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Objective: Fetomaternal hemorrhage (FMH) is an alloimmunization resulting
caused by the incompatibility between fetal and maternal blood. For the
prevention of newborn haemolytic disease (HDN), it is crucial to quantify the
amount of fetomaternal hemorrhage. However, the classical Kleihauer–Betke test
(K-B test) for detecting fetomaternal hemorrhage is limited by experimental tools
and conditions and is not suitable for routine clinical use. Consequently, the
method of prenatal diagnosis of fetomaternal hemorrhage applicable to the clinic
is a topic worthy of further study. Therefore, it is worthwhile to further
investigation on the clinically applicable prenatal diagnosis method for
fetomaternal hemorrhage.

Methods: This experiment demonstrates hydrogel’s ability to separate sensitized
red blood cells from soluble antibodies. Using flow cytometry the fluorescence
values of sensitized red blood cells and fluorophore-labeled antibodies were
measured, and the testing steps for the detection products of a novel technology
were determined. The properties of a hydrogel fluoroimmunoassay were
evaluated by distinguishing between the amounts of fetal and adult
haemoglobin. The precision of this technology is evaluated using the
Kleihauer–Betke test as a comparison.

Results: This experiment compared the detection of haemoglobin fluorescence in
adults (n = 2) and fetuses (n = 6). At the same time, the fluorescence intensity of
different fetal haemoglobin (HbF) in adult haemoglobin (HbA) was calculated. The
fluorescence value is 1.6% when the fetal hemoglobin concentration is 0.1%.

Conclusion: The novel hydrogel fluoroimmunoassay can accurately determine
the fluorescence intensity by flow cytometry to differentiate fetal haemoglobin
from adult haemoglobin, quantitatively prenatally diagnose fetal haemoglobin,
address the incompatibility between fetal and maternal blood types, and prevent
alloimmunization.
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Introduction

Evaluation of fetal red blood cells (RBCs) in the peripheral blood
of pregnant women is used to detect fetomaternal hemorrhage
(FMH) (Minuk et al., 2020). In order to address the
incompatibility of fetal and maternal blood, it is essential to
accurately quantify FMH. The number of fetal RBCs transferred
to the mother determines the amount of immunoglobulin
administered to prevent future Rhesus D (Rh D)
alloimmunization (Glazebrook et al., 2020; Ayenew, 2021).

Fetomaternal hemorrhage is the entry of fetal red blood cells
(RBCs) into the maternal circulation due to placental rupture or
injury during puncture, trauma, abortion, or delivery. When the
blood type of the fetus is incompatible with that of the mother,
antibodies against fetal RBCs are produced in the mother. These
antibodies pass through the placenta and cause the destruction of
fetal RBCs (Troia et al., 2019; Hookins and Vatsayan, 2020; Monteiro
et al., 2021). 16 weeks is the earliest placenta rupture, so pregnant
women at 16 weeks are at risk for FMH (Akorsu et al., 2019; Athiel et al.,
2020). David M conducts the Kleihauer–Betke test (K–B test) and
concludes that 22.5% of Rh D-negative pregnant women carry Rh
D-positive fetuses, resulting in FMH (David et al., 2004). When
D-negative pregnant women have D-positive fetal RBCs, the fetal
RBCs stimulate the mother to produce anti-D IgG antibody, which
can enter the fetus through the placenta and produce alloimmunity
(Tneh et al., 2021). Additionally, anti-Kell, anti-E, and anti-C IgG
antibodies may also induce allogeneic immunity via the placenta
(Erhabor et al., 2020). Alloimmunization following FMH can cause
anemia, edema, jaundice, and even death in fetuses and newborns
(Christino Luiz et al., 2019; Fan et al., 2021). Statistics indicate that fetal
mortality due to FMH can reach 10% (Bowman, 2010). Failure to detect
FMH early and treat with anti-D immunoglobulin are the leading
causes of perinatal fetal morbidity and mortality (Carr et al., 2022).
Therefore, prenatal diagnosis and quantification of FMH can ensure
that high-risk pregnant women receive appropriate treatment and the
care of experienced obstetricians. Accurate perinatal quantification of
FMH and corresponding treatment are the key to addressing the
incompatibility of fetal and maternal blood types and are essential
for the management of obstetrics and blood transfusion departments
(Pahuja et al., 2011).

