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Introduction: Balance impairment is an important indicator to a variety of
diseases. Early detection of balance impairment enables doctors to provide
timely treatments to patients, thus reduce their fall risk and prevent related
disease progression. Currently, balance abilities are usually assessed by balance
scales, which depend heavily on the subjective judgement of assessors.

Methods: To address this issue, we specifically designed a method combining 3D
skeleton data and deep convolutional neural network (DCNN) for automated balance
abilities assessment during walking. A 3D skeleton dataset with three standardized
balance ability levels were collected and used to establish the proposed method. To
obtain better performance, different skeleton-node selections and different DCNN
hyperparameters settingwere compared. Leave-one-subject-out-cross-validationwas
used in training and validation of the networks.

Results and Discussion: Results showed that the proposed deep learning method
was able to achieve 93.33% accuracy, 94.44% precision and 94.46% F1 score,
which outperformed four other commonly used machine learning methods and
CNN-based methods. We also found that data from body trunk and lower limbs
are the most important while data from upper limbs may reduce model accuracy.
To further validate the performance of the proposed method, we migrated and
applied a state-of-the-art posture classification method to the walking balance
ability assessment task. Results showed that the proposed DCNNmodel improved
the accuracy of walking balance ability assessment. Layer-wise Relevance
Propagation (LRP) was used to interpret the output of the proposed DCNN
model. Our results suggest that DCNN classifier is a fast and accurate method
for balance assessment during walking.
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1 Introduction

Balance ability refers to the human body perceiving the body’s center of gravity and
controlling the body’s center of gravity within the support plane through body movements
(Shumway-Cook et al., 1988). It is crucial for people to maintain their daily activities of living
(ADL). Balance impairment may be caused by a number of factors, including advanced age,
arthritis, cerebral palsy and Parkinson’s disease, of which advanced age is the most common
one. With the growth of age, various functions related to balance abilities decline rapidly,
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including muscle strength, eyesight, and reaction time, etc. It has
been found that as many as 75% of people aged 70 and above have
balance disorders (Howe et al., 2011). Balance assessment plays an
important role in accurately diagnosing potential disorders,
identifying fall risks, and developing treatment plans. Currently,
balance assessment is usually done by physical therapists based on
commonly used standardized measures, such as Berg balance scale,
Tinetti balance scale and timed “up & go” test (TUG).

Walking balance assessment is an important part in a variety of
balance standardized measures. For example, in Berg balance scale,
subjects are required to walk from one position to another, and the
physical therapist will give them scores based on their walking
stability, gait and posture. In Tinetti balance scale, foot and trunk
positions as well as walking path and time of subjects are considered.
Similarly, the TUG test mainly use walking speed as an index to
judge person’s balance abilities and fall risks.

Balance ability scores in balance standardizedmeasures are assessed
based on judgments from the physical therapists, which is subjective. To
address this issue, one way is to analyze the balance abilities with
equipment-based and digitalized assessment methods in order to
eliminate subjective opinions from physical therapists. In
equipment-based and digitalized assessment methods, the motion of
human body can be described with 3D skeleton data. Thus, it is possible
to use 3D skeleton data to assess balance abilities during walking.

3D skeleton data can be acquired in several ways, such as
Microsoft Kinect, Orbbec Astra, and Intel RealSense. Microsoft
Kinect is the most popular method. Kinect can recognize and
track a total of 32 human joints, covering all parts of the human
body. Currently, there are a number of relevant studies on the
accuracy of Kinect. Eltoukhy (Eltoukhy et al., 2017) simultaneously
used Kinect and Vicon system to record the results of Star Excursion
Balance Test (SEBT), and found that the kinematic error of lower
limbs was less than 5° except for the front plane angle of the posterior
and lateral knee joints, which were 5–7°. According to Schmitz
(Schmitz et al., 2014), the accuracy and precision of joint angle
measurement in 3D skeleton model obtained from Kinect are
equivalent to that of the mark-based system. Khoshelham
(Khoshelham, 2012) believes that the point cloud data of Kinect
sensor is able to provide acceptable accuracy by comparing it with
the point cloud data of high-end laser scanner. Kinect has the
characteristics of low cost, portability and convenient data access,
and is able to provide acceptable accuracy.

