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In the past few decades, great progress has been made in the field of
nanomaterials against bacterial infection. However, with the widespread
emergence of drug-resistant bacteria, people try their best to explore and
develop new antibacterial strategies to fight bacteria without obtaining or
increasing drug resistance. Recently, multi-mode synergistic therapy has been
considered as an effective scheme for the treatment of bacterial infections,
especially the combination of photothermal therapy (PTT) and photodynamic
therapy (PDT) with controllable, non-invasive, small side effects and broad-
spectrum antibacterial characteristics. It can not only improve the efficiency of
antibiotics, but also do not promote antibiotic resistance. Therefore,
multifunctional nanomaterials which combine the advantages of PTT and PDT
aremore andmore used in the treatment of bacterial infections. However, there is
still a lack of a comprehensive review of the synergistic effect of PTT and PDT in
anti-infection. This review first focuses on the synthesis of synergistic
photothermal/photodynamic nanomaterials and discusses the ways and
challenges of photothermal/photodynamic synergism, as well as the future
research direction of photothermal/photodynamic synergistic antibacterial
nanomaterials.
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1 Introduction

Bacterial infection is a very common disease in people’s daily life, which is a serious
threat to human health (Wu et al., 2018; Liu et al., 2019; Wu et al., 2019). Antibiotics are the
main clinical treatment for pathogenic bacterial infections. However, in recent decades, due
to unwisdom or abuse of antibiotics, drug-sensitive bacteria continue to mutate, leading to
the emergence and prevalence of bacterial drug resistance (Crofts et al., 2017; Gross et al.,
2019; Scheres and Kuszewski, 2019; Shang et al., 2020). It is necessary to focus on the
development of treatments that can quickly and effectively overcome pathogenic bacteria
without producing drug resistance (Laxminarayan et al., 2013; Wang et al., 2019; Sun et al.,
2019; Yuan et al., 2020).

With the development of nanomedicine, more and more nanomaterials and new
antibacterial therapy are used in antibacterial therapy (Huang et al., 2009; Shan et al.,
2019; Yang et al., 2019; Murugesan and Scheibel, 2020). For example, silver nanoparticles
(Zawadzka et al., 2021), metal oxides (Shi et al., 2018; Xie et al., 2020), carbon-based
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materials (Xi et al., 2019), and metal-organic frameworks (MOF)
(Liu et al., 2019; Tao et al., 2023) have broad-spectrum antibacterial
activity and can be sterilized by physical or chemical methods.
Emerging antimicrobial methods, including PTT, PDT, and
chemodynamic therapy, have recently been identified as effective
antimicrobial methods and have attracted great attention in anti-
infective therapy (Wang et al., 2020; Wu et al., 2023). Among them,
compared with other treatments, phototherapy is favored because of
its controllable, non-invasive, few side effects and broad-spectrum
antibacterial properties (Liu et al., 2017, Liu, Guo, Li, Xiao, Zhang,
Bu, Jia, Zhe, Wang and interfaces 2019; Ma et al., 2020). PTT uses
photothermal agent near infrared (NIR) light to convert into local
high temperature, thus destroying the cell membrane and
denaturing bacterial proteins, thus achieving bacterial death (Mao
et al., 2017; Wang et al., 2019; Qing et al., 2019). PDT uses
photosensitizers to absorb energy under laser irradiation and
transfer it to molecular oxygen to produce cytotoxic reactive
oxygen species (ROS): hydroxyl radical (OH), superoxide anion
(O2

−), hydrogen peroxide (H2O2), and singlet oxygen (1O2) (Xia
et al., 2017; Sun et al., 2019;Wang et al., 2020b). ROS can oxidize and
destroy biomolecules, such as lipids, proteins, and nucleic acids, thus
inducing cell apoptosis (Tan et al., 2018).

