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A highly sensitive biosensor for detecting HPV 16 DNA was prepared based on
Keggin-type polyoxometalate (SiW12)-grafted CdS quantum dots (SiW12@CdS
QDs) and colloidal gold nanoparticles (Au NPs), which exhibited remarkable
selectivity and sensitivity upon target DNA detection because of its excellent
photoelectrochemical (PEC) response. Here, an enhanced photoelectronic
response ability was achieved with the strong association of SiW12@CdS QDs
by polyoxometalate modification, which was developed through a convenient
hydrothermal process. Furthermore, on Au NP-modified indium tin oxide slides, a
multiple-site tripodal DNA walker sensing platform coupled with T7 exonuclease
was successfully fabricatedwith SiW12@CdSQDs/NPDNA as a probe for detecting
HPV 16DNA. Due to the remarkable conductivity of AuNPs, the photosensitivity of
the as-prepared biosensor was improved in an I−3/I

− solution and avoided the use
of other regents toxic to living organisms. Finally, under optimized conditions, the
as-prepared biosensor protocol demonstrated wide linear ranges (15–130 nM),
with a limit of detection of 0.8 nM and high selectivity, stability, and reproducibility.
Moreover, the proposed PEC biosensor platform offers a reliable pathway for
detecting other biological molecules with nano-functional materials.
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1 Introduction

Cancer has always been the most malignant disease affecting human health, with high
morbidity and mortality rates. The development of targeted diagnosis and personalized
treatment has never stopped; thus, early diagnosis with precise cancer biomarker recognition
that will offer valuable opportunities for more effective treatment is of great significance to
specific therapy of cancer patients (Garland, 1953; Helmink et al., 2019). Nowadays, various
therapeutic modalities based on chemotherapy regimens have been exploited for mid–late
stage cancer patients despite a lack of research into earlier diagnosis and more effective
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treatments. Thus, the exploration of highly effective diagnoses with
remarkable sensitivity, high selectivity, and reliability remains
challenging and is urgently required (Xiao et al., 2022).

Among various cancers, cervical cancer is the second most
common cancer in women; moreover, cervix cancer caused by
infection with high-risk human papillomavirus (HPV) accounts
for more than 99% of cervical cancers. Although stage-specific
survival has been improved since the 1960s, along with the
development of multi-modality treatment, the 5-year survival rate
of women with advanced non-metastatic cervical carcinomas is still
low at ~40%. However, the cure rate could reach 70%–85%, which
would occur in cervical cancer patients with stage I and IIa lesions,
indicating the very significance of early diagnosis (Kay et al., 2005).
Two high-risk sexually transmittable human HPV types of 16 and
18 can cause cervical cancers. Importantly, this cancer shows no
symptoms until the advanced stages of the disease. Therefore,
finding a new diagnostic methodology that can detect the
presence of HPV or cervical cancer at the earliest stage is a real
challenge, which also stimulates the development of new biosensors
for cancer early diagnosis (Jampasa et al., 2018).