The purpose of the Kleihauer–Betke test, also known as the acid
elution test, is to differentiate fetal RBCs from adult RBCs (Kim and
Makar, 2012) based on the difference in acid-resistance between fetal
haemoglobin (HbF) and adult haemoglobin (HbA). After acid
treatment, fetal RBCs appear pink and adult RBCs appear
“ghost-like.” The difficulty of manually counting is the primary
reason why the K-B test has not yet been implemented in the clinic
(Lemaitre et al., 2020; Ficarola et al., 2022). Workers need to quickly
distinguish fetal RBCs from adult RBCs according to their colour,
size and texture. Usually, the staff need to count 2,000 RBCs within
20 min, and the slide contains neutrophils, overlapping cells and
impurities, which makes it more difficult and subjective for the staff
to count. Therefore, high labour intensity, strong subjectivity and
poor accuracy have become the shortcomings of K-B test (Zhang
et al., 2021). Melanie C compared the K-B test to the flow cytometry
test and discovered that the K-B test yielded positive results, whereas
the flow cytometry test yielded negative results. This circumstance
constitutes 94% (Audette et al., 2022).

Hydrogel fluoroimmunoassay combines accurate flow
cytometry (FCM) with high-sensitivity microcolumn gel
technology, and further develops hydrogel
immunoagglutination test into hydrogel fluoroimmunoassay
technology, which improves the sensitivity and accuracy of
detection technology and can be mass-produced. This
technology uses a medium (1.14 g m-1) with a higher density
than the majority of cells, i.e., the hydrogel medium’s separation
properties (Wang et al., 2015). The hydrogel medium is in a
flowing state at room temperature. Under the influence of
centrifugal force, high-density RBCs and low-density small
molecule antibodies can be directly separated, and then
complicated steps such as washing can be omitted, making the
procedure simple, quick, and convenient (Wu et al., 2022). The
hydrogel fluoroimmunoassay uses the combination of sensitized
indicator RBCs and fluorescently labelled anti-HbF antibody, and
determines the fluorescence value by flow cytometry. This
method is accurate and reliable in determining the quantity of
fetal RBCs. Due to the fact that this method can distinguish HbF
from adult haemoglobin, it can be used to detect fetal hemorrhage
prenatally. This study’s objective is to evaluate the ability of
hydrogel fluoroimmunoassay to diagnose FMH at a critical level
of 0.1%, which is within the standard range of clinical treatment
of FMH with anti-D immunoglobulin (Simes et al., 2022) and can
prevent homologous immunity caused by blood group
incompatibility between fetus and mother.

Materials and methods

Reagents, instruments and blood samples

The anti-mouse IgG (fab specific)-FITC antibody produced in goal
was acquired from Sigma (F5387). All chemical reagents were acquired
from SinopharmChemical Reagents Co., Ltd., (China). Alexa Fluor TM
647 Carboxylic Acid, Succinimidyl Ester was purchased from Thermo
Fisher scientific (United States). Flow cytometer (z2010-254, BD
LSRFortessa). In our laboratory, 0.01M PBS (pH 7.2) and hydrogel
were prepared. Two lymphocyte hybridoma cells produce the
monoclonal antibody against HbF (15-G4, 9-F10). The sample of
whole blood was supplied by China-Japan Union Hospital of Jilin
University. The blood sample stored at 4°C has been approved by the
China-Japan Union Hospital’s Ethics Committee (Approval number:
20220425009).