However, bacterial infection is a very complex process, including
initial bacterial adhesion, biofilm formation and infection (Li et al.,
2017). Therefore, the use of a single antibacterial method may not be
enough, so the nanomaterials combined with a variety of
antibacterial methods were studied to enhance the antibacterial
effect. For example, hyperthermia and long-term exposure to
single-mode PTT therapy may lead to inflammation and thermal
damage to nearby normal tissue (Rizwan et al., 2014; Richter and
Kietzmann, 2016; Zhu et al., 2018; Gao et al., 2019). Using single-
mode PDT therapy to kill bacteria requires a large amount of ROS;
while excessive ROS can damage normal tissue by inducing
inflammation and necrosis (Choi et al., 2009; Ma et al., 2022;
Wu et al., 2022). In addition, the short life of ROS will limit the
role of PDT. Integrating PTT and PDT on a single platform can
bring the advantages of both high fever and ROS to the treatment of
infected sites under light irradiation, overcoming the inherent
limitations of a single PTT or PDT (Mao et al., 2018; Jiang et al.,
2020; Wang et al., 2021). PTT/PDT synergistic therapy shows great

potential in overcoming the shortcomings of individual therapies to
achieve enhanced antibacterial properties (Zhang et al., 2022). Based
on the fact that the complex interactions between host and bacteria
during bacterial infection lead to specific microenvironments,
including low pH, hypoxia, toxins, enzymes and so on, scientists
have developed multi-functional synergistic nanomaterials with the
responsiveness of bacterial infection microenvironment (Koo et al.,
2017; Lv et al., 2020; Li et al., 2022).

This review introduces the latest progress of various nanomaterials
used in the combination of PDT and PTT in the treatment of bacterial
infections, such as hydrogels, multifunctional nanoplatforms, fiber
membranes, nanosheets, and other nanomaterials, with emphasis on
the loading and pathways of thematerials driving the action of PDT and
PTT, as shown in Figure 1. The recent overview of PDT and PTT
strategies for the treatment of bacterial infections can provide clues to
multiple ways of synergistic antimicrobial therapy and contribute to the
development of new collaborative treatment systems to improve the
efficacy of bacterial infection treatment, reduce side effects and avoid
drug resistance.

2 Hydrogels for antibacterial therapy

Their porosity, biocompatibility, biodegradability, mechanical
strength and stability are all adjustable, and provide excellent
renewable 3D networks to simulate local tissue (Cheng et al.,
2022). The porous structure of hydrogel is usually prepared by
electrostatic interaction/hydrogen bond or covalent bond between
the polymer chains, and their porosity, biocompatibility,
biodegradability, mechanical strength and stability are all
adjustable (Khurana et al., 2019; Sang et al., 2020; Maleki et al.,
2021; Tao et al., 2022). It is suitable for the research and
development of various materials (Liang et al., 2019a).

2.1 CuS -contained photothermal/
photodynamic synergistic therapy

Copper sulfide (CuS) can show a significant photodynamic/
photothermal effect under near-infrared light, produce hydroxyl

FIGURE 1
Photos of the LS-CuS@PVA hydrogel before and after gelation. Reproduced with permission from Ref (Xie et al., 2022).
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radical (OH) in the presence of H2O2, and have excellent peroxidase-
like activity. Because of its inherent advantages of near infrared
absorption, efficient heat generation, low cost, biodegradability, and
high cost, CuS has become an ideal material for antibacterial therapy
(Wang et al., 2015; Wang et al., 2020c).

Recently, it has been reported that a LS-CuS@PVA composite
hydrogel with near-infrared activated photothermal, photodynamic,
and peroxidase-like activity was synthesized by introducing lignin
copper sulfide (LS-CuS) nanocomposites into polyvinyl alcohol
(PVA) hydrogels. The biodegradability of PVA polymer makes it a
suitable scaffold for the construction of multi-functional antibacterial
platform. The nano-gel can effectively kill bacteria through the
synergistic antibacterial effect of photothermal, photodynamic and
peroxidase-like activity, which is attributed to the local heat caused
by photothermal effect, which destroys bacteria and makes them
sensitive to ROS and accelerates the catalytic reaction to produce
more OH in vivo and in vitro. It is proved that LS-CuS@PVA
(Figure 1) has good efficacy in the treatment of antibiotic resistant
bacteria and can inhibit the formation of biofilm (Xie et al., 2022).