Photoelectrochemical (PEC) biosensors based on photocurrent
conversion functional materials are an ideal pathway to detect
biomolecules owing to their low background signal and excellent
sensitivity (Kay et al., 2005; Jampasa et al., 2018; Wang F. et al., 2022;
Wang L. et al., 2022; Huang et al., 2022; Nanocubes et al., 2023).
However, the unfavorable biocompatibility, belated photocurrent
response, and low stability of these functional materials have limited
the development of PEC biosensors. Compared with the
electrochemiluminescence immunoassay strategy, which depends
on the concentration of •OH induced by H2O2 conversion, PEC
biosensors require no auxiliary additives and exhibit lower toxicity
and higher sensitivity but rely heavily on outstanding photochromic
properties (Nie et al., 2020; Wang L. et al., 2022). Quantum dots
(QDs) are extensively used in the fields of energy catalysis (Liu et al.,
2014; Weiss, 2017; Kong et al., 2018; Shi et al., 2019; Zheng et al.,
2020; Zhang M. et al., 2022), imaging (Nguyen et al., 2017; Park
et al., 2017; Mallick et al., 2019; Min et al., 2019; Zheng et al., 2020;
Xu et al., 2021; Liu et al., 2017), and chemical sensors (Wang F. et al.,
2022; Zhang J. et al., 2022; Huang et al., 2022) due to their
remarkable photoelectric response properties. Cadmium sulfide
quantum dots (CdS QDs) have attracted broad and
interdisciplinary attention for a long time because of their
excellent properties in that their band gap (2.3 eV) corresponds
well with the spectrum of sunlight, qualifying their superior visible
light photosensitiveness and proposing remarkable compatibility
with other functional materials (Ahamad et al., 2016). More
importantly, the photoelectric properties of CdS QDs can be
significantly tuned by introducing heteroatoms or dopants into
their lattice or matrix. Modified CdS QDs are regarded as
promising photocurrent conversion materials and have been
widely used in solar cells and biological sensors (Jeong et al.,
2017; Smith et al., 2017; Lee et al., 2018; Morgan and Kelley,
2018; Sui et al., 2018; Zhang et al., 2019). Multiple synthetic
strategies, such as growth doping, nucleation doping, diffusion
doping, and single-source precursor strategy have been reported
for the synthesis of modified CdS QDs (Sui et al., 2018; Yu et al.,
2021). In parallel, polyoxometalates (POMs) have emerged as a new
class of materials due to their unique electronic, optical, magnetic,

and catalytic properties (Luo et al., 2013; Ueda, 2018; Kong et al.,
2020; Liu et al., 2020; Misra et al., 2020; Gu et al., 2021; Fabre et al.,
2022; Kruse et al., 2022). According to some recent reports, when
CdS QDs and POMs are successfully composited to have a
hierarchical nanostructure under certain conditions, a unique
phenomenon of interaction involving electron and energy
transfer will occur (Xing et al., 2013; Dong et al., 2021). Such as-
prepared POM@CdS QD composites demonstrate a novel strategy
toward advanced photoelectric functional materials.

POMs are a class of negatively chargedmolecular metal oxides with
well-defined structures, beautiful geometries, and nanoscale sizes (Luo
et al., 2013; Xing et al., 2013; Kong et al., 2020; Kondinski, 2021) and
have been successfully used in a wide domain of industrial catalysis of
functional materials (Ji et al., 2015; He et al., 2016; Tourneur et al., 2019;
Zang et al., 2019; Wang et al., 2020; Gul et al., 2022; Shi et al., 2022),
environmental science (Girardi et al., 2015; Chen et al., 2018; Guo et al.,
2018; Cao et al., 2019; Huang et al., 2019; Li C. et al., 2020; Yu H. et al.,
2020; Li N. et al., 2020; Yu F. Y. et al., 2020; Lang et al., 2020; Zang et al.,
2021; Fabre et al., 2022; Zang andWang, 2022), life science (Bijelic et al.,
2019; Li N. et al., 2020; Shi et al., 2020; Alizadeh and Yadollahi, 2022; Su
Y. et al., 2022; Fabre et al., 2022; Xiao et al., 2022), pharmacology (Sarver
et al., 2021; Su Y. et al., 2022; Liu et al., 2022), and other disciplines
(Boulmier et al., 2018; Mitchell et al., 2022). As additives in the
modification of CdS QDs, POMs with rich charges and excellent
electron transfer ability can rationally adjust their band gaps through
the synergistic effect to eliminate the intrinsic limits of their rapid
recombination of photogenerated carriers and severe photocorrosion,
improving the PEC performance of POM@CdS QD composites (Dong
et al., 2021). Meanwhile, POM@CdS QDs are rarely applied in PEC
biosensor fabrication for biomolecule detection such as protein, DNA,
or RNA.

