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Cell culture media composition and culture conditions play a crucial role in
product yield, quality and cost of production. Culture media optimization is the
technique of improving media composition and culture conditions to achieve
desired product outcomes. To achieve this, there have been many algorithmic
methods proposed and used for culture media optimization in the literature. To
help readers evaluate and decide on a method that best suits their specific
application, we carried out a systematic review of the different methods from
an algorithmic perspective that classifies, explains and compares the available
methods. We also examine the trends and new developments in the area. This
review provides recommendations to researchers regarding the suitable media
optimization algorithm for their applications and we hope to also promote the
development of new cell culture media optimization methods that are better
suited to existing and upcoming challenges in this biotechnology field, which will
be essential for more efficient production of various cell culture products.
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1 Introduction

Cell culture is widely used in biotechnology to manufacture various useful products for
applications such as pharmaceuticals, food, biofuel, and industrial products. Cell culture
production systems in industry and research span different kingdoms of life from free living
microbes such as bacteria, archaea, and fungi, to cell lines derived from multicellular
organisms including insect and mammalian species. Products include pharmaceuticals such
as antibiotics and monoclonal antibodies; food products such as rennet, single-cell protein,
and cultivated meat; biofuel from lipid-producing algae; industrial products such as cleaning
enzymes and organic acids.

In cell culture, culture media is a crucial input that provides energy and materials
required by cells to grow, proliferate and produce the products of interest. The components
that make up culture media and their concentrations within the media affect important
aspects of cell growth, productivity and product quality, and are instrumental to the success
of the cell culture application (Yao and Asayama, 2017; Ritacco et al., 2018). In most
laboratory applications, a universal standardized media is used but to achieve cost-efficient
upscaling to industrial production, there is a need to identify a combination of
concentrations for media components that optimize for the desired property, such as
biomass or specific biomolecule yield in the cell culture system. There have been many
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methods using optimization algorithms developed for culture media
optimization for both microbial systems and animal cell culture.
Despite this, there is a lack of systematic review and comparison of
these different methods from an algorithmic perspective that
provides researchers with a comprehensive overview of the
available algorithms and provides perspectives on the
applicability of these methods in new contexts.

A few other review articles are available on culture media
optimization. The review by Singh et al. (2017) focuses on
fermentation media for microbial systems. While it lists some
of the techniques used in literature, it does not include several
types of algorithms that were typically used in media
optimization, and also lacked a benchmark comparison
between the methods. Similarly, the reviews by van der Valk
et al. (2010) Ritacco et al. (2018) and Galbraith et al. (2018) does
not go into depth on the available optimization algorithms. The
unique requirements of the culture media optimization problem,
such as the need for a low number of iterations due to
experimental resource constraints, and noisy results are also
unaddressed by reviews of optimization algorithms for black-
box functions that evaluate algorithms in a general context.

The purpose and unique contribution of this review is to provide
readers with a comprehensive overview of the main types of
algorithms applicable to culture media optimization. We
synthesized existing works and provided a generalized framework
for understanding and designing culture media optimization
experiments. We have examined and summarized the strategies
adopted by previous works, classify and explain them using this
framework and examine algorithmic features that were designed and
chosen during past efforts to address specific challenges of this
problem. We have also provided recommendations on the type of
algorithm to use based on benchmark comparisons and identify
gaps for future research.

2 Materials and methods

2.1 Scope of review

The cell culture media optimization works covered by this
review apply to both microbial and animal cell culture for a
variety of outcomes including maximizing biomolecule yield,
biomass production and cell proliferation. The methods reviewed
cover algorithmic approaches for optimization that have been used
in literature for optimizing culture media conditions.

Simple methods such as one-factor-at-a-time (OFAT) and
factor screening through statistical design of experiment (DOE)
are not covered in this review. These methods are relatively
simple and standard and are well discussed in other works.
These methods are also generally recognized to be insufficient
for more complex media formulations that contain more
components (more than 10) and concentration levels due to
combinatorial explosion, and potential complex interaction
effects that exist between components.

Bioinformatics methods such as metabolic network models and
expression analysis are also excluded from the review. These
methods require specific and customized analysis and modeling
for the cell line and process involved.

2.2 Methodology of review

We carried out a systematic literature search for cell culture
media on NCBI PubMed and Google Scholar with the query:

• ((“Cell culture” OR “Culture” OR “fermentation”) AND
(“media” OR “medium”) AND “optimization”) AND
(algorithm[Text Word])

We also conducted a literature search for specific algorithms that
we are aware have been or may be applied to the media optimization
problem by replacing the generic term “algorithm” in the search
with the following keywords:

• iterative
• direct search
• simplex
• metaheuristics
• differential evolution
• evolutionary strategies
• swarm
• simulated annealing
• surrogate model
• regression
• kriging
• bayesian
• gaussian process
• support vector
• decision tree
• random forest
• ensemble
• neural network
• deep neural network
• deep learning
• machine learning
• artificial intelligence

2.3 Method for simulation experiment for
benchmarking

Most available works in culture media optimization generally
propose a single optimization algorithm for a particular cell culture
experiment. It is difficult to draw conclusions on the effectiveness of
each of these algorithms vis-a-vis other algorithms. This presents an
obstacle for other researchers seeking to make informed choices on
which algorithms to utilize in the face of experimental resource
constraints.

Few of the papers reviewed provided code implementations of
the algorithms. We default to open-source implementations of
algorithms written in Python if available. Otherwise, we modify
open-source code or write our own implementations to recreate the
algorithms. The codes for the simulation experiment for this study
can be found at https://github.com/zhoutianxun/Review-of-culture-
media-optimization-methods.

To provide a benchmark comparison of the algorithms, we
propose to compare them on a large set of test functions with
different characteristics. The test functions used come from the
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Black-Box Optimization Benchmarking (BBOB) test suite (Hansen
et al., 2021). Details about the test functions are given in
Supplementary Table S1.

For our main experiments, we used the 5, 20 and 40-dimension
versions of the test functions to represent typical media optimization
experiments. For each individual experiment, 10 runs were
performed with a population size of 50. The methods were only
run to a maximum of 10 iterations tomodel the constraints of typical
cell culture optimization experiments.

To generate noisy functions, we simulated additive Gaussian
noise by sampling from a Gaussian distribution and adding that to
the true function value. Additive noise was used to better simulate
the measurement uncertainty from assays used to quantify the yield
of interest in a cell culture experiment.

3 Classification of algorithmic
approaches

3.1 Basic terminology

There are many terminologies used in culture media
optimization literature that may be confusing to newcomers in
the field, originating from different sources from the fields of
experiment design, mathematical optimization, statistics,
evolutionary computation, machine learning and others.

Here we define some of the basic terminologies that would be
encountered in culture media optimization literature, with the most
common names in bold:

Common terminology.

• The adjustable components in the culture media
– Component, Factor, Parameter, Variable, Input,
Dimension, Features

• The value of the factor. Levels are used specifically for
discretized factor value

– Concentration, Level, Value
• A list of culture media candidates, each with varying values for
the factors
– Design, Candidates, Population, Experiments, Runs,
Formulation

• The target value to be optimized for, obtained through
experiment
– Response, Objective value, Fitness, Output, Read-out

• The combined set of culture media candidates and their
corresponding response obtained through experiment
– Data(point), Results, Training Set

• In an iterative optimization workflow, each batch of
experiment
– Iteration, Generation, Round, Batch

3.2 A generalization of media optimization
methods

The methods for media optimization can be generalized as an
iterative computational-experimental workflow (Figure 1). In
this general workflow, a list of components and their range of
values are defined prior to the optimization process. For each
iteration, the optimization algorithm is used to propose a list of
candidates, also known as the experiment design. Note that in the
first iteration, the initial list of candidates, known as the initial
design of experiment, is proposed not by the optimization
algorithm but rather using standard designs or random
sampling from the input space. Next, the culture media
corresponding to these candidates are prepared and cells are
cultured in each candidate media. A measure of the objective of
interest, such as protein yield, is quantified experimentally. These
values are then fed back to the optimization algorithm to propose
the next iteration of candidates. Alternatively, the workflow
terminates if no more improvement is observed, or if
experimental budget is reached.