At present, there are plenty of studies on gait recognition,
pathological gait classification and motion analysis using Kinect 3D
skeleton data (Ahmed et al., 2014; Li et al., 2018; Bari and Gavrilova,
2019; Jun et al., 2020; Xing and Zhu, 2021), all of which have acceptable
accuracy. However, further process is needed in order to assess balance
abilities during walking. Balance abilities assessment during walking not
only need to observe the gait, but also need to consider walking speed
and other parameters. The existing methods so far are mainly designed
for gait recognition and motion analysis. In this study, we aim to
develop a digitalized assessment method for assessing balance abilities
during walking based on 3D skeleton data collected by Kinect.

Deep convolutional neural network (DCNN) is a popular machine
learning technology, and has excellent performance in the fields of
image recognition (Szegedy et al., 2015; Senior et al., 2020; Li et al.,
2021). Also, DCNN classifier is widely used in data and image analysis
applications (Yao et al., 2019; Yu et al., 2019; Szczęsna et al., 2020; Yu

et al., 2022a; Yu et al., 2022b). DCNN can achieve automatic feature
extraction based on original sensor data (Alharthi et al., 2019). One of
the limitations of DCNN is its opacity (Bach et al., 2015). This opacity
seriously hinders the acceptance and application of DCNN model in
medical diagnosis (Wolf et al., 2006). To solve this problem, Layer-wise
Relevance Propagation (LRP) was proposed (Montavon et al., 2017),
which uses the back propagation method to attribute part of the model
prediction to the original input signal. It is possible to identify the
important area of classification hoisting in the input signal, which may
be used to interpret the prediction of the model. Currently, LRP has
been successfully applied in image classification (Lapuschkin et al.,
2017), text classification (Arras et al., 2017) and gait analysis (Horst
et al., 2019).

In this study, we proposed a deep learning-based method for
balance assessment during walking based on 3D skeleton data
collected by Kinect. The main contributions and innovation of
this study are listed as follows.

(1) Existing Kinect-based methods are only designed for gait
recognition and motion analysis. We newly collected a
Kinect 3D skeleton dataset with three standardized balance
ability levels and specifically designed a deep learning based
method for balance ability assessment during walking.

(2) To obtain better performance, we performed thorough
parametric study including hyperparameters setting of
DCNN and skeleton node selection. We also used LRP to
interpret the output of the DCNN model.

(3) To validate the performance of the proposed method, we
conducted a comparison with other commonly used machine
learning methods. In addition, we migrated and applied a state
of art posture classification method to the walking balance
ability assessment task. The proposed method was also
compared with the migrated state of art method. The results
showed the superiority of the proposed method.

2 Materials and methods

2.1 Experimental subjects and balance
impairment simulation

We recruited ten healthy adults aged from 21–24 as our
experimental subjects, who have normal balance abilities. For balance
impaired subjects, we asked the ten adults wearing age simulation suits,
which are widely used for healthy people to experience functional
challenges of the elderly. After wearing the suits, the young adults
will have reduced motor and cognitive performance, as well as self-
perception ability (Saiva et al., 2020; Vieweg and Schaefer, 2020).
Additionally, the suit users will also experience a variety of other
functional disabilities including reduced muscle strength, vision loss,
decreased flexibility of the joints (Lauenroth et al., 2017; Bowden et al.,
2020;Watkins et al., 2021), which can lead to the decline in balance as in
older people. The simulation suit is shown in Figure 1. Briefly, we use
wrist and ankle weights to simulate loss of muscle strength in the
extremities, and use knee and elbow adjustments to limit joint flexibility.
We also can adjust two ropes in front of the chest to simulate hunchback
status, and tie the rope around thighs to limit step width. Additionally,
special glasses were used for poor vision simulation.
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There are two setups of the suit to simulate two different types of
balance disabilities that may happen during the aging process. Thus,
for one healthy subject, we can acquire totally three standardized
balance levels. Under the guidance of rehabilitation doctors, our
simulation guidelines are as follows:

• Level-0: No restrictions are added, subjects walk normally.
• Level-1: Subjects are given extra weight on their wrists and

ankles, and have limited knee and elbow flexibility.
• Level-2: On the basis of level-1, the conditions of hunchback

and limited vision are added.

