, causing nitrosative
stress. The production of RNS starts with NOS catalyzing L-arginine
and citrulline to produce nitric oxide (NO), which begins with
superoxide to form peroxynitrite (ONOO−), which is a highly
reactive species that can directly act with several biological
targets and cell components, including lipids, amino acid
residues, and DNA bases (Webb et al., 2001). Besides,
peroxynitrite also has the ability to get across cell membranes to
some subcompartments like phagosomes through anion channel
(Fang, 2004).

Accordingly, those produced free radicals and oxidation-state
components contribute to protein denaturation and lipid
peroxidation by oxidative damage, which leads to irreversible
damage to the invading bacteria (Boyle and Randow, 2013). This
natural defense process provides ideas for biomimetic strategies to
eliminate intracellular bacteria.

2.2 Bacterial defensive mechanisms

Unlike extracellular bacteria, intracellular bacteria that can
survive and replicate in host cells, especially macrophages, adapt
to challenging intracellular microenvironment and evolve intelligent
mechanisms to evade host clearance. Those intracellular bacteria are
typically divided into two categories: phagosomal and cytosolic
bacteria. Most intracellular bacteria studied to date are stored in
phagosomes. In detail, the phagosomes provide a safe haven for
bacteria, shielding them from immune system detection, and
facilitating their replication using the components within the
phagosomes (Cullinane et al., 2008; Lamkanfi and Dixit, 2010).
Alternatively, cytosolic bacteria benefit from rich nutrient
conditions and a relatively spacious microenvironment, enabling
them to survive in the host cell cytoplasm despite the presence of
immune defenses. In general, treatments that can eliminate bacteria
in phagosomes can also act on cytosolic bacteria. It is much thornier
to treat phagosome bacteria than cytosolic ones, so our review focus
on phagosome bacteria.

Survival of intracellular bacteria presents three main challenges:
evading immune system surveillance, resisting the
microenvironment, and evading the phagolysosomal pathway.
Numerous strategies, including actin-based cell-to-cell spread,
low expression of flagellin, avoidance, blockage and adaptation to
the phagolysosomal pathway, are utilized by intracellular pathogens.

Different species of bacteria have their own intracellular
lifestyles. The majority of phagosome bacteria have abilities to

prevent phagosomes maturation, the terminal stage before
lysosomes fusion (Ray et al., 2009). For instance, some bacteria
have evolved metabolic pathways to prevent acidification in
phagosomes, or express specific proteins to withstand low
pH microenvironment (Park et al., 1996; Vandal et al., 2008;
Huang et al., 2009; Martinez et al., 2011). In addition, some
bacteria are able to express detoxifying enzymes (Schmidtchen
et al., 2002) like catalase or superoxide dismutase to balance
ROS/RNS levels within phagosomes (John et al., 2001; Ng et al.,
2004), or interfere with the biological function of enzymes that
catalyze ROS/RNS production (Mott et al., 2002). As a result,
bacteria protect themselves from being destroyed and eliminated
by ROS/RNS (Rudel et al., 2010; Ashida et al., 2011).

Other bacteria escape into the cytoplasm, which constitutes a
wild and favorable microenvironment, through sophisticated
mechanisms, such as escaping from vesicles, and permeabilizing
phagosomes. For those bacteria, it is essential to escape the
phagosome subcompartments as early as possible after
internalization to avoid fusion with lysosomes. In this process,
protein secretion plays a key role in allowing bacteria to cross
the cytoplasmic membranes, cell walls, vacuole and host cell
membranes, to achieve both intracellular vacuole spread and cell-
to-cell spread. Among them, the four major protein secretion
ssystems are the type III secretion system (T3SS) (Cornelis,
2006), type IV secretion systems (T4SSs) (Vogel et al., 1998;
Christie and Cascales, 2005), type VI secretion systems (T6SSs)
(Coulthurst, 2013; Kudryashev et al., 2015) and type VII secretion
system (T7SS) (Abdallah et al., 2007), which hold the potential to
serve as inhibitory targets for treatment design.

