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1 Introduction

The aquaculture production in Asia accounted for approximately 92% of the global
production, and China’s total aquaculture production accounted for >60% of Asian
(Wang et al., 2020). The wide range of aquaculture contribute greatly to world food
security and human nutrition (Britsch et al., 2021; Zhang et al., 2021). Bait cost accounts
for a large proportion, which is an important factor to develop intensive economic
breeding (Dourou et al., 2020). At present, the overall development level of bait is
relatively simple, and some of them even need to be improved or imported (Apandi et al.,
2019). Owing to the low quality and high cost, incomplete nutrition, and weak
pertinence, many aquaculture producers choose to use inappropriate aquaculture
bait, thereby leading to a series of resource and environmental problems
(Hemaiswarya et al., 2011). Thus, aquatic bait has become a key factor restricting
the development of the aquaculture industry.

Microalgae are a kind of plankton with wide distribution, rich nutrition, and high
photosynthesis utilization (Sidari and Tofalo, 2019). The rich and balanced nutrients
and various bioactive substances in microalgae can meet the nutritional requirements
for the development of aquaculture animals at the seedling stage (Sicuro, 2021). Many
studies have proven that rational use of bait microalgae has the comprehensive effects of
improving survival rate, ensuring seedling development, improving growth rate, body
length, weight, and immunity in the rearing of shrimp, shellfish, and sea cucumber (Vu
et al., 2018). Microalgae have another important function of feeding secondary feed,
such as for rotifers, halogenates, and copepods. They can significantly enhance the
contents of PUFA and various vitamins in secondary feed organisms to meet the
requirements of aquatic larvae (Sandeep et al., 2019). Also, microalgae play an
important role, which is primarily reflected by the water quality and algal–bacteria
phase quality (Salam et al., 2016). Microalgae can use photosynthesis to produce oxygen
and absorb CO2, nitrogen, and phosphorus emitted by seedlings to control the “CO2-
HCO3

-” balance in water and stabilize pH (Esteves et al., 2022). Microalgae have the
potential to play a significant role in aquaculture due to their high-quality protein,
essential fatty acids, pigments, and other nutrients (Francis et al., 2001). When used as
bait for aquatic organism, microalgae offer a superior amino acid content compared to
fish meal and other animal feed (Seong et al., 2021). Additionally, microalgae can serve
as a means of purifying aquaculture water and regulating microbial balance in the water.
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Therefore, microalgae can be utilized not only as a feed source for
aquatic animals, but also as a tool to enhance the overall health
and sustainability of aquaculture operations.

Currently, microalgae are commonly used as aquatic bait in
more than 20 genera and 40 species, including golden algae,
diatoms, green algae, and etc., (Sandeep et al., 2019). However,
how to reduce the cost of algal culture and increase its density has
become a problem puzzling for many years. In the process of
culturing microalgae as biological bait, the main challenges are
the high cost of cultivation, low harvest rate, and low biomass
yield, which hinders the industrialization development of bait
microalgae (Bo et al., 2023). However, it is possible to achieve the
growth of low-cost and high-density microalgae with different
culture mode. The main ways of microalgae culture are
photoautotrophic, heterotrophic, and mixotrophic culture. In
photoautotrophic mode, microalgae use chlorophyll or
phycocyanin to convert light energy into the energy required
by the Calvin cycle, or microalgae themselves provide substrates
for the Calvin cycle to maintain growth (Hwang et al., 2014). In
heterotrophy mode, microalgae use organic carbon and nutrients
through their own Calvin cycle for aerobic respiration to obtain
energy for cell metabolism (Barros et al., 2019). Under
mixotrophy culture, microalgae can use of organic and
inorganic carbon to keep their metabolism at a higher level
(Zhang et al., 2021). Currently, microalgae are primarily
cultivated using photoautotrophic mode due to its low energy
consumption. However, this method often results in limited
biomass accumulation due to inadequate light exposure.
Although heterotrophic culture may have a higher biomass
than photoautotrophic culture, it is faced with several
challenges, including the high cost of organic carbon, long
growth cycle, and the harmful bacteria. Mixotrophic culture,
which combines both photoautotrophic and heterotrophic
cultures, is currently being extensively researched, but it has
not yet been implemented on a large scale. Therefore, selecting a
suitable culture mode for microalgal growth is important, but
also need to be provided an in-depth discussion of the application
of microalgae in aquaculture (Sicuro, 2021).

2 Application of different microalga
cultivation modes in aquaculture

2.1 Microalga photoautotrophy culture
mode

For photosynthesis, microalgae fixed CO2 through light
absorption, electron transport, photosynthetic
phosphorylation, and carbon assimilation. Then, they convert
light energy into usable reduced coenzyme II [NAD(P)H] and
ATP (Sun et al., 2016). CO2 and light (light period and light
intensity) are the main factors affecting the growth of
photoautotrophic microalgae, and light energy is converted
into cellular substances (Butti and Mohan, 2018). In
aquaculture, photoautotrophic microalgae have obvious
economic advantages. There is no addition of carbonate,
which will not lead to excessive alkaline problems in the water
(Hwang et al., 2014). However, the photoautotrophic mode for

some species of microalgae has obvious disadvantages in
aquaculture. It depends substantially on external conditions,
and when the external solar energy is low, the time is
shortened or a large interval exists (Hwang et al., 2014). The
shortage of solar energy can also reduce microalga density and
make it easier for bacteria to multiply (Yu and Kim, 2017). In
photoautotrophy culture, most algal cells catabolize self-
produced nutrients such as polysaccharides, lipids, and
proteins to survive, resulting in lower algal biomass than other
culture modes (Simal-Gandara et al., 2022).