In this study, a highly sensitive biosensor for detectingHPV16DNA
fabricated with Keggin-type POM (SiW12)-grafted CdS QDs (SiW12@
CdS QDs) and colloidal gold nanoparticles (Au NPs) is reported for the
first time. These SiW12@CdS QDs exhibited enhanced photocurrent
response and high stability after being combined with NP DNA; with
chitosan (CS)/AuNPs as the first layer on indium tin oxide (ITO) slides,
a series of biochemical DNAprimerswere incubated to fabricate amulti-
site tripodal DNAwalker sensing platform coupled with T7 exonuclease.
Due to the remarkable conductivity of Au NPs, the photosensitivity of
the as-prepared biosensor was further improved in an I−3 /I

− solution and
avoided the use of other regents toxic to living organisms. Finally, under
optimized conditions, the as-prepared biosensor protocol demonstrated
wide linear ranges (15–130 nM), with a limit of detection (LOD) of
0.8 nmol/L and high selectivity, stability, and reproducibility.
Furthermore, the proposed PEC biosensor platform offers a reliable
and promising pathway for detecting biological molecules.

2 Experiments

2.1 Materials and methods

All chemical reagents in this experiment were of analytical
grade. Na2S·9H2O, CdCl2·2.5H2O, I2, KI, and HAuCl4·4H2O were
purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). NaOH and trisodium citrate dihydrate (Na3C6H5O7·2H2O)
were obtained from Shanghai Aladdin biochemical technology Co., Ltd.
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(Shanghai, China). H4[Si(W3O10)4]·xH2O, CS was obtained from
Shanghai Maclin Biochemical Technology Co., Ltd. Synthetic
oligodeoxy-nucleotides corresponding to partial sequences of the
gene of HPV type 16 and TE buffer were received from Sangon
Biotech (Shanghai) Co., Ltd. T7 Exo and NE buffer were received
from New England Biotechnology (Beijing) Co., Ltd. HPV samples of
vaginal swab scraping with different infection subtypes (HPV 16, 18,
33 DNA) were supplied by Suzhou KunTao Intelligent Manufacturing
Technology Co., Ltd. All reagent solutions were prepared using
ultrapure water (resistivity as 18 MΩ·cm at 25°C). The nucleotide
sequences of the oligonucleotides are listed in Table 1.

2.2 Synthesis of SiW12@CdS QDs

First, CdS QDs were synthesized according to our previously
published literature (Wang F. et al., 2022). Afterward, a post-
modification procedure of CdS QDs with SiW12 proceeded. H4

[Si(W3O10)4]·xH2O (0.1435 g) were dissolved in a CdS QD solution
(15 mL), and the obtained mixed solution was vigorously stirred at
40°C for 12 h to obtain the final products, a homogeneous yellow
solution. The product solution was stored at 4°C for the next step.

2.3 Preparation of Au particle-based CS
hydrogel

Au NPs were synthesized according to the previously published
literature (Wang F. et al., 2022). First, 1-mg CS and a 20-mL gold
solution were added to 30-mL ultrapure water. After that, the
obtained solution was stirred at room temperature (25°C) for
24 h to achieve a CS hydrogel. The obtained Au NP-based CS
hydrogel was stored at 4°C (Suginta et al., 2013; Liu et al., 2018;
Feyziazar et al., 2020; Vesel, 2023).