With these findings in mind, a comprehensive understanding of
the mechanisms by which intracellular pathogens evade host cells
and respond to the innate immune systems are critical to elucidate
the pathogenesis of intracellular infections. Moreover, systematically
deciphering the interactions between host cells and intracellular
pathogens may provide clues for designing advanced
nanotherapeutics against intracellular infections.

3 Interactions between bacteria, cells,
and nanomaterials

As discussed above, most intracellular bacteria spend their
whole lifestyles within phagosomes. Internalization and
phagosomal maturation are essential to keep phagocytosis
effective. After being detected and taken up by phagocytes,
bacteria undergo a series of membrane fusions and interactions,
resulting in their entrapments in sub-compartments such as
phagosomes or vacuoles. However, since bacteria may be located
in different phagosomes, tailored designed nanomaterials against
intracellular pathogens require coexisting in the same
compartments. Therefore, a deep understanding of the
interactions among bacteria, phagocyte cells, and nanomaterials
is essential for the principle of material design.

Different nanomaterials may be located in different sites relative
to cells, such as the inner or outer cell membranes, and can influence
cell proliferation, apoptosis, and migration. Therefore,
understanding the relevant parameters in nanomaterials
interactions with cell membranes is essential in regulating
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nanomaterials internalization. Nanomaterials can be internalized
into cells via phagocytosis, diffusion, and fluid phase endocytosis
(He et al., 2009). The endocytosis refers to the process by which the
plasma membrane invaginates and forms vesicles, thereby
transporting extracellular compositions into cells. It is categorized
into four major types, including clathrin/caveolae-dependent
endocytosis, phagocytosis, pinocytosis, and macropinocytosis
(Doherty and McMahon, 2009; Howes et al., 2010; Sahay et al.,
2010; Sandvig et al., 2011). Most nanoparticles enter cells through
endocytosis, while relatively few enter via other mechanisms. Several
factors, including size, shape, surface charge and functionalization,
have influence on the uptake of materials by cells.

3.1 Size-dependent cellular uptake

Unlike non-phagocytes, which tend to engulf spherical
nanoparticles in the 20–50 nm range, phagocytes preferentially
take up micro scale particles (González et al., 1996; Champion
et al., 2008; Jiang et al., 2008). Experimental results for silver
nanoparticles have shown that well-dispersed 20–200 nm
particles were internalized better by non-phagocytes than
phagocytes (Lankoff et al., 2012), whereas aggregated silver
particles were more likely to be internalized by phagocytes
(Wang et al., 2012). The same phenomenon has been found
for smaller nanoparticles like iron oxide particles, where small
iron oxide particles exhibited a higher level of phagocytic
accumulation than ultra-small particle size particles (Raynal
et al., 2004).

This difference in internalization may be attributed to the
influence of size on internalization pathways. Normally ultra-
small particles are not recognized as exogenous agents by
macrophages and can enter directly into cells based on pores in
the cell membranes, whereas microscale particles are more likely to
be absorbed by the reticuloendothelial system. Besides, smaller sizes
possess larger surface areas, which contributes to particles diffuse
into cells. When the diameter of the nanospheres is less than
200 nm, their penetration is mainly regulated by the clathrin
pathway, but when the size increases to 500 nm, their
internalization is mainly mediated by caveolae pathway (Rejman
et al., 2004). The effect of size is also significant in the uptake of
different sized anionic polystyrene particles, with smaller particles
being taken up mainly through clathrin-independent cavelae-
independent pathways, while larger particles are uptaken via
clathrin-mediated endocytosis (Lai et al., 2007). This distinction
can be explained by the fact that the clathrin-mediated pathway has
a higher uptake rate than clathrin-independent cavelae-independent
pathways, resulting in particles internalized through this pathway
exhibiting faster accumulation within cells.