Some CuS-treated hybrid hydrogels were synthesized.
Trimethoxysilyl methacrylate (MPS, 97%) and mesoporous silica
(MSiO2) modified CuS nanoparticles were synthesized by free
radical polymerization. CuS nanoparticles can not only be used
as photosensitizer of PTT, but also produce ROS in PDT under near
infrared radiation. Under the irradiation of 808 nm near-infrared
light, the near-infrared light of the mixed hydrogel is absorbed and
converted into heat, then the copper ion formed by CuS NPs
dissociation is released, and the OH produced by the reaction
between the free carrier and water molecules under near-infrared
light. The combined effects of high temperature, free radical oxygen
species, and released copper ions under near infrared radiationmake
it have good antibacterial activity (Li et al., 2018).

The high surface activity of CuS nanoparticles makes it easy to
agglomerate in the preparation process. Xiong et al. prepared
uniformly dispersed CuS nanoparticles using corn straw as
template and stabilizer, and then crosslinked with chitin to
prepare CuS@cornstalk/chitin composite hydrogel. Under light,
CuS nanoparticles embedded in hydrogel are released while
producing light and heat, and hydrogen peroxide is decomposed
to form strong oxidant OH, so as to realize the synergistic treatment
of PDT and PTT (Xiong et al., 2019).

2.2 MoS2-contained photothermal/
photodynamic synergistic therapy

Molybdenum sulfide nanosheets have their elemental
abundance, electrochemical stability, high catalytic activity, and
unique optical properties, and they have excellent photodetection
capabilities in a variety of spectral responses, which can generate
hyperthermia and ROS(Mak et al., 2010; Liang et al., 2018).

Zhang et al. prepared a composite hydrogel containing Ag3PO4 and
MoS2. Ag3PO4/MoS2 composites were prepared by liquid phase
reaction, and then dissolved in PVA to form the final product.
Under 660 nm visible light (VL) irradiation, the hydrogel can be
triggered to produce more ROS, while under 808 nm near infrared
(NIR) irradiation, the hydrogel can produce more heat. Among them,
Ag3PO4 can produce a large number of ROS, which can significantly

improve the antibacterial activity and reduce the toxicity through the
synergistic action of PDT and PTT, which also shows the advantage of
synergistic antibacterial activity of PDT and PDT (Figure 2). However,
it needs two kinds of light sources to achieve better results, which limits
its application (Zhang et al., 2019).

A kind of hydrogel containing CuS and MOS2 is
manufactured. The main step is to mix CuS@MoS2
microspheres into porous polyvinyl alcohol (PVA) hydrogels.
The hybrid hydrogel reduces the excessive temperature of CuS@
MoS2 microspheres under energy light irradiation to about 50 C,
and the mixed hydrogel produces thermotherapy and ROS under
double light (660 nm + 808 nm) irradiation. Based on the
synergistic action of PDT and PTT, 99.3% of Escherichia coli
and 99.5% of Staphylococcus aureus were killed in 15min due to
the synergistic effect of photodynamic and photothermal
antibacterial treatment under the irradiation of 660 nm VL
and 808 NIR(Zhang et al., 2020).

2.3 ZnO-contained photothermal/
photodynamic synergistic therapy

Zinc oxide not only has good biocompatibility and low cost but
also has good performance in anti-inflammatory, antibacterial,
antifungal, and other biomedical applications (Hahn et al., 2012;
Sehmi et al., 2015; Surendra et al., 2016). Zinc oxide has the ability to
produce ROS and can also be used to promote PDT therapy (Xiang
et al., 2019; Xiang et al., 2020).

By introducing ZnO quantum dots@GO carbon nanotubes into
the hydrogel structure, a zinc oxide quantum dots@GO
nanocomposites (NCS) with good antibacterial activity was
prepared. Graphene oxide (GO), as a new type of carbon
material, has been widely used in the biomedical field because of
its high light absorption in the NIR region (Gong et al., 2018; Zhang
et al., 2018; Liang et al., 2019b). Under near-infrared light
irradiation, GO in the nanocomposite can be used as a
photosensitizer for PTT, while zinc ion can inhibit the action of
respiratory enzymes and produce ROS, which irreversibly destroys
bacterial cell membrane, mitochondria, and DNA, resulting in
bacterial cell death, so as to achieve the combined effect of PDT
and PTT (Liang et al., 2019a).