Blood sample preparation and extraction of
haemoglobin

Blood from healthy adults and umbilical cord blood from
newborn fetal umbilical cords were collected and washed three
times with saline. Then, added twice volume of distilled water,
which is erythrocyte lysate, centrifuged at 10,000 r.p.m for 20 min,
collected the supernatant, which was haemoglobin, and determined
its concentration. The same concentration of fetal hemoglobin was
then mixed with adult hemoglobin in volumes of 1: 1,000, 3: 1,000,
and 5: 1,000 to produce fetal hemoglobin with proportions of 0.1%,
0.3%, and 0.5% in the mixed hemoglobin.
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Separation of indicator RBCs from small
molecular dyes by hydrogel

Wang’s article described the use of hydrogel to separate small
molecular dyes from indicator RBCs. The characteristics of methylene
blue and the reaction time of the reactants differed between this
experiment and Wang’s. In this experiment, methylene blue
(Mw373.90,0.8%), indicator RBCs, and additional reactants were
placed on top of hydrogel, incubated, and centrifuged at 285 g for 3 min.

The preparation of indicator RBCs

Randomly collected “O” type Rh-positive RBCs, thoroughlywashed
them, treated them with 0.5% GA-PBS solution at room temperature
for 30 min, centrifuged and washed them, then added 0.5% PA-PBS
solution to water bath at 37°C for 1 h, centrifuged and washed them,
then added 1% PFA-PBS solution to water bath at 37°C for 5 h, and
shook them every 30 min. After washing and centrifuging, a 10%
suspension of RBCs was made and stored at 4°C for future use.

The method of coating indicator RBCs with
antibodies

Chromium trichloride solution (CrCl3.6H2O) in saline had a
concentration of 1.51%. Adjust the pH to 5.0 using 1 mol/L sodium
hydroxide prior to use. By using the metal cation immunoglobulin
tannic acid method, aldehyde-modified RBCs were made sensitive.
In other words, chromium trichloride solution was added to anti-
HbF antibody diluted with acetate buffer (0.175 M pH6.4) to achieve
a final concentration of 120 μg/mL. After mixing, water-bathing at
37°C for 10 min. To the anti-HbF antibody and 1 mL of hematocrit
that had been incubated, 1:2,000 tannic acid solution was added
immediately. It is necessary to ensure that the volume ratio of the
mixed solution to the tannic acid solution is 3:1, and to incubate the
solution in a 37°C water bath for 15 min. After six times of washing,
2% BSA-PBS was added to a 37°C water bath for 2 hours, and a
storage suspension was subsequently prepared.

Verification of binding of indicator cell and
anti-HbF antibody

As the second antibody, sheep anti-mouse IgG FITC was used to
detect mouse anti-HbF antibody. After 30 min in a 37°C water bath, the
cells were washed once and centrifuged before being collected. The
hematocrit was then diluted in PBS-BSA at 1%. Using FCM, the
fluorescence intensity of negative and positive samples was measured.

Method of labeling antibody with
fluorescein

Thermo Fisher Scientific Company’s Alexa Fluor TM
647 Carboxylic Acid, Succinimidyl Ester reagent was used to
label anti-HbF antibody with F647. Among them, the goat anti-
mouse IgG antibody concentration was 16.544 mg, and the labeling

time of F647 for goat anti-mouse IgG antibody was 4 h at room
temperature, followed by an overnight treatment at 4°C.

Hydrogel fluoroimmunoassay for HbF
detection

The haemoglobin (Hb), fluorescence-labeled antibody, and
sensitized indicator RBCs were added to the hydrogel-filled card
and centrifuged at a low speed until the immune complex in the
positive result and the indicator RBCs in the negative result sank,
while the fluorescence-labeled antibody remained on the hydrogel in
the negative result (Figure 1).

Analysis of fetal red blood cells in hydrogel
fluoroimmunoassay

The hydrogel fluoroimmunoassay substances were detected by flow
cytometry calibrated with standard fluorescent microspheres, and the
fluorescence intensity of 50,000 cells was determined. The operation
steps strictly adhere to the BD LSRFortessa flow cytometry instructions.
The flowchart is examined with Flowjo 10.8.1. The distinction between
fetal and adult red blood cells is based on the fact that their peaks are
distinct (Figure 4). Even though the negative control has only one peak
(0.0% fetal hemoglobin), this experiment distinguishes it using the
abscissa value of 103 as the boundary. Flow cytometry values with 0.1%,
0.3%, and 0.5% of fetal hemoglobin are subtracted fromnegative control
values greater than 103 according to the principle of data processing.