FIGURE 1
Generalization of media optimization methods.
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Thus, based on this general workflow, we can divide a media
optimization method into several parts, and classify existing
methods based on these parts:

1. Problem definition, i.e., optimization objective and media
component space

2. Initial design of experiment
3. Optimization algorithm

3.3 Problem definition

3.3.1 Objective type
Optimization can be classified based on the objective as single-

objective or multi-objective. Single-objective is the most common
type, especially if the value of the product greatly exceeds the cost of
the culture media, in which case optimizing for yield alone is
sufficient. Multi-objective optimization is used when multiple
outcomes of interests are considered. For example, maximizing
the yield of a useful product while minimizing the production of
a toxic metabolite, or maximizing yield while minimizing the cost of
culture media.

For multi-objective optimization, a range of possible optimal
solutions exists known as the Pareto front. A Pareto optimal solution
is a point where it is not possible to improve one objective without
worsening another.

When trying to optimize culture media with multiple objectives
in mind, it can either be tackled as a multi-objective problem or
converted to a single-objective problem by modifying the objective
function. For example, to balance the goal of increased cell
proliferation, low cost and ease of use, Cosenza et al. (2021) used
a single objective function that normalizes the measure of cell
proliferation by the volume of fetal bovine serum (FBS) which is
the costly component used in the media.

3.3.2 Factor value type
The values of the input factors of the culture media can be

classified as continuous values or discrete levels. Discrete levels
simplify the problem by reducing possible combinations to a
finite set. However, continuous values allow for a finer-grained
optimization of the factors.

In some cases, by increasing the number of levels, it is
possible to approximate a continuous value with discrete levels
such as in Havel et al. (2006) where 7 binary bits resulting in
128 levels were used to represent the values for a discrete genetic
algorithm. Vice-versa, the opposite can be achieved by rounding
off continuous values to fixed discrete levels as seen in Kim &
Audet (2019). This can be useful when adapting algorithms that
were designed originally for discrete or continuous problems to
the requirement of the problem.

In the works reviewed, a few (2–3) discrete levels are commonly
adopted during the initial design of experiment. In subsequent
iterations, continuous values are often employed for more precise
media formulations.

3.3.3 Choice of factors
There are many important factors that affect cell proliferation

and metabolite production, and these factors change according to

the desired outcome of the optimization. However, not all media
components contribute significantly to the desired outcome and
changing concentrations of these components are
inconsequential. Thus, it is important to omit such factors
from the optimization strategy to prevent the redundant and
excessive use of laboratory resources. One strategy used by many
researchers is to conduct a screening of factors using DOE
methods such as Plackett-Burman design or Definitive
Screening design. This serves to identify the most important
factors that affect the response, thus reducing the input space to a
more manageable dimension. The use of statistical DOE for
factor screening is well established and we refer interested
readers to Antony (2014). Considerations on the number of
factors given experimental budget constraint are further
discussed in Section 7.

3.4 Initial design of experiment

An experiment design refers to a list of candidates that have
varying values for each of the factors.

In the first iteration, an initial design of experiment (DOE) is
conducted without the need for the optimization algorithm as a
starting point for the optimization problem, assuming that no
data is available yet. Designs can be classified into two types,
statistical DOE and random designs. It is also possible to have a
mixture of both by supplementing statistical designs with some
random designs.

3.5 Optimization algorithm

The types of algorithms used in cell culture media optimization
works can be broadly classified into two classes: direct optimization,
and surrogate-based optimization (Figure 2).

We define direct optimization algorithms as methods that
optimize by evaluating the objective function directly. Direct
search and metaheuristics algorithms are two types of methods
that fall under our definition of direct optimization.

Direct search methods perform a sequential examination of
trial solutions, involving a comparison of each trial solution with
the best solution obtained up to that time (Audet and Hare,
2017). A strategy is used to determine what the next trial solution
will be. Direct search methods are deterministic in nature.
Commonly used direct search methods include Nelder-Mead
downhill simplex, pattern search, and mesh adaptive direct
search. None of the papers reviewed used direct search
methods to directly optimize culture media. However, direct
search methods have been used as acquisition methods in
surrogate-based optimization, which will be discussed in
Section 6.3.

Metaheuristics optimization algorithms are designed with
heuristics or strategies for generating candidates to find good
solutions to an optimization problem (Audet and Hare, 2017).
Metaheuristics algorithms are often inspired by naturally
occurring optimizing phenomena, such as the optimization of
fitness through evolution by natural selection by life, the efficient
foraging of food by animal swarms or the reordering of atoms
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into lower energy states through the process of annealing. In
metaheuristics optimization, the objective function values of
candidates are used as information to inform the generation
of new candidates by applying heuristic rules. They also
contain elements of stochasticity that helps to avoid being
trapped in local optima. This characteristic of stochasticity is a

key difference compared to direct search methods. Commonly
used metaheuristics optimization algorithms include
genetic algorithm, simulated annealing and particle swarm
algorithm.

Surrogate-based optimization (SBO) is the other major class
of optimization algorithms. SBOs were initially conceptualized as
a way of optimizing computationally expensive simulation
experiments but have since been used to optimize black-box
functions in general (Koziel et al., 2011). A surrogate model is
used to estimate the true objective function by training on a
relatively small set of samples obtained from the true function.
Because the surrogate model is much cheaper to evaluate than the
true function, it can be queried more extensively and used to
suggest candidates for further testing. The surrogate model is
trained on the initial DOE inputs and the experimentally
obtained outputs. Using the surrogate model as an estimator
of the true objective function, new candidate solutions are
proposed based on a certain strategy. The new candidate is
then evaluated experimentally, and the new data is used to
update the surrogate model. The process is repeated until the
result is satisfactory or if the experiment budget is exceeded.
Commonly used surrogate models include quadratic response
surface method (RSM), Kriging (also known as Gaussian process
regression), and neural networks.

Other than the two classes described above, within
optimization literature hybrid methods are also used.Hybrid
methods combine aspects of both metaheuristics and surrogate

FIGURE 2
Classification of optimization algorithms used in media optimization literature.

FIGURE 3
Diagram of typical Multi-Layer Perceptron.
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based optimization (Stork et al., 2022). This may be achieved in
several ways. For example, different algorithms can be run
simultaneously and proposed candidates combined; or during
the optimization iteration, one control the outer loop, while
another method is used subsequently in the inner loopbe
nested in another algorithm. In the culture media
optimization literature surveyed, we have not come across
studies that used hybrid methods. Some studies perform sets
of experiment using metaheuristics and SBO in parallel to
compare their performance, but the candidates are not
combined between the two sets.

4 Initial design of experiment

4.1 Statistical design of experiment (DOE)
designs

Statistical Design of Experiments (DOE) is a method used to
systematically investigate the relationship between variables in a
controlled experimental setting. Several types of DOE designs are
available and can be used for the initial design (Jankovic et al., 2021).

Full factorial design: This design includes all possible
combinations of the levels of each variable. While this method is

FIGURE 4
Heatmap of the L1 distance, where 0 represents the same value. As the number of generations of the algorithm increases, the diversity of the
candidate population decreases.

FIGURE 5
Illustration of how using multiple runs from random initial positions work on contour plot of the rastrigin function. Candidates from the initial
positions would converge towards the nearest final position, with a few of them converging towards the global optimum.
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the most comprehensive, it is unfeasible for media with many
components, as the total number of experiments would be xk

where x is the number of levels and k is the number of components.
Fractional factorial design: This design includes a fraction of all

the possible combinations of levels of each variable. The use of this
design results in more efficient use of resources but result in
confounding with interaction terms.

Taguchi design: This is a design that is an improvement to full
and fractional factorial designs. It involves using orthogonal arrays
to arrange the factors affecting the experiment and determine the
levels at which they should be set. In contrast to traditional DOE,
Taguchi treats noise as a focus of analysis (Hernadewita et al., 2019).

Central composite design (CCD): This design method starts
with an embedded factorial or fractional factorial design with center
points and adds “star” points to estimate curvature.

Box-Behnken Design (BBD): This design, unlike central
composite design, is an independent quadratic design that does
not contain an embedded factorial or fractional factorial design. The
component combinations are the midpoints of edges of the process
space and the center point. Compared to central composite design,
the Box-Behnken design has limited capability for orthogonal
blocking.

4.2 Random designs

When a large number of factors are present, statistical DOE
designs are often infeasible to be carried out as the number of
experiments required grows exponentially. An alternative to DOE
designs is random designs.

A simple random sampling method that samples from a
uniformly random distribution for each factor is non-ideal as it
tends to result in uneven distances between samples in the input
space. This means some parts of the input space are inadequately
sampled and reduces the effectiveness of subsequent optimization.
In comparison, space filling designs are able to evenly cover the
input space with samples.