3.2 Charge-dependent cellular uptake

Surface charges also play a key role in cellular uptake. It is mainly
manifested in the fact that the neutral surface charge nanomaterials
have a lower plasma protein adsorption rate, accompanied by a
longer blood circulation time, which results in a higher cell uptake
due to a longer margin from the phagocytes.

Positively charged nanomaterials bind to negatively charged cell
membranes through electrostatic interactions (Tahara et al., 2009;
Duceppe and Tabrizian, 2010). A mass of works has demonstrated
that positively charged particles were internalized into cells at a
higher degree than their respective anionic particles, such as gold
and silver particles, iron oxide particles, silicon dioxide, chitosan,
liposome, and polymers. Besides, for negatively charged
nanomaterials, the internalization decreases with increasing
surface charge, while positively ones, on the contrary, performs a
positive correlation with a certain range of surface charge.
Surprisingly, a representative example is antibacterial silver
nanoparticles coated with chitosan (CS-AgNPs) with enhanced
antibacterial effect (Jena et al., 2012). The designed CS-AgNPs
exhibited a significantly improved therapeutic effect on
intracellular bacteria mainly due to their strong cell internalization.

Several other researches have shown some contradictory results,
which might contribute to negatively charged nanoparticles can
promote cellular uptake via regulating the formation of aggregation
and cluster after initial electrostatic repulsion. Taking the uptake of
liposome with different surface charges as an example, a negatively
charged PLGA-lipid hybrid system performed better uptake
behavior compared to a positively charged system (Maghrebi
et al., 2020). Another hypothesis is that bacterial surfaces also
present a negative charge, and phagocytes may preferentially take
up anionic particles (Fröhlich, 2012). Moreover, some surface
groups with negative charges, such as citrate groups, can improve
the stability of nanoparticles in culture media and increase their
affinity for cell membranes (Kolosnjaj-Tabi et al., 2013).

3.3 Shape-dependent cellular uptake

Shape is another important factor influencing the internalization
of nanomaterials, especially when endocytosis pathways of
nanomaterials need to be mediated by receptors. Although the
surface area of rod-shaped nanomaterials is smaller than that of
spherical particles, the limited binding sites on its surface can more
efficiently recognize and bind to target cell surface receptors due to
its aspect ratio. This allows rod-shaped nanomaterials to exhibit
higher cell adhesion efficiency than spherical ones (Kolosnjaj-Tabi
et al., 2013; Shao et al., 2017). On the other hand, nanomaterials with
sharp shapes such as spines are able to locate in the cytoplasm due to
their better ability to penetrate membranes, which enables them to
remain in cells benefiting from low exocytosis (Chu et al., 2014).

3.4 Surface functionalization-dependent
cellular uptake

Surface functionalization of nanomaterials not only regulates
surface charge, but also improves properties such as hydrophobicity
and softness. The most common strategy is surface polyethylene
glycolation (PEGylation), which is mainly used to reduce the
hydrophobicity of nanomaterials and alter their biological
characteristics. PEGylation forms a hydrated layer that reduces
the adsorption of serum proteins, increases the hydrophilicity,
and reduces macrophage uptake, which is often referred to the
“stealth effect” (Figures 2A, B) (Yang et al., 2014; Sanchez et al.,
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2017). Additionally, the difference in uptake may also be related to
the change in particle softness by functionalized modification, where
softer particles are more likely to be taken up by macrophages.
Surface functionalization also enables active targeting of

nanomaterials. For example, nanoparticles modified with
polysaccharides could interact with specific receptors on cell
membranes, resulting in active targeting for more precise
internalization. Surface arginine-modified mesoporous silica
nanoparticle (MSN) was able to co-localize with intracellular
Salmonella, leading to efficient antibiotic delivery (Figures 2C–E)
(Mudakavi et al., 2017).