2.4 Construction of PEC biosensor

5 mL of a 9-μM armDNA solution and 5 mL of a 9-μM cDNA
solution were mixed and heated at 95°C for 5 min. After cooling
down to room temperature, arm-cDNA was received. For the

fabrication of the PEC biosensor, 40 μL of the Au NP-based
CS hydrogel (Au NP/CS gel) was embellished on the ITO slide
surface, and then, 2 μL of the arm-cDNA solution and 3 μL of 3-
μM pDNA were sequentially modified on the electrode. When
they were successfully connected to the electrode, 3 μL of
the SiW12@CdS QD/NP DNA solution was successively
modified and incubated for 2 h, and unstable residues on the
electrode surface were washed with buffer. Finally, the prepared
electrode was incubated with a series of concentrations of
HPV 16 DNA for 2 h. Then, the electrode was dropped in 50-
U mL−1 T7 exonuclease and incubated for 2 h. The electrode
was rinsed with buffer and dried under nitrogen atmosphere
for PEC measurements in a 5-mM I−3 /I

− working solution. Here,
an HPV 16 DNA-detecting biosensor was successfully fabricated.

2.5 PEC measurement procedure

The detection performance and reliability of the as-prepared
PEC biosensor were investigated with the samples from vaginal
swab scraping. Different specimens of the as-prepared biosensor
were incubated with different patients’ samples of HPV 16 DNA
for 2 h. Then, the electrode was washed and dropped in 50-U
mL−1 T7 exonuclease. Finally, the electrode was rinsed with
buffer and dried under nitrogen atmosphere for PEC
measurements in 5-mmol L−1 of I−3 and 0.5-mol L−1 of an I−

working solution, and each sample was detected three times.
Similarly, to detect the samples of HPV 18 DNA and HPV
33 DNA to evaluate the selectivity and stability of the as-
prepared biosensor, the same PEC measurement procedure
was performed with different HPV DNA subtypes.

2.6 Material characterization

Transmission electron microscopy (TEM) images of the NPs were
obtained using anHT7800 transmission electronmicroscope at 200-kV
acceleration voltages. The Zeta potentials and particle size distribution
of the SiW12@CdS QDs were obtained by Malvern nano-ZS NP size
and Zeta potential analyses, and UV–vis absorption spectra were
recorded with a UV-26001 UV–vis spectrophotometer.
Electrochemical data were obtained with a three-electrode-system
CHI 660E electrochemical workstation. PEC signals were obtained
from a PL-X500D Simulated solar xenon lamp source and
electrochemical word station (CHI 660e). A single-sided glass
electrode (1 cm × 3 cm) was coated with ITO as the working
electrode. A platinum wire and a saturated calomel electrode were
used as the counter and reference electrodes, respectively; PEC
measurements were performed in a 5-mM I−3 /I

− working solution.

3 Results and discussion

The synthesis of key photochromic materials such as
SiW12@CdS NPs, the fabrication of the as-prepared PEC
biosensor, and the comprehensive detection process of HPV
DNA were performed according to the procedure shown in
Scheme 1.

TABLE 1 The nucleotide sequences of oligonucleotides.

Name Sequence (5′ to 3′)

ArmDNA TTTTTGCTGGAGGT
TTTTTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTTTTTTTTTT-(CH2)3-SH

cDNA CATACACCTCCAGC

pDNA SH--(CH2)6-GCCGGACTAG

NP DNA COOH-TCCAGCGGGCTAGTC

HPV 16 DNA GCTGGAGGTGTATG

HPV 18 DNA GGATGCTGCACCGG

HPV 33 DNA CACATCCACCCGCA
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3.1 Characterization of SiW12@CdS QDs

The morphology and size distribution of the as-prepared
CdS QDs and SiW12@CdS NPs were characterized via TEM and
Malvern nano-ZS NP size analysis. As shown in Figures 1A, C
black curve, uniform CdS QDs were obtained using the
solvothermal method and observed as a yellow solution
(insert photograph on Figure 1A), and the average particle
size of the obtained CdS QDs was ~10 nm; note that the size

of the as-prepared SiW12@CdS NPs has increased to ~100 nm,
making the color brighter yellow, as shown in Figures 1B, C red
curve. The larger size resulted from the aggregation of the
SiW12-modified CdS QDs, as shown in Figure 1B (Liu et al.,
2018; Feyziazar et al., 2020; Zhang J. et al., 2022; Vesel, 2023).
Here, the SiW12@CdS NPs were successfully synthesized. The
photographs of the as-prepared CdS QDs and SiW12@CdS NPs
under UV light irradiation are shown in Supplementary
Figure S1.