The most commonly used space filling design is the Latin
hypercube design (LHS). Latin hypercube samples are generated
such that each hyperplane of the input space contains only one
sample. LHS is used by a few works (Cosenza et al., 2022; Yoshida
et al., 2022) as the initial DOE.

5 Metaheuristics optimization

Following the taxonomy proposed by Stork et al. (2022),
metaheuristics optimization can be broadly classified as
population type, hill climbing type and trajectory type. For
iterative experiments in cell culture experiment settings, the use
of automated liquid handlers to prepare solutions allows multiple
candidates to be tested in each iteration. Population-type algorithms
are most suitable to leverage this capability and provide faster
optimization.

Popular population-type metaheuristics include evolution-
inspired algorithms such as genetic algorithm, evolutionary
strategies, and differential evolution, and swarm-inspired
algorithms such as particle swarm algorithm and ant-colony
algorithm. We will introduce the algorithms that have been
applied for cell culture optimization. For more in-depth details
on metaheuristics optimization, we refer interested readers to Du
and Swamy (2016).

5.1 Genetic algorithm

Genetic algorithm (GA) is a metaheuristics optimization
inspired by the process of evolution through natural selection. It
generates new candidates through biologically inspired operations of
selection, crossover and mutation.

In the classic GA, candidates are represented as a
“chromosome”, where the value of each factor, in discrete levels,
is coded as a bit string. In each iteration, three steps take place to
generate the subsequent population of candidates (Mirjalili, 2019).

FIGURE 6
Trend in methods used over the years.
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1. Selection, which selects some candidates of the previous
generation as “parents”. By the analogy of natural selection
where fitter candidates survive more to give rise to offspring,
preference is given to candidates that score highly on the
objective function.

2. Crossover, where “parents” are combined to produce new
“offspring” candidates. Random sites are chosen on the
“chromosome” to be retained on the offspring candidate

3. Mutation, where random changes occur to the offspring
candidate to create more diversity and to prevent premature
convergence to local optima.

Many variants of GA exist, with different definitions of the three
operations. The classic GA is designed for discrete problems as each
input is represented as a string. However, GA has also been adopted
for continuous problems, by adopting a continuous “chromosome”
representation, and modifying the crossover and mutation
operations.

GA is a popular method in culture media optimization. It has
been often used for problems that have many factors. GA is also one
of the most popular methods used as the acquisition method in
surrogate-based optimization.

5.2 Differential evolution

Differential evolution (DE) is another evolution-inspired
metaheuristics optimization that is popular, especially for
continuous problems. DE also generates new candidates through
the biologically inspired operation of mutation and crossover like
GA but instead of strings, the inputs are represented as real-valued
vectors, implemented as floats.

In classic DE, in each iteration, three steps take place to generate
the new population of candidates (Price, 2013).

1. Mutation is achieved by selecting a random target vector and
adding it to a scaled difference of two other randomly selected
solution vectors, to generate a trial vector.

2. Crossover is achieved by discrete recombination of the parent
vector and trial vector with a given crossover probability PCR, to
obtain the offspring vector.

3. After evaluating the offspring vectors in the objective function,
the fitter one between the offspring and parent vector is retained
for the next iteration.

Advanced variants of DE such as L-SHADE have been proposed
in black-box optimization literature. DE optimizes continuous
problems by default but can be adapted to discrete problems
easily by rounding off candidates to their nearest discrete level.
Variants of DE have been applied to optimize media components in
some studies.

5.3 Particle swarm optimization

Particle swarm optimization (PSO) is a metaheuristics
optimization inspired by mimicking animal flocking behavior.
Each particle’s movement is influenced by both its personal

best-known position and the best-known positions of the swarm
as a whole, in the expectation that the swarm as a whole moves
towards the global optimum (Kennedy and Eberhart, 1995). The
algorithm starts with a population, also known as a swarm, of
candidate solutions.

• Each particle (candidate solution) moves around the search
space.

• The current location xid and velocity vid and personal best
pbesti of any particle i and the global best gbest of the entire
population are used to compute how the particles shouldmove
next in the d-dimensional hyperspace.

This process is repeated until a satisfactory optimum is reached.
A few papers have used this approach(Cockshott and Hartman,
2001; Huang et al., 2007; Garlapati et al., 2010; Khaouane et al.,
2012).

6 Surrogate-based optimization

Surrogate-based optimization (SBO) can be viewed as
comprising three separate components: the surrogate model, the
acquisition function, and the acquisition method (Forrester and
Keane, 2009). The surrogate model refers to the model that is used to
approximate the actual function of interest by fitting experimental
data. Before the first iteration, the model is fitted with the data
collected from the initial DOE. The acquisition function refers to the
function or criterion that is used to decide which candidates to
propose and evaluate in the next round of experiments. The
acquisition method refers to how the candidates are found by
optimizing the acquisition function. (Note: The acquisition of
new points, i.e., both the choice of acquisition function and
acquisition method may also be referred to as infill strategy or
infill criteria in literature (Zhou et al., 2020). It is also closely related
to the concept of active learning in machine learning, which seeks to
improve the model’s accuracy with less training data by
systematically acquiring training sample (Ren et al., 2021).

To illustrate with an example, a common SBO workflow used in
media optimization is the ANN-GA method. In this method, the
surrogate model used is an artificial neural network (ANN), that
predicts the response given a valid media design as input. The ANN
is trained with actual response values collected from experiments
performed with the initial DOE candidates. As we assume that the
ANN is an accurate predictor of the response, and we would like to
maximize the response, we would then computationally find the
input that maximizes the predicted response of the ANN. The
acquisition function in this case would be the predicted value
(PV) because we acquire new candidates based on the predicted
value output by the surrogate model. These candidates are found by
running GA on the ANN as the objective function. GA in this case
would be the acquisition method. The acquired candidates that
maximize the response of ANN are then evaluated experimentally
and added to training data to update the ANN model in the next
iteration.

We will introduce the common types of surrogate models,
acquisition functions and acquisition methods (if they have not
been covered in Section 5), that have been applied for cell culture
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optimization. We also refer interested readers to (Forrester and
Keane, 2009, Jiang et al., 2020) for more in-depth resources on
surrogate optimization.

6.1 Surrogate models

6.1.1 Polynomial response surfaces
Response surface methodology (RSM) is a type of surrogate-

based optimization method that was first introduced in 1951 and
has found wide applications in optimizing industrial processes
(Khuri and Mukhopadhyay, 2010). The typical RSM approach is
to first determine significant factors with a linear model, known
as factor screening. After which, only the significant factors are
kept for optimization. A linear model is again used to find the
suitable range of input where the optimal is likely to lie in, by
going along the path of steepest ascent or descent. After which, a
DOE is conducted typically with CCD or BBD, and the data is
used to fit a higher-order polynomial model. The polynomial
model, which is essentially a surrogate model, is then used for
optimization.

The most common response surface is the second-order
polynomial, based on the assumption that the landscape of the
objective function can be approximated with a second-order Taylor
expansion. The standard form of the model is given as

y � β0 +∑m
j�1
βjxj +∑m

j�1
βjjx

2
j +∑ ∑m

j< k
βjkxjxk

Polynomial response surfaces are easy to fit and computationally
inexpensive. However, as they are relatively simple, empirically they
are often less accurate than other types of surrogate models. When
there are many factors involved, polynomial response surfaces are
often inadequate in providing accurate predictions. In media
optimization literature, polynomial response surfaces are mostly
used for problems involving 5 factors or less.

Analytical solution to find the optima of the polynomial
response surface through canonical and ridge analysis is one way
to find the maxima/minima of the surrogate model, although other
methods such as genetic algorithms are used as well, sometimes with
better results.

Typical usage of RSM for optimization follows a one-step
optimization process where the model is fitted with the DOE
results and one set of candidates is proposed based on the model
which is subsequently tested in the real-world experiment before the
optimization process terminates. However, iterative refinement of
the polynomial response surface is also possible. Although not in any
of the reviewed culture media optimization literature that uses RSM,
the iterative workflow has been used in other applications (Goswami
et al., 2016).

6.1.2 Gaussian process models
Gaussian process (GP) model, also known as Kriging model, is

one of the most widely used surrogate models (Forrester and Keane,
2009), especially in engineering applications. GP-based surrogate
model optimization is often known as Bayesian optimization (Snoek
et al., 2012) in the machine learning literature used for optimizing
model hyperparameters.