4 Nanoparticulate materials against
intracellular bacteria

Due to the particularity of intracellular bacteria, three subjects,
cells, bacteria and nanomaterials included, should be taken into
consideration at the same time for nano-therapy design. For
instance, positively charged materials have a higher likelihood of
being taken up by cells and can also bind to negatively charged
bacterial surfaces through electrostatic interactions. Yang et al.
utilized this strategy by designing surface cation-targeted peptide-
modified MSN to deliver gentamicin, and the results proved the

ability of nanoparticles to specifically target S. aureus and internalize
into RAW 264.7 cells, indicating potentials for fighting against
intracellular infections (Yang et al., 2018). Similarly, Maya et al.
developed o-carboxymethyl-coated chitosan to achieve tetracycline

FIGURE 1
Schematic of interactions between cells, intracellular bacteria
and nanomaterials during employing multifunctional nanomaterials
against intracellular infections.

FIGURE 2
(A,B) Internalization probability of PEG functionalized nanoparticles with various grafting densities by differentiated human THP-1 cells. (C)
Schematic illustration of the surface arginine-modifiedMSN co-localizedwith intracellular Salmonella, resulting in efficient antibiotic delivery. (D)Cellular
trafficking and mechanism of endocytosis of Arg-MSN in RAW 264.7 cells. (E) Cellular uptake of Arg-MSN particles in the presence of pharmacological
inhibitors of endocytosis. Reproduced with permission from Yang et al. (2014) (Copyright 2014 American Chemical Society) and Mudakavi et al.
(2017).
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targeted delivery to the infectious sites of intracellular S. aureus
(Maya et al., 2012).

Currently, the strategies of targeting infected cells involve non-
specific electrostatic interactions and specific receptor-ligand
interactions, the most representative of which are mannose
receptor, CD44 receptor, tuftsin receptor, and hyaluronic acid
ligand. On the other hand, direct targeting of bacteria is mainly
achieved through non-specific electrostatic interactions, ligand-
receptor recognition, and antigen-antibody specific binding.

4.1 Nanocarriers

According to the above discussion, bacteria invade cells and locate
in different sub-compartments, making it crucial for nanotherapeutics
to deliver antibiotics in on-demand manner. This approach can
improve treatment efficacy and reduce toxicity to normal tissues.
Furthermore, bacterial invasion creates a unique infection
microenvironment characterized by low pH, related enzyme
secretion, and slight temperature changes. These conditions can be
leveraged as stimulus to achieve drug targeting and release.

4.1.1 pH-responsive release
Progressive acidification of phagosomes and the acidic

microenvironment of lysosomes are the most common stimulus for
antibiotic release (Ninan et al., 2016; Pei et al., 2017; Pei et al., 2017; Lu
et al., 2018; Qu et al., 2018; Su et al., 2018; Mohebali and Abdouss, 2020;
Wang et al., 2020). Platensimycin (PTM), a promising natural product

drug, was designed to be loaded in pH responsive release polymers,
which demonstrate significantly reduce residual methicillin-resistant
Staphylococcus aureus (MRSA) in macrophage cells (Figures 3A–C).
Antituberculosis drug-loadedMSNs equipped with a pH-sensitive valve
(β-cyclodextrin) were constructed to optimize loading and achieve
specific intracellular delivery of drug for the treatment of
tuberculosis (TB) (Clemens et al., 2012). Greater therapeutic efficacy
was achieved which may be attributed to the fact that it can only be
released in acidified phagosomal conditions. Other drug delivery
systems (DDS) were synthesized to realize cascade release of
rifampicin after Schiff base cleavage in acidic phagolysosome
(Figures 3D–F) (Feng et al., 2022). This DDS in a cascade manner
performed outstanding targeting and killing activity against MRSA
inside macrophages. In addition, some nanomaterials with tailored
surface charge have been prepared. This particular type of nanoparticles
typically perform positive surface charges only under acidic conditions,
which allows them to better cross the cell membranes and bind to
bacteria with negatively charged surfaces. In such a scenario,
nanomaterials not only exhibit efficient internalization, but also have
lower toxicity to normal cells. This is because cationic particles are more
likely to cause hemolysis and cytotoxicity, which can lead to lysosomal
and mitochondrial damage and cell membranes destruction.