Analysis of the sensitivity of the K-B test and
hydrogel fluoroimmunoassay

The preceding analysis method was used to analyse and compare
the K-B test. The K-B test was conducted in accordance with the
AABB technical manual. The experiment involved the observation
of 10,000 cells and the counting of fetal RBCs (Athiel et al., 2020).
This experiment was repeated three times, and the results were
statistically analyzed using GraphPad Prism 9.4.1 to determine if
there was a statistically significant difference between the hydrogel
fluoroimmunoassay and K-B test for detecting different fetal red
blood cells produced by 0.0%, 0.1%, 0.3%, and 0.5% cord bloods.

Results

Effect of hydrogelmediumon the separation
of small molecular dyes and indicator RBCs

To demonstrate that the hydrogel is capable of separating
indicator RBCs from small molecular proteins not bound to
RBCs, we compared the distribution of small molecular
substances, RBCs, and immune complexes in the hydrogel
medium under different conditions. The substances with the
higher density sank to the bottom of the hydrogel medium,
whereas the substances with the lower density remained on top
of the hydrogel. Figure 2D indicated that 1 h of incubation had no
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effect on the diffusion of small molecules or RBCs. In Figure 2, (A)1
and 2 (B)1 remained unchanged, indicating that methylene blue was
not centrifuged to the card’s bottom. Red indicator red blood cells
coated with an antibody were added to the top of the 2 (A)2 card. The
top of the card in 2 (B)2 changed from red to white after
centrifugation, and red (indicator RBC-coated antibodies)
appeared at the bottom of the card, indicating that the antibody-
coated indicator red blood cells were centrifuged to the bottom of
the card. The 2 (A)3 card turns red when the immune complex
(indicator RBC-coated antibodies, fluorescently labeled antibodies,
and excessive hemoglobin to be detected) is added. The immune
complex formed by indicator RBC-coated
antibodies—HbF—fluorescently labeled antibodies is centrifuged
to the bottom of the card to form red, while hemoglobin at the
top of the card is not bound to form an immune complex and is
therefore still red. The experimental findings were consistent with
Wang’s perspective (Wang et al., 2015). The results demonstrated
that hydrogel medium could indeed separate soluble antigens,
soluble antibodies, granular substances, and other
macromolecules. The centrifugal force of RBCs and small
molecules sinking in this experiment was 285 g.

Analysis of the binding of indicator cells to
antibodies

Figure 3A’s objective is to determine if the indicator cells were
bound to anti-HbF antibody. In comparison to the red line (negative

sample), the light blue line (positive sample) is clearly shifted to the
right, and the fluorescence value is clearly elevated. The outcomes
demonstrated that the anti-HbF antibody was successfully coupled
with indicator RBCs, which could be used in the subsequent
experiment.

Immune complex detection with
fluorescent-labeled antibodies

Figure 3B demonstrated that F647-labeled antibody and
antibody modification indicated that RBCs could indeed
recognise HbF specifically, indicating that the experimental
steps had been established successfully. Compared to the red
line (negative sample), the light blue line (positive sample) was
clearly shifted to the right, and the fluorescence value was
clearly increased, indicating that this experiment was able to
distinguish between fetal and HbA. As depicted in Figure 5C,
this experiment was repeated three times with negative and
positive controls. The Hb concentration used in this experiment
was 0.608 mg/mL (0.60–0.62 mg/mL). In the traditional FCM
detection method, the incubated reactants were required to be
washed a minimum of three times; if the washing times were
insufficient, the false positive rate would increase, and if they
were excessive, fetal RBCs would be lost. It had been reported in
the literature that washing times should be minimised as much
as possible when detecting fetal bleeding with FCM (Wiley
Online Library, 1999). Figure 3B depicted the detection

FIGURE 1
Procedure for detecting FMH using a hydrogel fluoroimmunoassay technique. This experiment was divided into two stages: the first stage was
prepared by research units, which includes fluorescently labeled antibody, indicator RBCs-coated antibody, and RBC lysis; the second stage was
prepared by hospital transfusion departments.
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results obtained after a single washing, while Figure 4depicted
the separation results obtained using a hydrogel medium. It was
discovered that the fluorescence intensity of washing once was
demonstrably higher than that of hydrogel separation,
indicating that the separation effect of hydrogel was
demonstrably more effective than that of washing once.
Consequently, the use of hydrogel medium can reduce
washing steps, save time, and ensure the accuracy of
experimental results.