GPs are non-parametric probabilistic regression models that
model a distribution over functions and are hence able to give
confidence for predictions. This is a useful property that is used for
acquisition functions. It first defines a prior over functions, which
can be converted into a posterior distribution over functions once
data is observed. Themain idea of GPs is the assumption that subsets
of the function’s values have a joint Gaussian distribution. This
means that given a set of inputs, the corresponding outputs will be
distributed according to a multivariate Gaussian distribution. The
covariance of the joint distribution is computed with a kernel
function, which can be thought of as a similarity measure
between the inputs. When observations, i.e., training data are
provided, we can condition upon these observations to update
the prior and compute the posterior distribution. The prediction
for input with an unknown function value is done by marginalizing
the posterior distribution on that input and extracting the mean
value. The variance will be the confidence of the prediction.

GPs can be computationally expensive for large datasets.
However, compared to the much more expensive cell culture
experiments, the computational cost of GPs does not pose a
practical challenge.

6.1.3 Artificial neural networks
Artificial neural networks (ANN) are an increasingly popular

machine learning model that have been used in a wide variety of
tasks. ANNs are universal function approximators that can be used
to model arbitrary functions and this contributes to their success.

ANNs are made up of neurons arranged in layers and
connected together by weighted edges (Krogh, 2008). A simple
feedforward network where each neuron in a layer is connected to
all neurons in the previous layer, is known as a multi-layer
perceptron (MLP) or a fully-connected neural network
(FCNN) (Figure 3). The input, represented as a vector, is
defined as the input layer, where each neuron takes on the
value of one dimension of the input vector. The values of the
neurons of each layer are computed by multiplying the value of
the neurons in the previous layer by the weights of the edges
connecting them to neurons of the current layer and summing
them up. A non-linear function known as the activation function
is applied to the value of each neuron which introduces non-
linearity. For regression problems, no activation is applied to the
final layer which outputs an unbounded continuous value.

Common activation functions include rectified linear unit
(ReLU), sigmoid function, and hyperbolic tangent function.
Radial basis functions can also be used as activation functions,
and such neural networks, normally with single hidden layer are
called radial basis neural networks (RBFNN) (Ghosh and Nag,
2001). A variation of RBFNN is the Generalized regression
neural network (GRNN).

ANNs, specifically MLPs generally with 1 - 2 hidden layers are
common surrogate models used in culture media optimization
literature. There have been many works that compare ANNs and
second-order polynomial response surfaces on the closeness of fit
and RMSE of prediction on response to cell culture media. The
general conclusion from those works is that ANNs are more accurate
surrogate models and provide better optimization performance.
RBFNNs are also popularly used as surrogate models in culture
media optimization.
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Deeper ANNs with many hidden layers, also known as deep
learning models, are less common in media optimization. Two
studies have used ANNs with 4 hidden layers (Tachibana et al.,
2021; Yoshida et al., 2022) as surrogate models to predict the
expression of GFP in E. coli. Having more layers increases the
ability of the network to fit data, however it should be noted that
such overparameterized models generally require a high number of
training datapoints to prevent overfitting and poor generalization.
Hence, having a validation set to test the performance of the model
after training can be useful to determine if overfitting occurs, and to
decide if a deep network is necessary by comparing the prediction
performance against other types of surrogate models.

6.1.4 Support vector machines
Support vector machines (SVM) are a type of machine learning

model that learns a hyperplane that has the greatest number of
training points falling within a certain margin away from the
hyperplane. SVMs were first designed for classification problems,
where the model learns a hyperplane that separates the different
classes with the greatest margin. SVM for regression is a
modification of the original SVM used for predicting a
continuous output value (Forrester and Keane, 2009).

Unlike SVM for classification, which tries to separate the data
with a clear margin, SVM for regression uses a technique known as
epsilon-insensitive loss to allow some data points to be within the
margin of error. The algorithm then tries to find the hyperplane to
minimize the error between the predicted output values and the
actual output values of the training set.

SVMs are uncommon as surrogate models in culture media
optimization literature but have been used in other applications
(Chintalapati et al., 2013). Despite limited usage in culture media
optimization literature, it is generally held that SVMs are less prone
to overfitting for smaller datasets compared to ANNs (Wilson, 2008)
which could be an advantage in culture media optimization
problems where there is a lower amount of data.

6.2 Acquisition functions

6.2.1 Predicted value
Predicted value is the most straightforward acquisition function.

It essentially treats the surrogate model as a faithful predictor of the
actual objective function. Thus by optimizing the predicted value of
the surrogate model, the hope is that the solution found is likely a
near-optimum point (Forrester and Keane, 2009).

Predicted value is the most common acquisition function used
for most surrogate models except for GPs. In culture media
optimization, it has been used in combination with RSMs, ANNs
and other models.

The drawback is that the surrogate model may give wrong
predictions that deviate from the true objective function value by
a large amount.

6.2.2 Expected improvement
For surrogate models that can provide confidence estimation of

prediction, alternative acquisition functions that incorporate
prediction uncertainty can be used instead. This helps to address
the problem of poor predicted values in less sampled regions.

The expected improvement (EI) acquisition function is designed
to balance between exploration and exploitation of the search space
(Forrester and Keane, 2009). Based on the predicted value of the
surrogate model, EI favors points that have a high probability of
improving the current best solution by considering the difference
between the current best solution and the predicted value of the
objective function at a new point. At the same time, EI also favors
points that are uncertain, measured by the standard deviation of the
predicted value of the objective function at a new point. Points that
have a high standard deviation are more uncertain, and therefore
more likely to provide new information about the search space.
Thus, by considering both the potential improvement of a new point
and the uncertainty of the prediction, EI acquisition function
provides both exploitation and exploration.

EI is computed as such:

EI x( ) � fmin − f̂ x( )( )Φ fmin − f̂ x( )
s

( ) + sϕ
fmin − f̂ x( )

s
( )

where Φ(.) represents the standard normal density function; ϕ(.)
represents the probability distribution function; f̂ is the surrogate
model predictor;fmin is the current best functional value and s is the
standard deviation (Bhosekar, 2020).

GPs provide an uncertainty estimate of its predictions
inherently, and EI can be easily applied as the acquisition
function and is often the choice by default. For typical ANNs
used in regression, the uncertainty estimate is not available.
However, one technique for uncertainty estimation is through
measuring the variance in predictions between an ensemble of
neural networks each trained separately on the same data. With
this uncertainty estimate, EI can then be applied as the acquisition
function (Lim et al., 2021). So far, in culture media optimization, EI
as an acquisition function has only been used in conjunction with
GPs. Given that ANNs are commonly used as the surrogate model in
many culture media optimization studies, it may be useful to
investigate using EI as the acquisition function on an ensemble
of ANNs as the surrogate model.

6.2.3 Custom functions
Some works have designed custom acquisition functions that

incorporate other aspects relevant to their goals of media design. For
example, Cosenza et al. (2022) used a custom acquisition function
that also accounts for the cost of producing the media, converting a
multi-objective optimization problem into a single objective
problem.

6.3 Acquisition methods

6.3.1 Analytical solution
For some surrogate models, namely, polynomial response

surfaces, analytical solutions for the optima can be obtained by
solving for the stationary points of the polynomial if they exist and
checking the nature of the stationary points. This is known as
canonical and ridge analysis (Dean et al., 2017).

One possible problem with this approach is that we may be
interested in acquiring multiple points instead, which is more easily
achieved through population-based metaheuristics. This may be
whymany papers chose to use methods such as genetic algorithms to
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optimize the predicted value of polynomial response surfaces rather
than using an analytical solution.

6.3.2 Local optimization methods
6.3.2.1 Nelder-Mead Downhill simplex

Nelder-Mead downhill simplex is a direct search algorithm that
optimizes by constructing a nondegenerate simplex in the search
space and uses rules of evolving the simplex to drive the search
(Lewis et al., 2000). A simplex refers to a set of n+1 points in an n-
dimensional space.

In simplex search, the worst point of the simplex is reflected
through the centroid of the opposite face of the simplex. If the new
point improves upon the worst point, it is kept to form the new
simplex. If not, then the next worst point of the simplex is used to
reflect and generate a new point. If all new points do not improve
compared to the existing simplex, the lengths of the edges adjacent
to the current best vertex are reduced by half. This process can be
thought of as a variation of the method of steepest descent where the
direction of movement is the opposite direction to the gradient of a
plane fitted to the simplex points.

Nelder-Mead downhill simplex can be used as a local
optimization method to optimize the acquisition function, as
used in Tripathi et al. (2012).