SCHEME 1
Schematic illustration of (A) the synthesis of POM@CdS QD composites and (B) PEC sensor for detecting HPV 16 DNA.
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After the modification of SiW12 to CdS QDs, a new
absorption wave appeared at ~250 nm on the UV–vis
absorption spectrum of the SiW12@CdS NPs (Figure 1D, red
curve) compared with that of the CdS QDs (Figure 1D, black
curve), and both underwent absorption at ~400 nm. Thus,
improved light absorption was achieved according to this
phenomenon. Otherwise, from Figure 1E of the fluorescence
emission spectrograms of the CdS QDs and SiW12@CdS QDs,
an enhanced emission spectrum and a 90-nm blue shift were
observed from ~590 nm of the CdS QDs to ~500 nm of SiW12@
CdS QDs under the same excitation light at 340 nm, indicating a
strong interaction between SiW12 and CdS QDs with a broader
band gap (Guo et al., 2016; Ji et al., 2017; Zang et al., 2022; Nie
et al., 2020). To summarize the UV–vis absorption and
fluorescence emission spectroscopic studies, the improved
light response ability was successfully achieved by the strong
association between SiW12 and CdS QDs, indicating remarkable
photoelectric properties.

3.2 Characterization of Au NPs

As an important role of the first layer in the construction of
the as-prepared PEC biosensor, Au NPs were synthesized using
the solvothermal method, as shown in Figure 2A, with a size of
~24 nm in Figure 2C. Notably, during the preparation of the Au
NP/CS gel (Au NP/CS gel), the Zeta potential of the Au NPs
decreased by 20 mV from −45 to −25 mV (Figure 2B), indicating

a strong accumulating capacity, which would endow it with good
adhesive ability as the first layer on the ITO slide to fabricate the
PEC biosensor, while the visible light absorption ability of the Au
NPs was well maintained without any changes in the UV–vis
absorption spectrum at 524 nm (as shown in Figure 2D), high
conductivity and visible light absorption for the PEC biosensor.

3.3 PEC characterization of PEC biosensor

Electrochemical impedance spectroscopy (EIS) changes
associated with the modification of the ITO slide and the PEC
response of the as-prepared PEC biosensor were measured for each
modification layer. As shown in Figure 3A, the first layer of the Au
NP/CS gel on the ITO slide showed the largest Ret value (Figure 3A;
a: red curve) because the poor conductivity of the CS gel obstructed
electron transfer to the ITO electrode. Au NP addition not only
increases conductivity but also PEC response via the LSPR effect,
emphasizing its importance (Aiken and Finke, 1999; Lee et al., 2013;
Chou et al., 2017; Wen et al., 2017; Domingues et al., 2018; Shi et al.,
2019; Figueiredo et al., 2021). After the successive modification with
arm-c DNA and pDNA (Figure 3A, b: green curve), the obtained Ret

value decreased because of the association between Au NPs and the
primers, offering an electron transfer pathway with reasonable steric
hindrance to the ITO electrode. The smallest Ret value appeared after
the NP DNA–SiW12@CdS NP modification (Figure 3A, c: dark blue
curve), for the reason that the remarkable conductivity of the
SiW12@CdS NPs significantly improved electron transfer. The Ret