2.2 Data collection

Following simulation guidelines, every subject walked 10 times
for each of the balance levels. Thus, the size of the dataset is 300

(10 subjects × 10 times × 3 balance levels). 3D skeleton data were
obtained using a Kinect sensor and the corresponding software
development kit named Kinect SDK. The skeleton data includes 3D
coordinates of total 32 joints, and the joint hierarchy is distributed in
a direction from the center of the body to the extremities. Joints
includes pelvis, shoulder, elbow, wrist, hand, hang tip, thumb, hip,
knee, ankle, foot, head, nose, eye, and ear, as shown in Figure 2A.
Based on our preliminary studies, some of these joints including
hand, hang tip, nose, eye and ear have minor impact on balance
abilities, and were removed in this research. The final skeleton
structure for data collection is shown in Figure 2B.

The data acquisition process by Kinect is shown in Figure 3.
We set up a 4-meter long sidewalk, and the two ends of the
sidewalk are the starting point and the end point respectively.
The Kinect device is located 1 meter away from the end point.
Subjects are required to walk from the starting point to the end
point at their normal speed.

FIGURE 1
Age simulation suit. (A): Subject with age simulation suit; (B): sticks used to restrict knee and elbow joints; (C): Sandbags located on the limbs; (D):
Special glasses to simulate vision loss.
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2.3 Deep convolutional neural network
(DCNN)

Deep convolutional neural networks are frequently used for
classification and recognition tasks and show great performance;
therefore, some researchers also use DCNN to process 3D skeleton
data (Caetano et al., 2019; Li et al., 2020). RNN, LSTM and GRU
have been proposed successively for processing sequence data [text
(Cho et al., 2014), audio (Yue-Hei Ng et al., 2015), video (Ballas et al.,
2015)]. Because 3D skeleton data is time series sequence data, these

three models can be used to process 3D skeleton data (Graves et al.,
2013; Lee et al., 2019). In addition, as the human skeleton connected
by the junction nodes is similar to the graph in the computer data
type, there are some studies on 3D skeleton data analysis based on
graph convolution network (Cheng et al., 2020; Shi et al., 2020). In
summary, neural network models commonly used for skeleton data
processing include DCNN, RNN and GCN. In this paper, we use
convolutional networks to construct a model for processing the
hierarchical assessment of dynamic balancing capability based on
3D skeleton data.

FIGURE 2
Joint diagram of human skeleton. (A): The original skeleton structure from Kinect with 32 joints; (B): Simplified skeleton structure for this study with
21 joints in bold font.

FIGURE 3
Data acquisition process with Kinect. (A): Abstract figure of scene; (B): Real scenarios of data acquisition process.
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The core building module of deep convolutional network model
is the convolution layer, which mainly extracts features by applying
convolution operation. Assuming that X is the input of the
convolution layer, W is the weight matrix, and B is bias, the
output Y of the convolution layer can be expressed as:

Y � Conv W,X( ) + b

An activation function φ is usually added after the convolution
operation:

Y � φ Y( )
The structure of the DCNN constructed in this paper is shown in

Figure 4. The model consists of several residual blocks, a dropout
layer, a global pooling layer and a full connection layer. Residual
block is mainly composed of three convolution layers and a
connection layer. Convolution layer 1 processes the input data,
convolution layer 2 processes the output of convolution layer 1,
convolution layer 3 processes the output of convolution layer 2, and
then the connection layer merges the input of convolution layer
1 and the output of convolution layer 3. Batch Normalization and
activation using Relu are required following each convolutional layer
in a convolution block. In a residual block, the size of convolution
kernel of convolution layer 1 is set as 5, the size of convolution kernel
of convolution layer 2 is set as 3, and the size of convolution kernel of
convolution layer 3 is set as 1.

2.4 Layer-wise relevance propagation (LRP)

Linear models make transparent decisions. However, complex
nonlinear models are usually regarded as black box classifiers, and
almost all deep artificial neural networks are composed of nonlinear
models. Layer-wise Relevance propagation (LRP) is a technique for
generalized interpretation of nonlinear models. We used LRP to
interpret the output of the proposed DCNN model in this paper.