6.3.2.2 BFGS and L-BFGS
BFGS (Broyden–Fletcher–Goldfarb–Shanno) is a widely used

local optimization algorithm used for solving non-linear
optimization problems. BFGS belongs to a family of Quasi-
Newton methods, which are approximations of the Newton-
Raphson method. The BFGS algorithm uses a limited number
of gradient evaluations to approximate the Hessian matrix
(describes the curvature of the function at a given point) and
it updates this approximation at each iteration. L-BFGS (Limited-
memory BFGS) is a variant of BFGS that is more suited for
optimizing problems with many variables. BFGS stores a dense
n×n approximation to the inverse Hessian (n is the number of
variables), whereas L-BFGS stores a limited number of vectors for
the approximation (Liu and Nocedal, 1989). Quasi-Newton
methods such as BFGS are often the default choice in
optimization libraries and are reliable in finding the local
optima of smooth functions. It is therefore used as the default
optimizer in many Bayesian optimization libraries such as
GPyOpt, SMT, and scikit-optimize.

6.3.2.3 Drawbacks of local optimization
Local optimization will only converge upon the local optima

close to the initial point of search. When the surrogate model is
highly non-linear and contains multiple local optima, it is
difficult to find the global optimum of the acquisition
function. This could be addressed by either running multiple
instances of local optimization starting at random locations or
using global optimization methods.

6.3.3 Global optimization methods
Any of the optimization algorithms introduced in section 5 can

optimize the acquisition function including genetic algorithm and
differential evolution. Here we introduce two others that have been
used in culture media optimization.

6.3.3.1 Simulated annealing
Simulated annealing (SA) is a metaheuristic algorithm inspired

by the annealing process of materials when cooled down from high
temperatures. As the temperature of the material is slowly lowered,
the atoms settle to a new configuration that has a lower internal
energy. The initial starting position is thought of as a local
minimum. The heating of the materials translates to replacing
the current solution with new random solutions. The new
solutions may be accepted based on a probability computed on
the resulting function value decrease as well as a ‘temperature’
measure which is slowly decreasing as iterations increase. The
temperature measure allows for solutions that have higher
objective function values to be accepted which avoids trapping in
local minima.

SA has been used to optimize the acquisition function when
ANN or RSM is used as a surrogate model(Aquino et al., 2016;
Parkhey et al., 2017; Dhagat and Jujjavarapu, 2021).

6.3.3.2 DYCORS
DYCORS (Dynamic Coordinate Search using Response Surface

Models) is an optimization algorithm used for solving non-linear
and non-convex optimization problems. It is a variant of the
coordinate search method and uses a dynamic selection of
coordinates for optimization on radial basis response surface,
which allows it to converge faster than traditional coordinate
search methods.

The DYCORS algorithm starts with a feasible point and at each
iteration, it selects a subset of coordinates to optimize based on the
gradient information. Then, it performs a line search along the
selected coordinates to minimize the objective function. The
algorithm continues this process until a stopping criterion is met.
The selection of coordinates is done dynamically, as the algorithm
progresses, this allows it to adapt to the structure of the problem and
avoid getting stuck in poor local optima. DYCORS has been used to
optimize on a RBFNN (Cosenza et al., 2021).

6.3.4 Strategies for acquiring multiple candidates
When proposing a new batch of candidates, having a diversity of

candidates helps to explore the solution space better and avoid
duplicate testing of similar candidates. If factors are continuous
values, candidates can be technically different but have arbitrarily
small differences. Hence when proposing candidates using the
acquisition function, several strategies may be employed to
promote diversity.

Early stopping of the acquisition optimization algorithm can
promote diversity for population-based metaheuristics, this is
illustrated in Figure 4. When metaheuristics algorithms are
allowed to run for many iterations, the solution population will
generally converge upon an optimum. By stopping early, diversity in
the solution population may be preserved. Truncated GA is one
example of this strategy.

Multiple runs of the acquisition optimization algorithm from
random initial positions allow the acquisition of different local
minima when using local optimization methods or non-
population type metaheuristics like SA. As local optimization
methods will generally converge upon an optimum that is closer
to the initial position, by running this process multiple times but
with different randomly selected starting positions, multiple local
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minima can be found if they exist in the function. An example is
shown in Figure 5.

When EI is used as the acquisition function, another strategy of
generating multiple candidates is the parallel efficient global
optimization method withqEI criterion. The q-EI criterion was
used to choose q ∈ N points, where q refers to the number of
candidates and N refers to the population size. Instead of directly
optimizing q-EI, Ginsbourger et al. (2008) proposed the use of two
heuristics methods, Kriging Believer and Constant Liar as candidate
designs. The q-EI criterion is subsequently used to choose between
the two.

7 Characteristics of culture media
optimization problems

There are several key characteristics of culture media
optimization problems. These should be taken into consideration
when choosing the method of optimization and is what
differentiates this problem from others.

Firstly, the number of iterations for optimization is limited. This
results from the fact that cell culture experiments are time-
consuming and therefore experimental groups cannot afford to
optimize for a large number of iterations. Many works perform a
one-step optimization, where only an initial design of experiment
was cultured, followed by one batch of proposed candidates based on
the initial DOE. The average number of iterations performed across
all works was 2.73 (including one-step optimization) and 6.22
(excluding one-step optimization). In most benchmarking of
black-box optimization algorithms, the number of iterations far
exceeds what can be afforded for culture media optimization.

Because of this, optimization algorithms that are slow in
improvement or convergence are not suitable. Based on studies
that compare the two, a surrogate model-based approach may be
more suitable as the rate of improvement tends to be higher than
metaheuristics algorithms in early iterations.

Secondly, the number of candidates is limited and dependent on
the nature of the cell culture and available experiment equipment.
For example, if one were to use the standard cell culture plate size of
96 wells with at least three replicates per candidate, that would limit
the experiment to a maximum of 32 candidates, not accounting for
limitations like the edge effect (Mansoury et al., 2021). Of course,
researchers need not be restricted to using one plate and can also use
other multiwell plates like 384-well or 1536-well plates, however,
these come with their own limitations such as format restrictions of
the equipment available. The average batch size used in all the works
surveyed was 27.01.

Given the limitations in both iterations and batch size, the
number of variables that can be optimized given certain
experiment budget while achieving statistical power is an
important consideration in media optimization experiments. In
all works surveyed that used a surrogate model, the average
number of candidates tested in total was found to be 40.46, with
7.40 candidates tested per factor. The average number of factors used
was 8.10 (including one-step optimization) and 14.44 (excluding
one-step optimization).

For experiments that use a 2nd order polynomial RSM for
optimization, a typical number of factors used is 5. Using the

average number of candidates tested, this gives roughly
2 datapoints per coefficient for fitting, which is sufficient to
achieve power of approximately 0.8 with a R2 of 0.5 and a
significance level of 0.05. However, with 6 factors, achieving the
same power would need 50 candidates. It is important to consider
the experimental budget and the need for sufficient statistical power
when designing experiments to fit the response surface.

For non-parametric approaches or other machine learning
models, validation sets can be used to estimate the accuracy of
the model and determine if the number of datapoints is sufficient.
Empirical rules of thumb may also be used as guides to decide on
number of factors to choose given certain budget or conversely the
number of experiments given certain number of factors. For
example, a common guideline is to have data 10 times the
number of factors. For metaheuristics algorithms, several studies
(Bolufé-Röhler and Chen 2013; Chen et al., 2015) have looked at
how population size affects performance at different dimensions.
However, these have focused on metrics such as convergence time
and closeness to optima after convergence, which is not entirely
relevant to media optimization. Nevertheless, we may reference
some guidelines such as having a population size larger than and
preferably 10 times the dimension (Bolufé-Röhler and Chen 2013;
Mallipeddi and Suganthan 2008).

Lastly, another key factor to consider is the effect of passaging.
Often, bioprocesses require cells to be passaged continually for a few
rounds. After each passage, the characteristics of the cells change
which likely results in a change in the true function of the
optimization problem. These characteristics include key gene
functions, morphology, proliferation rate, and expression levels
(Hughes et al., 2007). Currently, none of the black-box
optimization algorithms account for this. One interesting
approach used by Cosenza et al. (2022) was to include
information about cell count by incorporating ‘low-fidelity’
information sources such as biochemical assays and ‘high-fidelity’
information sources like cell proliferation rate over one passage with
a Bayesian optimization tool, thereby including single-passage and
multiple-passage information into culture media optimization
problems and accounting for the change in cell characteristics.