Hydrogel fluoroimmunoassay and K-B test
sensitivity

Figure 4 depicts the detection of mixed haemoglobin in various
proportions (the ratio of HbF to HbA) via hydrogel
fluoroimmunoassay. In this experiment, 50,000 cells were
counted. Figure 4B depicted the global distribution of HbF
concentrations of 0.0%, 0.1%, 0.3%, and 0.5%. The fluorescence
intensity increased as the ratio of fetal RBCs increased. As shown in

FIGURE 2
Separation results of small molecule dyes and indicator RBCs using a hydrogel medium. (A) before centrifugation, from left to right: (A)1 Methylene
blue, (A)2 indicator RBC-coated antibodies (A)3 immune complex components, (A)4 indicator RBC-coated antibodies and methylene blue, and (A)5
immune complex components and methylene blue. (B) after centrifugation. (C) before incubation. (D) 1-h incubation. (E) centrifugation immediately
following incubation.

FIGURE 3
(A) Detection results of bound antibodies using FITC-conjugated goat anti-mouse IgG. (B) FCM detection of hemoglobin using Alexa Fluor™ 647-
conjugated anti-HbF. (C) The K–B test results for various cord blood ratios in the mode of FMH.
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the image, the negative result (0.0%) had a peak that represented
HbA; there were two peaks with varying proportions of HbF (0.1%,
0.3%, and 0.5%). HbA was represented by the peak on the left, while
HbF was represented by the peak on the right. As the fetal RBC ratio
increased, the height of the left peak decreased, while the height of
the right peak increased. Positive APC-A values for 0.1% HbF were
found to be 1.6%, 0.3%HbF was 20.6%, and 0.5%HbF was 23.8%. As
the fetal RBC ratio increased, the APC-A positive value increased
dramatically. Figures 4C–F represented sub-graphs for HbF
concentrations of 0.0%, 0.1%, 0.3%, and 0.5%, respectively.
Figure 3C depicted the outcomes of the K-B test on blood
samples with varying proportions. Using electron microscopy,
10,000 cells were tallied; Figure 3C displays an upward trend in
the proportion of fetal RBCs within adult RBCs. The K-B test and the
hydrogel fluoroimmunoassay exhibited a strong correlation. Both
were able to reliably and accurately detect the amount of FMH, and
their sensitivity can reach 0.1%, which is in line with the clinical
treatment standard for 2 mL of FMH. On the basis of these results, a
critical concentration of 0.1% is determined. The conclusion reached
by Davis is consistent with this one (Davis et al., 2010). Figure 5 was
a bar graph of repeated hydrogel fluoroimmunoassay and K-B tests
for different hemoglobin concentrations. p < 0.0001 indicated that
the fluorescence values of 0.0%, 0.1%, 0.3%, and 0.5% of fetal
hemoglobin detected by hydrogel fluoroimmunoassay were

statistically significant. Figure 5B demonstrates that the K-B test
was statistically significant for detecting fetal red blood cells in 0.1%,
0.3%, and 0.5% of mixed blood (p < 0.0001).

Discussion

In this study, fetal hemorrhage was diagnosed quantitatively
using the hydrogel fluoroimmunoassay. It is believed that this is the
first time the combination of hydrogel medium and
fluoroimmunoassay have been combined to diagnose FMH. This
experiment also assessed the precision of FMH and compared it to
the K-B test. By employing this technique, the risk of
alloimmunization due to maternal and fetal blood group
incompatibility can be reduced. Consequently, hydrogel
fluoroimmunoassay technology may be advantageous for the
diagnosis and prevention of FMH. Evaluation of FMH using
hydrogel fluoroimmunoassay required minimal blood
(approximately 10 μL), minimal dependence on manual operation.