The LRP (Montavon et al., 2017) uses the topology of the
network model itself to attribute the correlation score to the
important components of the input data, so as to explain the
decisions made by the model based on a given data point. Based
on the conservation principle, LRP technology (Bach et al., 2015)
gradually maps the prediction to a lower layer through back
propagation until the input variable is reached. Neuron j receives
a quantity of relevance Rl+1

j from upper layer neurons, and
redistributes that quantity to neuron i, in proportion to R(l,l+1)

i ← j

(the contribution of neuron i to the activation of neuron j in the
forward pass).

R l,l+1( )
i ← j � zij

zj
· Rl+1

j

Where zij represents the measurement of the contribution from
neuron i to neuron j, and zj represents the sum of all neurons from l
layer to neuron j.

2.5 Model training

2.5.1 Pre-processing of input samples
The time length of each video sample recorded in the dataset was

inconsistent because different subjects may have different walking
speeds. Thus, in the temporal aspect, the total number of frames of
different samples was different. The total number of frames of
different samples collected in this study varied from 22 frames to
38 frames.

To normalize the DCNN input size, we selected fixed 20 frames
for every sample in the dataset from back to front. Occasionally,
subjects did not walk immediately after receiving the command,
selected from back to front could avoid the collection of few non-
walking frames. Besides, since the sample data may be offset, we
reoriented the input data of each sample based on the position of the
pelvis joint in the first frame of each sample. Specifically, for each

FIGURE 4
Proposed DCNN structure. DCNN mainly consists of a single or multiple residual blocks, each of which includes three convolutional layers, batch
normalization layers, and Relu activation layers. We can add multiple residual blocks between input layer and dropout layer if needed.
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data point in each sample, its position coordinates need to subtract
the pelvis joint in the original coordinates.

2.5.2 Training-validation-test split
In this study, we obtained a dataset of 300 samples. After data

pre-processing, the total number of frames of each sample was
20 frames, each frame had data of 21 human joints, and each joint
had data of three-dimensional (X, Y, Z) time-varying spatial
coordinates. Thus the size of an input sample was 1,260
(20 frames × 21 joints × 3 dimensions). Figure 5 show an
example of a pre-processed input sample.

Since it was a relatively small dataset, we adopted leave-one-
subject-out-cross-validation strategy to train and evaluate the
performance of the DCNN. In each fold, one subject data was
used as validation dataset, another one subject data was used as test
dataset and the remaining eight subject data was used as training
dataset. Finally, the size of training dataset was 240 (8 subjects ×
10 times × 3 balance levels), the size of validation dataset was 30
(1 subjects × 10 times × 3 balance levels), and the size of test dataset
was 30 (1 subjects × 10 times × 3 balance levels) in each fold.

2.5.3 DCNN hyperparameters setup
After parametric study, for the residual block, we set the size of

kernel of residual block in the first convolutional layer to 5, the size
of kernel in the second convolutional layer to 3, the size of kernel in
the third convolutional layer to 1. The padding method was same,
and the activation function was Relu function in every convolutional
layer. The channel size of filter in convolution layer is an important

parameter, we chose 64 after comparing with other size. For epoch
selection, we applied the early stop method. The early stopmethod is
a widely used method to stop training when the performance of the
model on the validation dataset begins to decline, so as to avoid the
problem of overfitting caused by continued training. In addition,
cross-entropy was chose as the loss function and Adam optimizer
with a learning rate of 0.0001 was used to train DCNN classifier.

2.5.5 Performance evaluation measures
Accuracy, Precision and F1-Score were used to measure the

model, and the results from 10 test folds were then pooled together
to form a complete set to calculate the average values of the
measures. Accuracy, Precision and F1-score are counted by the
true positive (TP), false positives (FP), true negatives (TN), and false
negatives (FN). In multi-classification tasks, Precision and
F1 indices need to be calculated for each category, and then
arithmetic average is performed.