8 Trends in existing literature

The use of optimization algorithms for culture media
optimization was first reported in 1992 by Freyer et al. (Dirk
Weuster-Botz and Wandrey 1995), where GA was used to
optimize media for formate dehydrogenase production in
Candida boidinii. In the late 1990s and early 2000s, many
researchers followed suit and started using GA for culture media
optimization problems (Viennet et al., 1996; Patil et al., 2002;
Marteijn et al., 2003; Bapat and Wangikar, 2004). Notably,
Cockshott & Hartman (2001) were the first to implement PSO
for the purpose of fermentation media optimization, where they
hypothesized that PSO would perform better than GA based on
previous reports that PSO performs better for smaller population
sizes and converges to the optimum faster compared to GA. SBO for
culture media optimization was first described by Coleman et al.
(2003) where they used an ANN ensemble surrogate model to
optimize Escherichia coli fermentation, based on previous studies
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in enology and other fermentation processes. Since then, many
researchers have used optimization algorithms for the purpose of
culture media optimization.

Of all the research articles available on the topic, approximately
70% reported using an SBO approach, of which roughly 43% used
ANN as the surrogate model, PV as the acquisition function, and GA
as the acquisition method (SBO(ANN)-PV-GA). The reason for the
popularity of this method is unclear; many papers do not cite their
reasons for choosing a particular model over others. Most of the
papers compare SBO(ANN)-PV-GA to either classical methods
such as OFAT screening (Desai et al., 2006) or to the use of
statistical RSM as a surrogate (Desai et al., 2008; Pal et al., 2009;
Baskar and Renganathan, 2010; Du et al., 2012; Gurunathan, 2012).
Some cited the ability of ANN to excel in pattern recognition and
modeling nonlinear relationships (Haider et al., 2008; Singh et al.,
2008; Pal et al., 2009; Du et al., 2012; Peng et al., 2014) and its ability
to work well with a small number of candidates (Desai et al., 2008)
and noisy data (Pathak et al., 2015) as reasons why ANN models
should be developed for biological systems. The next most popular
approaches adopted were an SBO with RSM as the surrogate model,
PV as the acquisition function, and GA as the acquisition method
(SBO(RSM)-PV-GA); and direct optimization with GA. The papers
that have compared SBO(ANN)-PV-GA and SBO(RSM)-PV-GA
have usually concluded that ANN is a better model (Liu et al., 2009;
Khaouane et al., 2012; Katla et al., 2019; Selvaraj et al., 2019;
Suryawanshi et al., 2019) for media optimization problems, likely
due to the nonlinear nature of the objective function.

Some less commonly used methods include neuro-fuzzy
networks as a surrogate model (Aquino et al., 2016), elastic
net regularized general linear model as a surrogate model
(Grzesik and Warth, 2021), and ensemble modeling (Liu and
Gunawan, 2017). Interestingly, most researchers opted for
parametric approaches as opposed to non-parametric
approaches like GP or SVM, since nonparametric methods are
known to outperform parametric methods for high-dimensional
and nonlinear data (Liu et al., 2020). Figure 6 shows the trend in
methods used over the years.

As shown in Figure 7, there is also an overrepresentation of
bacteria and fungi as the cell line of choice in media optimization

studies, due to the interest in optimizing the fermentation process in
yeast strains. Despite rising interest in cultured meat production and
the importance of antibody production, mammalian cells have not
been studied extensively in media optimization research.

9 Common challenges

9.1 Noise in experiment results

It is inevitable that noise exists in biological experiment
readouts. Having noisy experimental results is detrimental to
optimization by hampering the ability and speed of the algorithm
to converge. For example, in metaheuristics algorithms, the next-
generation of candidates is typically generated from high-
performing candidates. With noise, high-performing candidates
may be spurious and perform poorly on average when tested
repeatedly. This will lead to poor candidates generated for the
next iteration, and reduce the rate of improvement. Similarly for
surrogate models, noisy training data may result in a surrogate
model that predicts the true function value (without noise) poorly.

Measures to reduce noise can be implemented in both the
experimental and algorithmic design. Biological replicates can be
used for each media formulation and the response values can be
averaged across replicates, reducing variability in experimental
results and providing the optimization algorithm with less noisy
response values.

In terms of algorithm choice, many studies (Rakshit et al., 2017;
Sudholt, 2021) have looked at how noise affects the performance of
various methods. Somemetaheuristics algorithms are more sensitive
to noise, for example, Krink et al. (2004) found that standard DE
performance degrades more than other metaheuristics on noisy
functions.

For GPs, modeling with noise can incorporate the variability
between replicates into the modeling process. The noise associated
with the response may be either homoscedastic noise if noise
variances are similar across observations, or heteroscedastic noise
if noise variances vary across the observations. If the response
measuring equipment is known to have a consistent range of
uncertainty within the range of the response, then modeling with
homoscedastic noise would suffice. Otherwise, estimates of the noise
variance would be computed using the replicates of each candidate
separately and heteroscedastic noise incorporated into the GP
model.

9.2 Exploration and exploitation in
proposing candidates

The trade-off between exploration and exploitation is a common
challenge in optimization. Excessive exploration leads to slow
convergence, while excessive exploitation increases the probability
of being trapped in local optima. The design of most optimization
algorithms implicitly tries to balance between these two needs. For
example, in genetic algorithms, the selection and cross-over steps are
designed to exploit by proposing new candidates that are similar to
previous high-fitness candidates; the mutation step is designed for
exploration by allowing for random changes in the candidates to

FIGURE 7
Distribution of types (kingdom) of organisms studied.
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increase diversity in the population. It would be helpful for
practitioners to understand which hyperparameters of their
algorithm of choice controls the exploration-exploitation tradeoff
and adjust them accordingly.

For direct optimization methods, more emphasis on
exploitation may be helpful given the limits of experimental
capacity. A fast improvement on local optima to obtain “good
enough” solutions could be sufficient for certain experiments.

When optimizing on the acquisition function of the surrogate
model that occursin silico, it may be advisable to allow more
exploration to find the global optima of the acquisition function
since the number of iterations is not limited. Note that this does not
mean that the candidates should concentrate around the global
optima of the acquisition function as this is in fact excessive
exploitation behavior on optimizing the actual function. As
discussed in Section 6.3.4, diversity should still be preserved as
the surrogate model is unlikely to be accurate at the start and to
avoid very similar candidates.

10 New directions in research

With the expansion of the cultured meat industry and the
increasing need for therapeutic antibody discovery, media
optimization in more mammalian cell contexts would be
beneficial. Optimization for mammalian cell culture media poses
a more complex challenge as compared to microbial culture media
due to higher number of components. This means the existence of
more and potentially higher-order interactions between
components, leading to a much more complex objective function.
Increasing the number of interactions would also complicate the
screening process - the methods currently implemented may not
effectively identify the most important components when the
number and complexity of interactions between components in
the media increase.

In most studies, researchers have used a single measure of
enzyme of interest activity or a measurement that is
representative of the protein expression level like fluorescence
from GFP expression. However, these measurements may not
always accurately indicate the actual protein yield in the cells. A
related problem is the use of lower-fidelity measurements to reduce
experimental burden while complementing with fewer high-fidelity
but expensive or time-consuming measurements. In such cases, the
need to synthesize multiple information sources related to the
outcome will be useful. Cosenza et al. (2022) introduced the use
of multi-information source Bayesian optimization where
information from multiple assays was combined to measure cell
growth. This is achieved with a modification to the kernel of the GP,
by adding an additional Gaussian kernel to account for the deviation
of the lower-fidelity measurement away from the true function value
(assumed to be equal to high-fidelity measurement). The allocation
of each batch of candidates between high and low fidelity for
measurement is decided through the combination that produces
the highest multi-point expected improvement.

Another possible addition to media optimization problems
would be multi-objective optimizations. Often, optimization
problems involve multiple objectives that sometimes conflict,
such as maximizing cell growth and minimizing cost, that can be

optimized simultaneously. Examples include maximizing metabolic
activity (Havel et al., 2006) and maximizing cell count (Kim and
Audet, 2019). Multi-objective optimization would allow for the
prediction of a more universal solution set that can be chosen
from depending on the unique constraints or subjective desired
outcomes. For more information on multi-objective optimization,
we refer interested readers to (Collette and Siarry 2004).

Lastly, there is also a lack of use of newly developed algorithms
in culture media optimization research. Recently, Yoshida et al.
(2022) and Tachibana et al. (2021) have used deep neural networks
(DNN) with 4 hidden layers for fermentation media optimization
and have found that they perform better than other machine
learning models. Although deep learning has gained recent
popularity in many other applications, it remains to be seen if
DNNs will improve outcomes in media optimization application
considering limited studies. There are other advanced optimization
methods worth implementing for media optimization, including
deep kernel regression as surrogate models (Wilson et al., 2015), and
derivative-free reinforcement learning methods like neuroevolution
of augmenting topologies (NEAT) (Qian and Yu, 2021). In this
review, we will not be exhaustively expanding upon or analyzing the
methods not currently found in culture media optimization
literature.