FIGURE 1
TEM images of (A)CdSQDs and (B) SiW12@CdSQDs. (C) Size distribution diagram of CdSQDs and SiW12@CdSQDs. (D)UV–vis absorption spectra of
CdS QDs and SiW12@CdS QDs. (E) Fluorescence emission spectra of CdS QDs and SiW12@CdS QDs, excitation wavelength: 340 nm.
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value was increased when the HPV 16 DNA was added, as shown in
Figure 3A, d: light blue curve, owing to the high steric hindrance of
HPV DNA. The photocurrent response (PEC) was consistent with
the EIS investigation, as shown in Figure 3. The ITO/Au NP/CS
sample exhibited the smallest photocurrent (Figure 3B, a: red curve),
and the photocurrent increased when the primers were continuously
anchored onto the modified ITO slide (Figure 3B, b: green curve).
The largest photocurrent was achieved by the NPDNA–SiW12@CdS
NPmodification (Figure 3B, c: dark blue curve) because of the strong
synergistic effect on the photoelectronic phenomenon that occurred
within the association of SiW12@CdS NPs. Here, the photocurrent
response of the as-prepared PEC biosensor with the outmost layer of
NP DNA–SiW12@CdS NPs established the maximum photocurrent
monitoring range.

From the spectrum analysis in Figures 1D, E and
photocurrent response analysis in Figure 3B, the intense PEC
response occurrence mechanism for the largest photocurrent
with SiW12@CdS QDs can be illustrated, as shown in

Figure 3C. The SiW12@CdS QDs were stimulated under Xe
light irradiation, in detail. The highest occupied molecular
orbital (HOMO) of both the SiW12 and CdS QDs were
stimulated to generate photo-electrons (e−) and photo-holes
(h+) simultaneously; I−3 /I

− electrolytes donating electrons via I−

to I0 occurred on the excited HOMO of SiW12 through the
generated photo-holes (h+). The photo-electrons naturally
transfer to the lowest unoccupied molecular orbital (LUMO)
of SiW12 and then to the LUMO of CdS QDs due to the close
contact between them, with a matched energy level (0.4 eV
difference between 5.87 and 5.47 eV). Successfully, the photo-
electrons finally moved to the ITO external circuit to generate
photocurrent, and the generated photo-holes (h+) from the
HOMO of CdS QDs are transferred to the HOMO of SiW12 to
complete the PEC procedure (Liang et al., 2015; Kokal et al., 2016;
Li et al., 2016; Shi et al., 2018; Su S. et al., 2022; Kar et al., 2023).
The enhanced PEC response of SiW12@CdS QDs to bare CdS
QDs is attributed to the increased photogenerated electron

FIGURE 2
(A) TEM images of Au NPs. (B) Zeta potential distribution curves of Au NPs and Au NP/CS gel. (C) Size distribution diagram of Au NPs. (D) UV–vis
absorption spectra of Au NPs and Au NP/CS gel.
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energy of 0.4 eV from the strong synergistic effect resulting from
the association of SiW12@CdS NPs realizing the outstretched
band gap from a HOMO of 3.26 eV to LUMO of 5.87 eV.

3.4 Detection of HPV 16 DNA

For the detection of HPV 16 DNA, a series of target DNA
samples of different concentrations were incubated in the
PEC biosensor, and PEC detection was performed
accordingly. EIS spectra after this target DNA incubation
were also investigated, as depicted in Figure 4 A, and the
observed Ret value increased gradually with increasing HPV
16 DNA concentrations (15–130 nm), which was predictable
because of the increasing steric hindrance. Conversely, the
measured PEC response of the biosensor gradually decreased
(Figure 4B), exhibiting a PEC quenching phenomenon caused
by the addition of T7 exonuclease in the DNA walker cycle
process (Scheme 1B) to release the corresponding associated
SiW12@CdS NPs from the PEC biosensor. Finally, the detection

of HPV 16 DNA achieved the expected performance of linear
quantitative determination, as shown in Figure 4C. The PEC
response had a linear relationship with the concentration of the
target DNA, ranging from 15 to 130 nM, with an LOD of
0.8 nM, according to Eq. 1:

CL � K · Sb
m

; (1)

CL: LOD;Sb: Blank standard deviation;m: The slope of the
calibration curve in the low concentration range that was
analyzed;K: Confidence coefficient; the value is 3.