Xiang et al. selected zinc ions in transition metal ions, and mixed
hydrogels (DFT-hydrogel) were prepared with Folic acid (FA) and
dopamine (DA). Firstly, carbon quantum dots (CQD) modified zinc
oxide (C/ZnO) composites were selected as functional nanoparticles.
PDA can be grafted onto its surface, which has good
biocompatibility and excellent photothermal retention (Wu et al.,
2018b; Chen et al., 2018; Liu et al., 2018; Nam et al., 2018). Two
carboxyl groups in FAmolecules or catechol in PDA can easily form
metal-ligand coordination with zinc ions to form DFT-C/ZnO-
hydrogel. Under the excitation of infrared or visible light, C/
ethanol can produce reactive oxygen species (ROS), which can
oxidize proteins, phospholipids and DNA/RNA in a very short
time to achieve sterilization (Figure 3). In addition, CQD and
PDA have good photothermal properties under near-infrared
light, which is also helpful to sterilization. Therefore, the double
irradiation of 808 nm near infrared light and 660 nm red light can
enhance the treatment of PDT and PTT, and significantly improve
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the rapid antibacterial performance of the hydrogel (Xiang, Mao,
Liu, Cui, Jing, Yang, Liang, Li, Zhu and Zheng, 2019).

2.4 Other photothermal/photodynamic
synergistic therapy

With the development of nanomedicine, the hydrogel can
be used as a platform to explore the research and development

of multifunctional therapeutic materials, not only in the
treatment of bacterial infection but also in the treatment of
tumors. For example, Yin et al. synthesized palladium
nanoparticles (PdNPs) with PTT and PDT capabilities
(Figure 4). Then the chemotherapeutic drug doxorubicin
(DOX) was loaded on Pd nanoparticles to form hydrogel
(Pd/DOX@hydrogel). Under the irradiation of near infrared
light (808Nm), Pd/DOX@hydrogel produces enough heat to
PTT, regulate drug release, and produce ROS, so as to further

FIGURE 2
Schematic illustration of the synthesis of the Ag3PO4/MoS2 HD and its potential application in treatment of wound infection by the combination of
PDT and PTT. Reproduced with permission from Ref (Zhang et al., 2019).

FIGURE 3
Schematic of the synthetic route of (A) ZnO QDs@GO-CS hydrogel and (B) bacteria killing processes. Reproduced with permission from Ref (Liang
et al., 2019b).
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kill residual cancer cells and prevent wound infection (Fan
et al., 2023).

3 Nanoplatforms for antibacterial
therapy

Scientists have explored multifunctional materials based on PTT
and PDT antibacterial models, such as metal materials carbon
nanomaterials (carbon nanotubes, graphene, carbon dots, and
nanocrystals), aggregation-induced luminescence materials
(supramolecules based on metal rings) and halogen fluorescein (Zou
et al., 2016; Xin et al., 2019; Wang et al., 2021; Niu et al., 2021). The
antibacterial models of PTT and PDT show good application prospects
in the field of sterilization and phototherapy (Han et al., 2020).

3.1 MoS2-contained photothermal/
photodynamic synergistic therapy

Recently, Ge and his colleagues have developed a nanoplatform
MoS2-QPEI/Ce6/PNS@ZIF-8 with dual response to pH and near-
infrared light (NIR), which enables the synergistic antibacterial effect
of PDT and PTT to promote wound healing. Firstly, quaternized
polyethylenimine (QPEI) was added to the suspension of
molybdenum disulfide (MoS2) nanosphere powder to form QPEI-
Modified MoS2 Nanospheres and then mixed with dihydroporphyrin
e6 (Ce6) and Panax notoginseng saponins (PNS), followed by the
addition of zinc nitrate hexahydrate and 2-methylimidazole solution
to form nano-platformMoS2-QPEI/Ce6/PNS@ZIF-8. The nanoplatform
shows good dispersion and uniform nanometer size (120–150 nm) and
has high photothermal conversion efficiency and good photodynamic

effect. In the low acidmicroenvironment of the biofilm, the acid-sensitive
zeolite imidazolium frame-8 (ZIF-8) decomposes and releases
photosensitizer Ce6, MoS2; QPEI, and PNS. Photosensitizer MoS2 is
used in photothermal therapy. The long positively charged carbon chain
in the released QPEI structure adsorbs on the cell membrane surface
through ion interaction and then destroys the cell membrane structure to
release oxygen, alleviate the hypoxia state of the biofilm, and enhance
Ce6-mediated PDT (produce1O2). PNS contains a variety of active
ingredients to achieve antibacterial, hemostasis, and wound healing
(Figure 5). In vitro antibacterial and live/death experiments showed
that MQC@ZIF-8 achieved superior antibacterial activity through
combined therapy (Jin et al., 2022).