11 Comparison of methods with
simulation experiment

As described in Section 2.3, simulation experiments were done
to compare the available methods for media optimization problems.
To compare the algorithms’ performance across all functions, an
average performance score is defined as follows:

Normalised functional value � yinitial − yfinal

yinitial − Global optimum

where yinitial refers to the functional value at the first iteration; yfinal
refers to the functional value at the last iteration and the global
optimum is the near-optimal solution found by running DE for
1000 iterations. The average performance score for an algorithm
across all different functions can be defined as the mean of the scores
on individual functions.

The following methods were compared throughout our
simulation experiments:

Metaheuristics methods.

• Genetic Algorithm (GA)
• Differential Evolution (DEbest1bin)
• Particle Swarm Optimization (PSO)

Various SBOs with differing surrogate models, with PV as the
acquisition function and GA as the acquisition method.

• Second-order polynomial (SBO(2OP)-GA-PV)
• Kriging (SBO(KRG)-GA-PV)
• Multi-Layer Perceptron (SBO(MLP)-GA-PV)
• Support Vector Machine (SBO(SVR)-GA-PV)

Kriging SBO with a different acquisition function.
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• EI (SBO(KRG)-GA-EI)

Kriging SBO with different acquisition methods, with PV as the
acquisition function.

• Truncated GA (maximum number of generations = 10)
(SBO(KRG)-truncGA-PV)

• Truncated DE (maximum number of generations = 10)
(SBO(KRG)-truncDE-PV)

• L-BFGS (SBO(KRG)-L-BFGS-B-PV)

These models were chosen as they were the most popular
methods used in the field of culture media optimization. Kriging
was chosen as the model for comparison against other infill
strategies as according to our preliminary data, it was the best
performing surrogate model. As explained in Section 2.3, the
experiments were conducted at three levels of dimensions to
represent the varying complexities of different types of culture
media. The performance of the methods was also compared in
experiments with noise to evaluate its effect on various methods.

For the low dimension experiment (dim = 5), a comparison of
three different DOE methods, LHS, CCD and BBD was also done to
understand how each DOE affects the performance of the methods.
BBD was supplemented with LHS to ensure an equal number of
candidates across the DOE. This comparison was only done for the
low dimension experiment as the number of candidates would be
too high and unfeasible to replicate experimentally for higher
dimensions. BBD was found to be the best performing DOE
(Supplementary Table S2).

Figure 8 shows the performance of the various methods in
each respective context. In the ‘noiseless’ experiments, some
variation exists in output values across the replicates due to
the stochastic nature of the methods. The relative performance
of the methods does not differ significantly across the different
DOE in the low dimension experiments (data not shown).
According to Figure 8A, in the low dimension experiments
without additive noise Kriging with truncated DE as the
acquisition method and PV as the acquisition function is the
best method across all iterations.

In the experiments with added noise, the performance of all the
methods deteriorates significantly. However, SBO(KRG)-truncDE-
PV remains the best performing method across all iterations
(Figure 8B), with PSO being a close second at higher iterations.
According to Figure 8B, methods such as SBO(2OP)-GA-PV and
SBO(SVR)-GA-PV perform comparatively well until iteration 4,
which is congruent with the many papers that had success with RSM
methods with just one iteration (Liu et al., 2009; Khaouane et al.,
2012; Parkhey et al., 2017). Another popular method, SBO(MLP)-
GA-PV, however, performed less well compared to the others. The
SBO with the acquisition method as a local optimizer (SBO(KRG)-
L-BFGS-B-PV) performed the worst consistently across all iterations
and its performance seems to degrade significantly in the presence of
noise (Figures 8A, B).

Figure 8C shows the results for the medium dimension (dim =
20) experiments without additive noise. Interestingly, in this case
SBO(KRG)-truncGA-PV performs better than SBO(KRG)-
truncDE-PV at certain iterations. These two methods perform
significantly better than the other methods, while the

FIGURE 8
Performance of the methods in each context, represented by average normalized functional value over each iteration. Bands represent the 95%
confidence interval. Unless otherwise stated, the DOE used is LHS. (A) Low dimension experiment results, with BBD as the DOE andwithout additive noise
(B) Low dimension experiment results, with BBD as the DOE and additive noise (C) Medium dimension experiment results without additive noise (D)
Medium dimension experiment results with additive noise (E) High dimension experiment results without additive noise (F) High dimension
experiment results with additive noise.
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TABLE 1 Compilation of all the methods used in culture media optimization. Rankings are listed for methods that were evaluated in this paper, based on final functional values across experiments with additive noise, ranked
1–10 from best to worst. Iterations to reach set value is the number of iterations eachmethod took to reach to achieve the normalized value achieved by the best performingmethod, SBO(KRG)-truncDE-PV in the first iteration.

Type Surrogate Model/Metaheuristic Acquisition method References Count Ranking Iterations
to reach
set value

Metaheuristic GA - Garlapati et al., 2010; Patil et al., 2002; Marteijn et al., 2003; Bapat and Wangikar, 2004; D.
Weuster-Botz and Wandrey, 1995; Hofer et al., 2004; Hutwimmer et al., 2008a (2008b),Sarma et al.,
2009; Kucharzyk et al., 2012; Tišma et al., 2012; Chauhan et al., 2013; Singha and Panda, 2014;
Camacho-Rodríguez et al., 2015; Munroe et al., 2019; Brinc and Belič, 2019; Heylen et al., 2006

16 8 7

Metaheuristic PSO - Cockshott and Hartman, 2001; Huang et al., 2007; Garlapati et al., 2010 3 3 2

Metaheuristic Multi-objective GA - (Havel et al., 2006) 1 -

Metaheuristic SA - (Dhagat and Jujjavarapu, 2021) 1 -

Metaheuristic DE - (Kim and Audet, 2019) 1 5 3

SBO GP Local optimizer (Cosenza et al., 2022) 1 10 >10

SBO ANN GA (Desai et al., 2006; Desai et al., 2008; Pal et al., 2009; Baskar and Renganathan, 2010; Du et al., 2012;
Haider et al., 2008; Singh et al., 2008; Peng et al., 2014; Pathak et al., 2015; Suryawanshi et al., 2019;
Selvaraj et al., 2019; He et al., 2008; Subba Rao et al., 2008; Singh et al., 2009; Guo et al., 2010;
Gurunathan and Sahadevan, 2011; Kana et al., 2012; Baskar and Renganathan, 2010; Kana et al., 2012;
Rekha et al., 2013; Zhou et al., 2015; Wei et al., 2017; Kumar et al., 2017; Pandey et al., 2018; Katla et al.,
2019; Joji et al., 2019; Prabhu et al., 2020; Zhang et al., 2020; Imandi et al. n.d.)

29 9 >10

SBO ANN PSO (Khaouane et al., 2012) 1 -

SBO ANN hybrid GA (Coleman et al., 2003) 1 -

SBO ANN Local optimizer (Tripathi et al., 2012; Dhagat and Jujjavarapu, 2021) 2 -

SBO RSM GA (Parkhey et al., 2017; Selvaraj et al., 2019; Kumar et al., 2017; Maiti et al., 2011; Moorthy and Baskar,
2013; Y; Singh and Srivastava, 2013; Kanimozhi et al., 2017; Shirodkar and Muraleedharan, 2017;
Srivastava et al., 2018)

9 7 >10

SBO RSM DE (Eswari et al., 2013) 1 -

SBO RSM PSO (Khaouane et al., 2012) 1 -

SBO RSM SA (Parkhey et al., 2017) 1 -

SBO RSM Analytical Solution (Abdel-Fattah et al., 2007; Abdel-Fattah, 2009; Burrows et al., 2009; Abbasi et al., 2013; Farag et al.,
2018; Katla et al., 2019)

6 -

SBO RSM Q2 (Burrows et al., 2009) 1 -

SBO RSM Multi-objective GA (Kumar et al., 2015; Unuofin et al., 2019) 2 -

SBO SVM GA (Xu et al., 2014; Hesami and Jones, 2021) 2 6 2

SBO Random Forests Exhaustive grid search, kmeans (Grzesik and Warth, 2021) 1 -

(Continued on following page)
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TABLE 1 (Continued) Compilation of all the methods used in culture media optimization. Rankings are listed for methods that were evaluated in this paper, based on final functional values across experiments with additive
noise, ranked 1–10 from best to worst. Iterations to reach set value is the number of iterations each method took to reach to achieve the normalized value achieved by the best performing method, SBO(KRG)-truncDE-PV in
the first iteration.