Inability to distinguish between HbF and F cells is a common
source of false-positive results in K-B tests (Flynn et al., 2022). F cells
refer to normal RBCs (Alter, 1984; Fabry et al., 2001; Corcoran et al.,
2014) that contain a small amount of HbF (1%–2% in adults)
(Cormack et al., 2019). Nonetheless, certain inherited or acquired

FIGURE 4
Fluorescence quantification results of different cord blood ratios in themode of FMH by hydrogel fluoroimmunoassay technique (A)Gating strategy:
The fetal RBCs gate was defined using a positive control fetal control and a negative adult control. (B) the summarized figures obtained by superimposing
the (C) (D), (E), and (F) figures, differentiated by line colors; (C), (D) (E), and (F), and f represented the fluorescence intensities of various proportions of fetal
hemoglobin in mixed hemoglobin, respectively (0.0%, 0.1%, 0.3%, and 0.5%).
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haemoglobin disorders, such as sickle cell anaemia and -thalassemia,
result in a substantial increase in HbF levels. In addition, F cells will
physiologically increase during pregnancy. Hemoglobin in F cells
and fetal RBCs has different antigen specificity to support the
distinct differentiation of fetal RBCs and adult RBCs, resulting in
different fluorescence intensities (Cardoso et al., 2019; Stanic et al.,
2020). The anti-HbF antibody used in this experiment is a specific
antibody against two distinct epitopes of HbF, and the adult HbF
sample, which is the negative control, is used as the negative control.
The fluorescence value of fetal hemorrhage minus the fluorescence
value of the negative control is the final fluorescence result produced
by different proportions of HbF in order to avoid the influence of the
increase of HbF in F cells on the detection results (Hsia et al., 2019).
In addition, the results were confirmed by repeating experiments
with three adult erythrocytes and three fetal erythrocytes
(Figure 5C). Therefore, the anti-fetal haemoglobin antibody
fluorescence value calculated by the hydrogel fluoroimmunoassay
will not prompt patients to take additional anti-D immunoglobulin.
In addition, compared to the article by Agaylan, A. and Kumpel, B.,
this technique has the advantages of not requiring washing, high
efficiency, loss-free separation of antigen-antibody complexes,
higher sensitivity, simple and rapid operation, reduced fibrinogen
interference, and elimination of false positives (Agaylan et al., 2007;
Kumpel et al., 2014). FCM is more advantageous in this study for
detecting fetal RBCs and F cells in blood samples, consistent with
Marcella R’s report (Cardoso et al., 2019). In this experiment, the
centrifugal force that causes red blood cells sensitized with anti-HbF
to sink is 285 g. The article by Wang demonstrates that the
minimum centrifugal force required for red blood cells to sink is
less than 100 g, whereas the minimum centrifugal force required for
proteins to sink is 3,000 g. In this experiment, the centrifugal force is
greater than in Wang’s article. The primary cause may be that the
red blood cells in this experiment have been sensitized by anti-HbF
and their molecular weight is greater than that of red blood cells.

Preventing and treating fetal hemorrhage requires not only
prenatal and perinatal diagnosis, but also monitoring of pregnant

women and newborns after delivery. Hydrogel fluoroimmunoassay
can monitor the concentration of HbF, which can determine the
drug dosage and disease severity (Garner et al., 2000; Franco et al.,
2006). This method is expected to be used to diagnose various
obstetric diseases, including placental intervillous thrombosis, due
to its simplicity, speed, and efficacy (Sukhanova et al., 2022).

Nonetheless, this experiment has some restrictions. In the
experiment, the sensitized RBCs at the bottom of the hydrogel
medium are extracted using a needle and then detected using
FCM. Due to the complexity of this step and the high cost of
FCM, hospitals with small sample sizes are unable to run FCM
continuously (Kim and Makar, 2012). The development of a small
analyzer that can quantitatively detect the fluorescence intensity at
the bottom of a hydrogel medium warrants further study.
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