4.1.2 Enzymes-responsive release
As mentioned earlier, during the process of phagosomes

maturation, various enzymes like lipase (Jaeger et al., 1994; Jaeger
and Reetz, 1998), phosphatase or phospholipase (DeVinney et al.,
2000) are secreted and recruited into phagosomes. Accordingly,

FIGURE 3
(A) Schematic illustration of PTM-loaded liposomes and micelles with pH-responsive release demonstrating a notably high antibacterial efficacy.
(B,C) The pH-dependent release characteristics. (D) Schematic illustration of pH-triggered cascade release of rifampicin from DDS to eliminate
intracellular MRSA. (E) The pH-sensitive release profile of DDS. (F) The intracellular bactericidal effect of different treatments. Reproduced with
permission from Wang et al. (2020) (Copyright 2020 American Chemical Society) and Feng et al. (2022).
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these cellular enzymes (Alkekhia et al., 2022), bacterial enzymes
(Sunnapu et al., 2022) and bacterium-secreted toxins (Figures 4A, B)
(Yang et al., 2018) can also be used as stimulators for corresponding
release. Peng et al. (2020) provided a practicable strategy to realize
intracellular rapid release of antibiotics triggered by both enzymes
and acid, thus promoting efficiency against intracellular infections.
A rationally designed polymer, which was able to be degraded by
bacterial lipase, significantly increased intracellular concentration of
ciprofloxacin, thereby enhancing its therapeutic efficacy.

In addition, some nanogels were designed to respond to
enzymes (Chen et al., 2020). Xiong et al. prepared two different
feasible nanogels, a triple-layered polymer nanogel (Figures 4C–E)
(Xiong et al., 2012a) and a core-shell mannose-modified nanogel
(Xiong et al., 2012b), to inhibit the growth of intracellular S. aureus.
In two systems, bacteria-secreting lipase and phosphatase or
phospholipase were acted as triggers to release antibiotics,
respectively.

4.1.3 Redox-responsive release
Nanomaterials that can respond to the redox environment could

be a potential therapeutic strategy for the treatment of intracellular
infections. A functionalized MSN was used to selectively release
drugs intracellularly in response to the GSH/GSSG species (reduced
glutathione/oxidized glutathione disulfide), which were commonly
found intracellularly (Figures 4F, G) (Lee et al., 2016). The reducing
microenvironment can also be utilized to break the disulfide bonds
of red blood cell (RBC) nanogels, resulting in the rapid release of
antibiotics (Zhang et al., 2017).

4.2 Bioactive nanomaterials

Beyond the application as drug delivery carriers, some
nanomaterials with intrinsic antimicrobial bioactivities have
recently shown promising aspects for potential clinical
applications against intracellular bacteria.

4.2.1 Metal ion-based nanobactericides
Given that metals are traditionally used as drug delivery carriers,

recent studies have also shown that some biomaterials with intrinsic
antimicrobial bioactivity hold promise against intracellular
infections. For example, gold nanomaterials can reduce the
attachment of tRNA to ribosome units, decrease membrane
viability and cause bacterial death. Copper ions can inhibit
bacterial DNA replication and induce bacterial death through
ROS production and lipid peroxidation. The release of metal
ions, such as Ag+, Cu2+, and Fe2+, also can enhance the
antibacterial effect. For instance, ZnO has the ability to inhibit
the formation of biofilms and catalyze the production of ROS.
Besides, the release of Zn2+ can also increase the permeability
and degradability of membranes.