Type Surrogate Model/Metaheuristic Acquisition method References Count Ranking Iterations
to reach
set value

SBO RBFNN GA (Tian et al., 2013) 1 -

SBO RBFNN PSO (Liu et al., 2009) 1 -

SBO RBFNN truncated GA (Zhang and Block, 2009) 1 -

SBO RBFNN truncated GA + DYCORS (Cosenza et al., 2021) 1 -

SBO Neuro-fuzzy networks SA (Aquino et al., 2016) 1 -

SBO Bayesian-regularized NN Batch relative information gain (Zhang and Block, 2009) 1 -

SBO Bayesian-regularized NN PSO (Khaouane et al., 2012) 1 -

SBO Elastic net regularized general linear
models

Exhaustive grid search, kmeans (Grzesik and Warth, 2021) 1 -

SBO Non-parametric Regression with Gaussian
Kernel

ranking pseudo-r square (Zou et al., 2020) 1 -

SBO GRNN Fruit fly optimization (Salehi et al., 2021) 1 -

SBO GRNN GA (Jafari et al., 2022) 1 -

SBO Adaptive neuro-fuzzy inference system GA (Farhadi et al., 2020) 1 -

SBO GP Markov Chain Monte Carlo (Morschett et al., 2017) 1 -

SBO GP Batch Contextual Local
Penalization

(Kanda et al., 2022) 1 -

SBO GP Full factorial in new expanded
region

(Freier et al., 2016) 1 -

SBO GP GA 0 4 2

SBO GP Truncated GA 0 2 2

SBO GP Truncated DE 0 1 1
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performance of PSO, DE, SBO(KRG)-L-BFGS-B, SBO(KRG)-GA-
PV and SBO(KRG)-GA-EI is comparable across iterations.

Similar to the low dimension experiments, the performance of
all the methods deteriorates with the addition of noise. The
performance of SBO(KRG)-truncGA-PV, SBO(KRG)-truncDE-
PV and PSO are comparable from iteration 4 onwards, with
significantly better performance as compared to the other
methods. Notably, the performance of SBO(2OP)-GA-PV is
much lower compared to its performance in the low dimension
experiment.

The results of the high dimension (dim = 40) experiments
without additive noise (Figure 8E) are very similar to that of
Figure 8C, barring a significant deterioration in the performance
of SBO(SVR)-GA-PV.

In the high dimension experiments with additive noise,
SBO(KRG)-truncDE-PV is clearly the best choice over almost all
iterations, with PSO as a feasible substitute.

Overall, the SBO methods with truncated acquisition
methods seemed to triumph across all the contexts. This was
likely due to the conserved diversity in the proposed candidates
which prevented convergence to a local optimum, thus allowing
the method to find a near-optimal solution faster. PSO has also
fared relatively well across the experiments even with additive
noise. Notably, the hypothesis that SVM would perform well with
small datasets has generally held true. It is also surprising that
SBO(KRG)-GA-EI did not perform better than its PV
counterpart across all experiments, as EI helps to balance
exploration of the input space with exploitation. This could be
because the parameters set for GA allow it to strike a good
balance between exploration and exploitation such that the
use of EI as an acquisition function disrupted this balance,
resulting in too much exploration and thus wasting resources
on solutions that are less likely to be near-optimal. ANN did not
seem to perform well across the experiments. The popularity of
ANNs and their improved performance against RSM as reported
in many media optimization studies is therefore surprising. This
could be because most such studies conduct a one-step
optimization which is not sufficient to determine the
performance at higher number of iterations. Another reason
could be the lack of hyperparameter tuning in the
implementation of the MLP or other differences in
implementation.

Table 1 shows a compilation of all the methods used in culture
media optimization literature and their corresponding rankings
according to the normalized values reached at the 10th iteration;
and the number of iterations needed to achieve the 1st iteration
normalized value reached by SBO(KRG)-truncDE-PV, averaged
across all noisy experiments. There is a lack of papers that have
used the best performing methods we have found, meaning that the
use of these methods could result in better improvements than
reported.

Based on the results of the simulation experiments, we
recommend Kriging SBO together with a truncated
metaheuristics acquisition method as a highly competitive
optimization method that would likely meet the needs of most
culture media optimization experiments.

While the simulation experiments conducted were quite
extensive, they were not exhaustive and were focused more on

the methods proven to yield promising results. For example,
methods such as variable neighborhood search, simulated
annealing and a variety of direct search methods like mesh
adaptive direct search have not been evaluated in the culture
media optimization context. Given that PSO performs well as a
metaheuristic, it would also be interesting to know whether using it
as an acquisition method would improve the current best method of
SBO(KRG)-PV, or in general for other surrogate models. It would
also be useful to verify if the truncated acquisition methods improve
the performance of surrogate models other than Kriging.
Furthermore, the number of generations for truncated acquisition
methods could be optimized such that the diversity of the suggested
candidates is maintained while also converging faster to the global
optimum. Lastly, while the BBOB test suite makes for a suitable
alternative to time-consuming experimental validation, the validity
of these results should be proven through experimental validation.

12 Conclusion and outlook

Since its inception, cell culture is playing an increasingly
important role in the production of various useful products
including biopharmaceuticals, enzymes and chemicals. The market
size for products manufactured with microbial fermentation is
estimated to be USD 28.3 billion (Custom Market Insights, 2022)
and the market size for biopharmaceuticals manufactured using
animal cell systems is estimated to be USD 24.6 billion (‘Cell
Culture Market Size, Share & Trends Report, 2022–2030’ 2018). In
recent years, new applications are emerging in cell culture for food
production known as cellular agriculture, which includes cultured
meat, single-cell proteins and precision fermentation. The market for
cellular agriculture is projected to grow to USD 515.2 billion by 2030
(Research 2021). In scalable cell culture production systems, culture
media is often the crucial determinator of techno-economic viability
through its effect on product yield and its role as the main contributor
to production costs. For example, in monoclonal antibody production
using animal cell cultures, culture media is estimated to account for
30%–40% of the production cost (Batista and Fernandes, 2015). Thus,
optimizing the culture media for yield and cost is very important for
the success of scalable commercial applications and for reducing the
cost for many products.

Given the expansive literature on culture media optimization,
we recognize the challenge researchers face in perusing existing
works and selecting a suitable optimization methodology for their
own cell culture application. In the absence of studies that
summarize and compare between various available methods, it is
common to default to methods that were used in similar studies
when a better method may exist.

In this review article, we hoped to (i) provide a generalized
framework for understanding and designing culture media
optimization experiments; (ii) summarize and classify the large
number of existing works; (iii) examine common challenges and
algorithmic features that were designed and chosen during past
efforts to such challenges; (iv) provide recommendations on the type
of algorithm to use based on benchmark comparisons.

For standard applications of culture media optimization, the
benchmark comparison may serve as a reference to help select the
algorithm that is likely to perform well on generic unknown
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functions within experimental resource constraints. For applications
where existing methods provide limited results, and are seeking to
develop improved algorithms, we identify a few possible areas where
efforts might be fruitful.

Development of better surrogate models is an area where
advances in data-driven predictive models can be applied. As
discussed in Section 10, advances in machine learning algorithms
and deep learning may find useful application especially for higher
dimension problems. From the benchmark experiments, the method
of acquisition has a significant effect on optimization performance.
Hence designing of better acquisition methods is also likely to yield
improvements. Acquisition methods that can successfully balance
exploitation and exploration through clever designs can achieve fast
improvement while avoiding premature convergence. Other areas
where new developments have been made are discussed in detail in
Section 10.

In this review, we have focused exclusively on methods used in
cell culture media that are knowledge-blind. However, it should be
recognized that there are methodological limitations of relying on
such optimization approaches where only media component
concentrations/levels and output responses are collected and
used. Biological data of cell response, such as the cell
transcriptomes, or analysis of spent media can be used to
enhance predictive surrogate models. Chemical information
about the media components may also be incorporated into such
models, opening up the possibility of building surrogate models that
can generalize to other media components outside the original list of
components used in the experiment. Various AI, bioinformatic and
chemoinformatic approaches may find potential use in the
discovery, design and optimization of cell culture media.
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