Accutacy � TP + TN

TP + FP + TN + FN

Precision � TP

TP + FP

F1 � 2 · Precision · Recall
Precision + Recall

Since artificial neural networks are often seen as black boxes,
methods such as SmoothGrad (Smilkov et al., 2017), Deconvnet
(Springenberg et al., 2015), GuidedBackprop (Alber et al., 2018), and
LRP (Montavon et al., 2017) have been proposed to remedy this

FIGURE 5
An example of a pre-processed sample. Each sample has data of 21 joints, 20 frames and three-dimensional (X, Y, Z) time-varying spatial coordinates
of the joints after pre-processing.
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deficiency. INNvesigate is a library that implements the PattNet,
PatternAttribution (Kindermans et al., 2017), and LRP methods,
allowing the user to invoke them through the interface. We called
LRP method based on iNNvesigate for 3D skeleton data analysis.

3 Results and discussion

3.1 Performance of proposed DCNN for
balance assessment during walking

We use the proposed DCNN method to classify three different
levels of balance ability during walking. With leave-one-subject-out
cross-validation, the method achieved 93.33% accuracy, 94.44%
precision and 94.46% F1 score. The results showed that Kinect
can collect 3D skeleton data to assess the balance ability of walking
subjects, and the accuracy of DCNN classification can reach an
accepted level.

The loss function of balance ability classification based on the
DCNN model is shown in Figure 6, where the blue line represents
the loss function curve of the training dataset and the orange line
represents the loss function curve of the validation dataset. We
found that when Adam optimizer with learning rate of 0.0001 was
used for training, the loss function value of DCNN classifier
decreased as the number of iterations increased, and stabilized
after 150 epochs, with a fluctuation of 0.25. The result suggests
that DCNN classifier is convergent.

3.2 Parametric study of DCNN
hyperparameters selection

3.2.1 Kernel size
Kernel size is an import parameter in convolution layer. The

larger the convolution kernel is, the larger the receptive field is.
However, a large convolution kernel will lead to a huge increase in

the amount of computation and may reduce the computational
performance. We compared the performance of DCNN with
different kernel size and the results were showed in Table 1.
After comparing the performance of DCNN with different kernel
size in the residual block, we set the size of kernel in the first
convolutional layer to 5, the size of kernel in the second
convolutional layer to 3, the size of kernel in the third
convolutional layer to 1.

3.2.2 Channel size
Channel can usually be understood as the width of model, and

increasing the width allows each layer to learn richer features.
However, increasing the number of channels may also affect the
performance of the model. Table 2 shows the impact of different
channel size on model performance. We can see that the loss
function of validation dataset shows a downward trend, and the
accuracy of validation dataset shows an upward trend.

3.2.3 The number of residual blocks
The number of residual blocks is also an important parameter

for DCNN. Usually, the more residual blocks, the deeper the DCNN
model will be, and the more accurate classification model can be
fitted. However, as the depth of the model increases, it will be easy to
learn the noise of input data, resulting in the phenomenon of
overfitting. Table 3 shows the impact of different number of
residual blocks on model performance. We can see that, as the
number of residual blocks increases, the training loss value
decreases, but the validation loss decreases first and then
increases. When the number of residual blocks is 3, the
validation loss of DCNN model reaches the minimum value,
which is 0.1539, and the loss accuracy is 0.9741.

3.2.4 Optimizer
In order to obtain better performance, we use different

optimizers for optimization analysis. Stochastic Gradient Descent
(SGD) algorithm randomly selects a group of samples from each
iteration and updates them according to the Gradient after training.
Root Mean Square Propagation (RMSProp) is an exponential
movement-weighted average of the binary norm of each
component of the historical gradient. Adam Optimizer takes
advantage of the advantages of AdaGrad and RMSProp optimizer
and is considered to be quite robust to the selection of
hyperparameters. Table 4 shows the performance of DCNN with
different optimization methods. From Table 4, we can see that
although the average epoch of Adam optimizer is larger than the
others, its validation loss is smaller than the others, and fitting effect
is better.

3.3 Parametric study of skeleton node
selection

In order to improve the performance of the proposed DCNN
classifier, we also tried to optimize skeleton node selection and
subsequently to control the data input to the model. We have
previously excluded some nodes (fingers, ears, and nose) in the
process of data collection, but not all the remaining nodes have
positive effects on the assessment of balance ability during walking.

FIGURE 6
Loss function variation curve of training set and validation set.
The blue line represents the loss function curve of the training dataset
and the orange line represents the loss function curve of the validation
dataset.
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TABLE 1 The validation loss and the validation accuracy with different kernel size.