All required photocurrent values are listed in Supplementary
Table S1.

3.5 Specificity, repeatability, and stability of
as-prepared biosensor

Specificity is critical to verify the accuracy and sensitivity of PEC
biosensors, indicating their anti-jamming capability. Different HPV

FIGURE 3
(A) EIS spectra of eachmodification of the ITO slide; (B) Photocurrent response of eachmodification of the PEC biosensor; (C) Schematic of the PEC
mechanism of the as-prepared biosensor. (a) ITO/Au NP–CS; (b) ITO/Au NP–CS/arm-cDNA, pDNA; (c) ITO/Au NP–CS/arm-cDNA, pDNA/NP
DNA–SiW12@CdS QDs; (d) ITO/Au NP–CS/arm-cDNA, pDNA/NP DNA–SiW12@CdS QDs/15-nM HPV 16. The measurements were performed under
working conditions of 5 mmol L−1 of I−3 and 0.5 mol L−1 of I− solution.

FIGURE 4
(A) EIS spectra of (a) 15 nM, (b) 30 nM, (c) 60 nM, (d) 80 nM, (e) 100 nM, and (f) 130 nM. (B) Photocurrent responses of (a) 15 nM, (b) 30 nM, (c) 60 nM,
(d) 80 nM, (e) 100 nM, and (f) 130 nM. (C) PEC linear relationship of HPV 16 DNA detection.
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subtypes of HPV 18 DNA and HPV 33 DNA were selected as
potential disruptors for specific studies of the as-prepared PEC
biosensor. As shown in Figure 5 A, the presence of the target
HPV 16 DNA (Figure 5A, green column) or target DNA-
containing mixture (Figure 5A, yellow-green column) showed an
obvious decrease in the PEC response, whereas the highly
homologous interference of HPV 18 DNA and HPV 33 DNA
would not promote the biological DNA walker cycle process to
decrease the photocurrent, indicating the remarkable specificity of
the proposed PEC biosensor. For the stability test of the as-prepared
PEC biosensor, the fabricated ITO electrodes were preserved at 4°C
for 1–4 weeks, and three parallel experiments were conducted every
week. As shown in Figure 5B, the PEC response was 90.77% of the
initial value after 4 weeks of storage, indicating the significant
stability of the as-prepared PEC biosensor. Moreover, within one
PEC measurement process, 7 times consecutive light “on/off” cycles
were performed to evaluate its repeatability. As shown in
Supplementary Figure S2, the photocurrent response exhibited a
steady signal with an incredibly small variation, and the relative
standard deviation was 6.37%, indicating the distinguished
reproducibility of the as-prepared PEC biosensor.

4 Conclusion

In summary, a highly sensitive PEC biosensor for detecting HPV
16 DNA, fabricated using SiW12@CdS QDs and Au NP/CS gel, was
successfully prepared for the first time. The as-prepared SiW12@CdS
QDs showed an enhanced photoelectric response and high stability
after being combined with NP DNA; with the Au NP/CS gel as the first
layer on the ITO slides, a series of biochemical DNA primers were
incubated to fabricate a multi-site tripodal DNA walker sensing
platform coupled with T7 exonuclease. Due to the remarkable
conductivity and LSPR of Au NPs, the photosensitivity of the as-

prepared biosensor was further improved under I−3 /I
− electrolytes and

avoided the use of other regents toxic to living organisms, and a
photocurrent quenching mechanism within the detection process of
the as-prepared PEC biosensor was perfectly executed. Finally, under
optimized conditions, the as-prepared biosensor protocol demonstrated
wide linear ranges (15–130 nM), with an LOD of 0.8 nM and high
selectivity, stability, and reproducibility. Furthermore, the proposed
PEC biosensor platform offers a reliable and promising pathway for
detecting other biological molecules.
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