A photothermally activated multifunctional nano-antibacterial
platform was constructed by introducing indocyanine green (ICG)
photosensitizer and silver nanoparticles (AgNPs) into the surface of
molybdenum disulfide (MoS2) nanosheets. Photon hyperthermia
produced by MoS2 nanoparticles can not only kill bacteria directly but
also accelerate the release of ICGand silver ions,which are commonlyused
chemical antimicrobial agents. The released ICG can be converted into
singlet oxygen with the help of photocatalytic oxygen of 808 nm, thus
realizing photodynamic sterilization. And loaded ICG and AgNPs can in
turn increase calories, which is a mutually reinforcing effect that can
produce a synergistic therapeutic effect (Figure 6). The anti-infection
experiment in vivo strongly proved that MoS2/ICG/Ag has significant
anti-biofilm properties and low biological toxicity (Li et al., 2022).

Different Fe3O4@MoS2@sodium dodecyl sulfate nanocomposites
were prepared on Fe3O4@MoS2 by ultrasound-assisted sodium
dodecyl sulfate coating. The synergistic effect of Fe3O4@MoS2@
sodium dodecyl sulfate and near infrared radiation eliminated
almost all the biofilms of MRSA, thus improving the germicidal
ability of Fe3O4@MoS2sodium dodecyl sulfate under near infrared
radiation (Wang et al., 2022).

FIGURE 4
Schematic construction of Pd/DOX@hydrogel for post-operative therapy through NIR-light triggered photothermal/photo-dynamic therapy and
drug release with wound healing capability. Reproduced with permission from Ref (Fan et al., 2023).
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3.2 Cu-contained photothermal/
photodynamic synergistic therapy

Copper ion not only has the ability to destroy bacterial
membranes, but also has been proven to promote skin
regeneration as a trace element.

A near-infrared (NIR)-activated chemical/photodynamic/
photothermal composite therapeutic agent is loaded with
fluorescein isothiocyanate (FITC) on mesoporous silica
nanoparticles (MSN), super Small copper sulfide nanoparticles
(Cu2−xSNPs) and polylysine (ε-Polylysine, PLL) were prepared.
The biodegradable PLL can not only enhance the adhesion to the

FIGURE 5
Schematic diagram of wound infection treatment using a combination of PTT/PDT/antibacterial active ingredients. Reproduced with permission
from Ref (Jin et al., 2022).

FIGURE 6
Schematic illustration for the preparation of multifunctional MoS2/ICG/Ag nanocomposites for the photothermally activated triple-mode
synergistic antibacterial therapy. Reproduced with permission from Ref (Li et al., 2022).
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bacterial surface and increase the effect of phototherapy but also
destroy the cells through electrostatic interaction. NIR-activated
Cu2-xSNPs are used as popular PTT and PDT reagents due to their
excellent photostability, negligible cytotoxicity, and biodegradability
(Dai et al., 2021).

A hollow Cu2-XS nano-homojunction (nano-HJ) platform was
developed by to effectively eradicate bacteria and tumors under
tissue permeable near infrared (NIR) light. Copper ions released
from Cu2-XSnano-HJs, Cu2-XS nano-HJS have the ability to destroy
bacterial membranes, thus achieving the enhanced antibacterial
effect in coordination with phototherapy. The nanocomposite
material can not only detect bacteria and biofilm rapidly through
fluorescence imaging but also ablate bacteria and biofilm through
chemical/photothermal/photodynamic combined effects under
near-infrared light irradiation (Gao et al., 2021).