The most widely used metal for antibacterial activity is silver,
which exerts its effects through a variety of mechanisms, such as
lipid peroxidation, ROS generation, interference with cell wall
synthesis, and increasing membrane permeability. Besides, Ag+

hydrolyzes bacterial macromolecules by driving the generation of
hydroxyl radicals. Aurore et al. (2018) designed Ag-NPs with
synergistic antimicrobial effects against S. aureus in human

FIGURE 4
(A) Schematics of Gen@MSN-LU, in which the outer layer of liposomes can be degraded by the bacterium-secreted toxins, resulting in the Gen
release. (B) The release profile of Gen from Gen@MSN-LU in different treatments (A control; B in the presence of S. aureus; C with lipase; D with lipase
inhibitors in the presence of S. aureus). (C) Schematics of bacterial lipase triggered release of vancomycin to treat the bacterial infections. (D,E)
Cumulative release of vancomycin from vancomycin-loaded TLN in different treatments. (F,G) The behavior of the redox-triggered release of
Moxifloxacin. Reproduced with permission from Yang et al. (2018) (Copyright 2018 American Chemical Society), Xiong et al. (2012a) (Copyright
2012 American Chemical Society), and Lee et al. (2016).
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osteoclasts. The promoted bactericidal activity not only came
from the direct toxicity of silver itself but also from the ROS
production in osteoclasts induced by Ag-NPs. Taken together,
these surprising results indicate that silver nanoparticles can be
used as an effective treatment for chronic long-term infections
caused by intracellular bacteria, where conventional antibiotics
are difficult to achieve equivalent therapeutic effects to their
extracellular effects.

Ferrous ions are another type of metal ions that have shown
great promise in terms of their antimicrobial biological activity, as
they play a critical role in ferroptosis. In a recent study by Shen et al.,
discovered a multi-nanomaterials combined with ferrous iron and
polysulfide (Fe(II)Snaq) (Figure 5A) (Shen et al., 2020). The
nanomaterials were found to be effective in killing both
extracellular and intracellular bacteria, while only having slight
toxicity towards host cells. In this system, the sulfur atoms were
replaced by oxygen atoms to trigger the release of polysulfides and
iron. The collaborative function depended on both ferrous iron and
polysulfide. Ferrous irons were able to trigger lipid peroxidation and
depress the respiratory chain, which induced ferroptosis-like death
within bacteria. At the same time, polysulfide species prevented
oxidation of ferrous ions, and demonstrated the ability to oxidize

glutathione into GSSG, following with GSH depletion, which leads
to DNA degradation and bacteria death.

4.2.2 Nanozymes
The natural process of scavenging pathogens by macrophages

involves converting a large amount of hydrogen peroxide in
phagosomes into more toxic ROS, catalyzed by enzymes such as
oxidase, myeloperoxidase, lipid peroxidase, and other peroxidases.
Inspired by this process, there are increased efforts devoted to build
artificial enzymes with natural enzyme-like activity to combat
extracellular bacteria. Based on their own instinct oxidase
enzyme activity, nanozymes can provide various bactericidal
ROS, including singlet oxygen, superoxide anion, hypochlorous
acid and other oxidation-state components with non- or low-
toxic substrates. These excess ROS are capable of damaging
bacterial DNA, protein, or nucleic acid, along with breaking cell
membranes. Nevertheless, development of nanozymes for efficient
production of ROS against intracellular bacteria remains a
significant challenge. With these findings in mind, the integration
of ROS production and antibiotic delivery may be a promising
strategy for efficient elimination both intracellular and extracellular
pathogens, especially towards phagosomal bacteria.