2.2 Microalga heterotrophy culture mode

For heterotrophy culture, microalgae absorb external organic
carbon to synthesize biomass and reproduce under dark conditions
(Pribyl and Cepak, 2019). Heterotrophs do not rely on external
inorganic carbon sources and light energy. Thus, photosynthesis is
reduced, but cell density and biomass relatively increase (Fan et al.,
2012). However, not all microalgae are capable of heterotrophic
growth. The main reason is that they do not have perfect
mechanisms for the uptake and utilization of extracellular
organic carbon and organic nitrogen (Nzayisenga et al., 2018).
Specifically, some microalgae cannot be heterotrophic owing to
the difficulty in entering the cell or lack of an ability to
concentrate organic matter (Di Caprio et al., 2018). Moreover,
the enzyme system required for the metabolism of organic matter
in the cell is not perfect, and organic matter cannot be effectively
used, which makes it difficult for some microalgae to heterotrophy
(Han et al., 2012). Also, some microalgae cannot heterotrophy
owing to insufficient energy provided by respiration to sustain
their growth (Zhou et al., 2017). Microalga heterotrophy mode
has great advantages in aquaculture. They can also rely on
organic carbon sources to provide energy through the
tricarboxylic acid cycle to reproduce, thereby avoiding the
reproduction of bacteria by using nutrients in deep water
(Charoonnart et al., 2018). On the other hand, microalga
biomass is always larger than that under photoautotrophic
conditions, which may be due to the exogenous addition of
organic carbon to preserve the nutrients produced (Toh et al.,
2012). However, the heterotrophy mode also has some
disadvantages. For example, owing to the organic carbon,
bacteria and fungi easily use reproduction to antagonize
microalgae. Also, different microalgae adapt to different types of
organic carbon, but the expensive glucose remains the main carbon
source (Azra et al., 2022).

2.3 Mixotrophy culture mode of microalgae

For mixotrophy culture, microalgae can use light energy and
external inorganic carbon to provide required CO2 for
photosynthesis and also absorb external organic carbon to
provide energy for growth (Figure 1). Mixotrophy culture is a
complementary mode of photoautotrophy and heterotrophy
(Zhang et al., 2021). In this mode, microalgae can obtain the
energy required for the dark reaction and the oxygen required for
the tricarboxylic acid cycle and can use the inorganic carbon to
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store the dark reaction products for catabolism (Zhan et al.,
2017). Compared with other two modes, mixotrophy culture has
obvious advantages. Firstly, most microalgal mixotrophy cultures
have higher density and biomass than photoautotrophy and
heterotrophy modes (Zanette et al., 2019). Moreover, active
substances that are unavailable in the photoautotrophy and
heteromorphy are often obtained in this mode after being
eaten by farmed animals, and the quality significantly
improves (Wang et al., 2016). However, the conditions of
mixotrophy culture mode are strict, such as light source,
inorganic carbon, organic carbon, and temperature suitable for
microalga growth (Verma et al., 2020). Also, the cost requirement
of mixotrophy mode is always higher than that of other modes
(Roostaei et al., 2018). Some studies have found that the
consumption of inorganic carbon in mixotrophy culture is
slightly lower than that in photoautotrophy culture, and the
consumption of organic carbon in mixotrophy culture is
slightly lower than that in heterotrophy culture, which may be
due to the enhanced light-energy utilization (Liaqat et al., 2022).
Mixotrophy culture is a better mode for most microalgae,
however; it may not be completely suitable for aquaculture
owing to harsh conditions and high cost. For the mixotrophy
culture, equipment modification and technical limitations may
lead to increased production costs, and whether it can generate
benefits needs further exploration. At present, the mixotrophy
culture of microalgae in aquacultural water should avoid
biological pollution such as miscellaneous bacteria in water.
On the basis of avoiding biological destruction, screening
beneficial microorganisms that promote the cooperative

growth of microalgae, constructing efficient mixed culture
system and increasing its commercial value are also urgent
solutions.

3 Conclusion

The different microalga-cultivation modes in aquaculture
activities still face several urgent problems that need to be solved.
Photoautotrophic mode is low cost but has the low biomass. Under
the premise of controllable environmental effects, the growth
efficiency of microalgae can be improved by regulating the CO2-
utilization rate. In heterotrophy, some microalgae have higher
biomass, but the addition of organic carbon enables its easy use
by bacteria. Heterotrophic microalgae can adapt to deep aquaculture
waters, which are more conducive to high-density or large-scale
aquaculture culture. However, the selection of heterotrophy
microalgal strains and the cost of organic carbon sources are
crucial issues. In mixotrophy culture, most microalgae have
higher biomass and bioactive substances, and the uptake of
organic carbon and inorganic carbon in the environment may be
reduced compared with other two modes, which may save on costs
from the point of view. Importantly, in mixotrophy, the light-
reaction intensity of microalgae is significantly higher than that
in the photoautotrophy and heterotrophy modes. Thus, the oxygen
production of microalgae significantly increases, playing a role in
killing anaerobic bacteria in water and forming a “complementary”
condition with the CO2 produced by farmed animals. The biomass
and nutrient accumulation of microalgae varied depending on the

FIGURE 1
The Mechanism diagram for mixotrophy culture of microalgae.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Cheng et al. 10.3389/fbioe.2023.1196948

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1196948


different culture method. For instance, mixotrophy culture
conditions can promote the accumulation of polyunsaturated
fatty acids and other nutrients, which can serve as high-quality
aquatic food and ensure the successful development of aquatic
animal’s larvae.

In summary, selecting the appropriate culture mode for
microalgae in aquaculture is important. It should be considered
in terms of their own reproduction and the water body or animals
being farmed. Furthermore, specific problems should be specific
analyzed such as breeding season, temperature, and light to achieve
mutual-symbiosis conditions between multiple species and
microalgae in the breeding area.
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