Chu and his colleagues successfully prepared a novel quaternary
ammonium salted copper-RCDS by coupling the quaternary
ammonium compound CAB-35 with copper RCDS through a
simple preparation route. The quaternary ammonium group and
long hydrocarbon chain in CAB-35 can destroy the cell membrane
and enhance the sensitivity of bacterial cells to high temperatures
and ROS. Under the irradiation of 808 nm laser, the synergistic
antibacterial effect of PPT, PDT, and quaternary ammonium salt
can be realized (Figure 7). The nanomaterials triggered by a single
near infrared laser have PTT/PDT synergistic antibacterial
properties, which can overcome the complexity of multiple light
sources (Chu et al., 2021).

3.3 ICG-contained photothermal/
photodynamic synergistic therapy

The development of a mesoporous carbon nano-platform
(CIL@ICG/PFH@O2) modified with cationic cations is reported.
Cationic liquids attract anion ICG to provide a near-infrared
triggered O2 diffusion enhanced PTT/PDT synergistic
antibacterial therapy (Figure 8). Under the irradiation of single
wavelength (808Nm) near infrared laser, carbon nanoparticles have
a wide wavelength absorption range and high photothermal
conversion efficiency, and their local temperature increases
rapidly, which may promote the gasification of PFH and
significantly accelerate the release of O2 from CIL@ICG/PFH@
O2, thus rapidly activating and enhancing the photodynamic
effect of CIL@ICG/PFH@O2 (Zhou et al. 2022).

3.4 Other photothermal/photodynamic
synergistic therapy

Black phosphorus (BP) is found to have good
photoluminescence properties, near-infrared photothermal
absorption properties, which is the same as graphene (Li et al.,
2014; Ling et al., 2015; Wu et al., 2018c; Zhao et al., 2018). Using this
property, Liu and colleagues studied BP and AuNP nanocomposites
(BPs@AuNPs). BPS has the ability to produce a large amount of 1O2

under the stimulation of 650 nm laser, which enables BPS@AuNPs

FIGURE 7
Schematic illustration of the preparation of Cu-RCDs-C35 and related biological applications. Reproduced with permission from Ref (Chu et al., 2021).
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to PTT/PDT under a single light source and has a synergistic
therapeutic effect on bacteria. The nanocomposites have high
antibacterial activity against S. aureus and E. coli in vitro and
inhibit the growth of bacteria in the wound model of S. aureus
infection in vivo (Liu et al., 2021).

Obeng et al. synthesized ZnO@Ag nanocomposites with good
biocompatibility by doping ZnONPs with silver nanoparticles
(AgNPs). Zinc oxide @ 8% Ag + PDT + PTT has a significantly
destructive effect on biofilm. It has high antibacterial, antimicrobial
membrane, and wound healing effects, and can be combined with
PTT or PDT alone (Obeng et al., 2022).

4 Fiber membrane for antibacterial
therapy

An intelligent fiber membrane with multi-synergistic therapy
has been developed to deal with drug-resistant bacterial infections.
They first encapsulated curcumin and ICG in the large cavity of
ZIF-8/PLA by chemical and electrostatic interaction and then
coated the composite Cur-ICG@ZIF-8/PLA/PCM (CIZPP) with
non-covalent interaction of phase change material (PCM). PCM

has the mechanism of near-infrared induced phase transition and
the dissociation of ZIF-8 in the acidic microenvironment of
bacterial infection, which realizes the double stimulus response
(NIR and pH) release of curcumin in CIZPP. In addition, due to
the limiting effect, the photothermal stability and singlet oxygen
(1O2) production of CIZPP were higher than those of ICG
adsorbed directly on polylactic acid/PCM scaffolds. Indocyanine
green (ICG) is an attractive PTT therapeutic agent to build a multi-
functional treatment platform. The interaction between ICG and
moderate ZIF-8/ICG strengthens the formation of ROS and
promotes PDT (Figure 9). As an antibiotic-free antibacterial
component, curcumin enhances chemotherapy. Through multi-
synergistic anti-infective therapy, it can stimulate collagen
deposition, promote the formation of the dermis and skin
accessories, and effectively improve the healing rate of infected
wounds (Zhang et al., 2022).