FIGURE 5
(A) Schematic illustration of the bioactive nanoparticles with collaborative bactericidal function depends on both ferrous iron and polysulfide. (B)
Schematic illustration of the bacteriostatic effects of IONzymes with enzymes-like activity and mechanism responsible for the antibacterial activity. (C)
Schematic illustration of the peptide-chlorophyll-based photodynamic therapy (PDT) agents to enhance the PDT effect and active targeting property to
eliminate intracellular infections. (D) Confocal images of intracellular ROS production by MPepP18(Cu

2+) in S. aureus infected macrophage. (E)
Schematic illustration of the biodegradable multi-metallic particles (MMPs), containing Ag NPs and ZnO NPs, and its pulmonary delivery of anti-
tuberculous drugs to the endosomal system ofM.tb-infected macrophages. (F)MMPs embedded with Ag NPs and ZnO NPs within the endosome of an
M.tb-infected alveolar macrophage. Reproduced with permission from Shen et al. (2020); Shi et al. (2018); Cai et al. (2018) (Copyright 2018 American
Chemical Society) and Ellis et al. (2018).
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Peroxidase is a series of enzymes that catalyze the substrates like
hydrogen peroxide into hydroxyl radicals, which are essential in
defending pathogens. Presently, enormous nanomaterials have been
reported to exhibit the peroxidase-like catalytic activity, includingmetal,
metal sulfide, metal oxide, metal organic frameworks, inorganic
materials, and carbon-based materials. Shi et al. designed an iron
oxide nanozyme (IONzymes) that can destroy structures, inhibit
multiplication, and ultimately cause death of intracellular bacterial
(Figure 5B) (Shi et al., 2018). In this work, IONzymes were able to
co-localize with intracellular S. enteritidis in autophagic vacuoles and
regulate ROS levels within acid vacuoles. Moreover, the increasing ROS
levels suppressed the survival and reproduction of those pathogens
hiding in Leghorn Male Hepatoma-derived cells (LMH).

Oxidases are the major enzymes in peroxisomes, accounting for
almost half of the total ones. Generally, the catalytic process of
oxidases requires the participation of oxygen, followed by the
generation of superoxide anions (Wu et al., 2019). Therefore,
nanozymes with oxidase-mimic activity can also be utilized as
anti-bacterial materials. Haloperoxidase is another typical
category of peroxidase in nature, divided into three subtypes:
chloroperoxidase, bromoperoxidase, and iodoperoxidase (ten
Brink et al., 2000). Particularly, haloperoxidase can catalyze
halide ions in the physiologic environment to hypohalous acid in
the presence of acidic and hydrogen peroxide (Hu et al., 2018).
Hypohalous acid is a strong oxidizing agent, which can effectively
damage bacterial structure (Butler, 1999). Accordingly,
haloperoxidase-like nanozymes also have the promising potential
for eliminating intracellular bacteria.

Collectively, a vast array of nanozymes present bi-enzymatic and
even tri-enzymatic synergism activities, making it preferable to
design them as functional components of composite materials.

4.2.3 Photo-active nanomaterials
Photodynamic therapy (PDT) is a method of using photosensitizers

remaining in cells to produce singlet oxygen and free radicals to
chemically eliminate bacteria. Some biomaterials with PDT effects are
used for their active targeting properties to eliminate intracellular
infections. Cai et al. (2018) presented a PDT-based strategy to clear
S. aureus inside macrophages (Figures 5C, D). The dimer coated with
peptide−chlorophyll was enabled to active targeting of macrophages,
which can generate abundant ROS in infected macrophages with the
laser, resulting in high-efficiency photodynamic elimination. This design
demonstrated the potential of photodynamic and photothermal effects in
intracellular bacterial clearance.

4.3 Multifunctional nanomaterials

From above mentioned findings, these bioactive nanomaterials
can serve as alternative treatments to traditional antibiotics due to
their multiple mechanisms involving intrinsic enzyme-mimic
activities, metal toxicity, or physicochemical properties, making
them less prone to cause antibiotic resistance. To achieve more
efficient synergistic antibacterial effects, researchers are exploring
the application of multifunctional nanomaterials integrating the
functions of delivery with antibacterial activities (Chang et al.,
2017a; Chang et al., 2017b; Lu et al., 2017; Lu et al., 2018; Zhang
et al., 2020; Huo et al., 2021; Li et al., 2021; Liu et al., 2021).