Zang et al. prepared titanium carbide (MXene)/imidazole
framework-8 zeolite (ZIF-8)/PLA composite membranes by in
situ growth of ZIF-8 molecular sieves on MXene and
electrospinning. After MZ-8/PLA was compounded into
electrospun scaffolds, it exhibited strong PTT and PDT
properties under 808 nm laser irradiation. MZ-8 can promote the

FIGURE 8
Schematic illustration of the synthesis of CIL@ICG/PFH@O2 nanoparticles and their corresponding synergistic antibacterial mech-anism under
single wavelength (808 nm) NIR irradiation. CIL@ICG/PFH@O2 showed bactericidal activities against drug-resistant bacteria both in vitro and in vivo
Reproduced with permission from Ref (Zhou et al., 2022).
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generation of ROS, and its photothermal conversion efficiency is
80.5%. In vitro experiments confirmed that the synthesized MZ-8
could generate hyperthermia and ROS based on the PTT-PDT
effect, realizing the synergistic antibacterial effect of PDT and
PTT (Zhang et al., 2021).

5 Nanosheets for antibacterial therapy

A new phototherapy nanoscale (MHCNSs) with the functions of
hyaluronidase (HAase) response fluorescence imaging (FLI) and
PTT/PDT was prepared. The Ce6 released by MHCNSs can produce
ROS for antibacterial PDT, MoS2NSs and contribute to the
bactericidal effect of MHCNSs, which makes MHCNSs a dual-
mode (PTT/PDT) antibacterial nanoscale. The results of in vitro
and in vivo experiments showed that MHCNSs had good
biocompatibility. The study of antibacterial activity further
showed that MHCNSS (40 μg mL−1) had an obvious killing effect
on methicillin-resistant S. aureus in infected wounds of mice
compared with other groups, and the reduction rate was 99.9%
(Yuwen et al., 2021).

Recently, a new type of indocyanine green (ICG) functionalized
hexagonal Mn3O4 nanoparticles (Mn3O4HNSs@ICG) has been
designed to cooperate in the fight against bacterial infection.
ICG as a photosensitizer, manganese oxide can convert light
energy into high heat, and the released Mn3+ and Mn2+ ions
participate in Mn3O4HNSs, which is conducive to the electron
transfer in the Fenton-like reaction, thus promoting the
production of ROS for treatment. Secondly, the flake structure
with a rough surface and rich defects makes Mn3O4HNSs@ICG
easy to adhere to the surface of bacteria, thus destroying its
membrane system. Carry on the synergistic action of many
ways to achieve good antibacterial. In vitro and in vivo toxicity
evaluation showed that the material had good biological safety and
was expected to be used in clinical anti-infective therapy (Zhang
et al., 2022).

6 Other nanomaterials for antibacterial
therapy

With the development of nanotechnology, more and more
nanomaterials have been reported. There are other nanomaterials
that can realize synergistic antibacterial effects of PDT and PTT have
been developed.

Inspired by the morphology and infection mode of the
COVID-19 coronavirus, Ni and his colleagues designed porous
graphite nitride carbon (g-C3N4) with “artificial virus”
embedded cobalt nanoparticles by self-assembling transpeptide
transactivators with three layers of shell. Firstly, three layers of
porous graphitized carbonitride (TCNCo) loaded with cobalt
nanoparticles were prepared by the template method. The
cobalt (Co) nanoparticles have an additional magnetic
targeting function, which can enhance the ability of
photothermal conversion. Then three-shell porous graphite
carbon nanoparticles (TCNCo) coated with transduction
peptide (TAT)were prepared by electrostatic self-assembly.
TAT has a good ability to penetrate bacterial cell membranes
because of its rich positively charged amino acids and stable
secondary structure (Gao et al., 2019; Mookherjee et al., 2020). By
imitating the coronal morphology and infection mode of
COVID-19 cells, TCNCoT showed a tentacle-like structure on
its surface, overcome the bottleneck of the bacterial membrane,
successfully penetrated the bacterial cell membrane, and then
released TCNCo with photothermal and photodynamic effects
into the bacteria. In vitro experiments showed that the
germicidal efficiency of the nanoparticles in 20min was as
high as 99.99%, which was 18.6 times that of g-C3N4, and
the germicidal efficacy remained 99.99% after 3 rounds of
repeated use (Ni et al., 2022).

Self-assembled aggregation-induced emission (AIE)
nanospheres (AIE-PEG1000 NPs) with near-infrared II (NIR-II)
fluorescence emission, photothermal and photodynamic
properties were prepared using multi-functional AIE

FIGURE 9
Schematic diagram of synthetic procedure and application of CIZPP. Reproduced with permission from Ref (Zhang et al., 2022).
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luminescence (AIE-4COOH). AIE-PEG1000 nanoparticles were
encapsulated in lipid nanoparticles with teicoplanin (Tei) and
ammonium bicarbonate (AB) to form laser-activated
nanoparticles (AIE-Tei@AB Nvs). (AIE) photothermal agent or
AIE photosensitizer is one of the multifunctional materials with
fluorescence imaging properties and PTT or PDT functions, so it can
diagnose and treat diseases at the same time (Li et al., 2020; Zhang
et al., 2021; Ni et al., 2021; Yan et al., 2021). Under the irradiation of
660 nm laser, AIE-Tei@AB NVS successfully realized the near
infrared-II fluorescence and infrared (IR) thermal imaging of
focus by loading the photoluminescence and photothermal
properties of AIE-PEG1000 nanoparticles. At the same time,
during the photothermal process, the loaded AB is thermally
decomposed to produce a large number of CO2/NH3 bubbles
(efficient ultrasound contrast agent), thus achieving high-
performance ultrasound imaging of the infected focus The
efficient photothermal and photodynamic characteristics of AIE-
Tei@AB Nvs, combined with the decomposition and rapid release of
NV during bubble formation. Synergistic treatment of bacterial
infections through a variety of treatments (Li et al., 2023).

Using water as solvent and molybdenum trichloride (MoCl3)
as the precursor, MoO3−xNDS nanozyme was prepared by a one-
pot hydrothermal method. Based on the combination of
photodynamic, photothermal, and peroxidase-like enzyme
activities modulated by a single near-infrared irradiation
(808 nm), MoO3−xNDS alone has a triple therapeutic
synergistic efficiency. motivated by. Both photodynamic and
nanozyme activities lead to the production of reactive oxygen
species (ROS). The photothermal effect can adjust the
MoO3−xNDS to their optimal enzymatic temperature (50 C),
which can generate sufficient ROS even at a low concentration
of H2O2 (100 µm). In vitro and in vivo experiments demonstrate
the excellent antibacterial efficiency of MoO3-xNDs against
drug-resistant extended-spectrum β-lactamases producing
E. coli and methicillin-resistant S. aureus (MRSA) (Zhang
et al., 2021).

6 Conclusions and prospects

This paper reviews the application of anti-infective materials
containing PDT and PTT synergistic therapy in recent years. We
discuss how various components in different materials play their
roles in synergy. At the same time, we provide some latest examples
that can overcome the shortcomings of a single treatment model by
combining multiple approaches such as PDT and PTT, and achieve
complementary multiple therapeutic effects. However, due to some
challenges, the clinical application of these systems is still difficult to
use. First of all, in order to improve the therapeutic effect and reduce
the side effects, the combination of PTT and PDT has attracted
much attention because of its low systemic toxicity, non-invasive,

and excellent therapeutic effect. However, most PTT/PDT
collaborative strategies are based on multi-component therapeutic
agents prepared by complex processes and require different light
sources to stimulate PTT and PDT. Therefore, it is very necessary to
develop effective single-component drugs for PTT/PDT synergistic
therapy. At the same time, simplification should be borne in mind
when designing new synergistic therapeutic materials so that they
can be used clinically by simplifying, expanding scale, and reducing
costs. Secondly, the molecular mechanism of bacterial infection and
the mechanism of drug resistance are not very clear. We need to
evaluate the different characteristics of different bacteria in order to
achieve accurate and efficient treatment. Then, the drugs that play
the synergistic effect of PDT and PTT need to be released in an
orderly manner and will not have harmful effects on normal cells,
which requires an in-depth exploration of the synergistic therapy
involved, which can make use of the differences between infected
bacteria and normal cells for specific targeting. With the development
of chemistry, material technology, and nanomedicine, the emergence
of new design concepts and new treatments, as well as an in-depth
understanding of the molecular and cellular mechanisms of bacterial
infection, we believe that a new synergistic system that can meet the
above challenges will be developed to further improve antimicrobial
activity and reduce side effects and promote its clinical transformation
in infection treatment.
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