Dube et al. presented nanoparticles with chitosan-functionalized
shells and PLGA cores for the treatment of tuberculosis (Dube et al.,
2014). This rationally designed nanoparticle showed a collaborative
function between stimulation of ROS/RNS and delivery of
rifampicin. In this case, the combined nanoparticles can not only
regulate ROS/RNS levels but also modulate pro-inflammatory
cytokine secretion. Meanwhile, it acted as a vehicle to transfer
rifampicin inside alveolar macrophages. Similarly, Marwa et al.
prepared Ag-coated PLGA particles loaded with pexiganan,
which exhibited coordinated antibacterial functions, and were
specifically uptaken by macrophages, but not by any non-
phagocytic cells (Elnaggar et al., 2020). Additionally, Timothy
et al. established composite materials containing Ag and ZnO for
the targeted delivery of rifampicin (Figures 5E, F) (Ellis et al., 2018).
The sophisticated nanoplatforms were developed to destabilize
membranes, increase permeabilization of intracellular
Mycobacterium tuberculosis and enhance penetration of
rifampicin. As a result, multifunctional nanomaterials presented
extraordinary bactericidal effects compared to free antibiotics.

5 Conclusion and future perspectives

Nanomaterials can enhance preferential accumulation and
controlled release of bactericides within pathogens-infected host
cells, resulting in increased therapeutic efficiency and reduced
potential adverse effects. Size plays a crucial role in the ability of
nanomaterial to permeate cells and reach the therapeutic
concentration. Positively charged nanomaterials perform excellent
interactions with negative-surface bacteria. Moreover, surface-
functionalized nanomaterials with special ligands are conducive to
an improving targeting of the infected cells. Responsive release at the
diseased site can be triggered via pH, enzymes, and redox
microenvironment. Beyond providing on-demand delivery of
antibiotics, nanomaterials with intrinsic bioactivities, such as metal
toxicity, enzyme-like activity and physicochemical properties also
show promising potential in combating intracellular pathogens.

However, fabrication of multifunctional nanomaterials for
eliminating bacteria is still in infancy, with several fundamental
concerns unclear and numerous challenges to be addressed.
Positively charged nanomaterials generally present a better cell
uptake and adsorption with negative-surface bacteria, but cationic
particles tend to cause hemolysis and cytotoxicity. Besides, there are
also some examples of negative charged nanomaterials exhibit a higher
internalization. Thus, it is worthy to clarify the detailed and wide
functions of surface charge in different nanomaterials to balance cell
uptake and safety. Despite the effects of size, charge, shape and surface
modifications on internalization have been extensively studied, the
mechanisms of other properties, such as smoothness and hydrophily,
affecting internalization remain indistinct. A comprehensive
understanding of the interactions between bacteria, nanomaterials
and cellular microenvironment may provide insights into the
development of intelligent nanomaterials with precise release
property and high level of safety. Besides, nanozyme-based
composite materials perform poor selectivity compared with natural
enzymes, which might cause undesired toxicity. Additionally, most
nanozymes, especially haloperoxidase-mimic ones, are only effective in
an acidic microenvironment, limiting their further application. How to
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compound bioactive and delivering materials to realize synergistic
therapeutic effects is highly desired. Lastly, biosafety remains a
major concern that determining the translation of nanomaterials
against intracellular bacterial infection in clinic.

In summary, we review recent studies on employing
multifunctional nanomaterials in treating intracellular infections
through targeted delivery of anti-bacterial agents or utilizing their
intrinsic bioactivities. We also discuss the opportunities and
challenges that need to be focused on in future work. Broadening
understanding of the interactions among macrophages, intracellular
pathogens and nanoparticles contributes to inspire the development
of the next-generation of nanomaterial-based therapeutics against
intracellular bacterial infections.
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