Kernel size 1 Kernel size 2 Kernel size 3 Validation loss Validation accuracy

1 1 1 0.2424 0.9426

1 1 3 0.2460 0.9444

1 1 5 0.2128 0.9519

1 1 7 0.2316 0.9444

1 3 1 0.2098 0.9556

1 3 3 0.2060 0.9630

1 3 5 0.1982 0.9593

1 3 7 0.2093 0.9556

1 5 1 0.1840 0.9630

1 5 3 0.1720 0.9704

1 5 5 0.2038 0.9519

1 5 7 0.1995 0.9481

1 7 1 0.2243 0.9444

1 7 3 0.1823 0.9630

1 7 5 0.1696 0.9667

1 7 7 0.1493 0.9626

3 1 1 0.2045 0.9630

3 1 3 0.2050 0.9556

3 1 5 0.1436 0.9778

3 1 7 0.2299 0.9704

3 3 1 0.1974 0.9556

3 3 3 0.1649 0.9704

3 3 5 0.2303 0.9481

3 3 7 0.1893 0.9667

3 5 1 0.1811 0.9556

3 5 3 0.1701 0.9667

3 5 5 0.1556 0.9704

3 5 7 0.2170 0.9556

3 7 1 0.1917 0.9667

3 7 3 0.1465 0.9715

3 7 5 0.2123 0.9593

3 7 7 0.1636 0.9667

5 1 1 0.1677 0.9704

5 1 3 0.2052 0.9630

5 1 5 0.1848 0.9630

5 1 7 0.1757 0.9593

5 3 1 0.1420 0.9778

5 3 3 0.2075 0.9667

(Continued on following page)
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The body’s joints are connected with each other, and some joints are
dependent on the existence of other joints. For example, if we
exclude elbow from input data, we should also exclude wrist
data. Following this principle, we observed the performance

change of DCNN classifier by selectively inputting data of
specific nodes, the results were shown in Table 5.

We take the inputs of all joints as the control group (A0), and the
classification accuracy was 89.83%. We found that the accuracy of the
classifier increased when we excluded the hand-related data.
Specifically, when the wrist and elbow (H2) were excluded, the
accuracy of the classifier increased to 91%. When wrists, elbows,
shoulders and clavicles were excluded (H4), the accuracy of the
classifier increased to 93.67%. However, the accuracy of the classifier
decreased after excluding leg-related joints. When foots, ankle, knees
and hips were excluded (L4), the classifier’s accuracy fell to 84.33%.
Furthermore, when using only the pelvis, spine naval, spine chest (G1)
data, the classifier has only 76% accuracy. When using only leg-related
data, including feet, wart-form, knees and hips (G2), the classifier
achieved 67.33% accuracy. The results suggest that the performance of
DCNN classifier depends on data of the input joint groups.

TABLE 1 (Continued) The validation loss and the validation accuracy with different kernel size.

Kernel size 1 Kernel size 2 Kernel size 3 Validation loss Validation accuracy

5 3 5 0.1930 0.9667

5 3 7 0.1795 0.9667

5 5 1 0.1983 0.9667

5 5 3 0.2169 0.9630

5 5 5 0.2137 0.9630

5 5 7 0.2030 0.9593

5 7 1 0.1930 0.9667

5 7 3 0.2082 0.9444

5 7 5 0.1874 0.9630

5 7 7 0.1538 0.9635

7 1 1 0.1956 0.9667

7 1 3 0.1654 0.9630

7 1 5 0.1986 0.9593

7 1 7 0.1823 0.9704

7 3 1 0.2001 0.9593

7 3 3 0.1816 0.9741

7 3 5 0.1599 0.9704

7 3 7 0.1658 0.9630

7 5 1 0.1669 0.9667

7 5 3 0.1489 0.9704

7 5 5 0.1485 0.9630

7 5 7 0.1649 0.9715

7 7 1 0.2015 0.9630

7 7 3 0.1393 0.9615

7 7 5 0.1988 0.9667

7 7 7 0.1816 0.9593

TABLE 2 The validation loss and the validation accuracy with channel size.

Channel size Validation loss Validation accuracy

4 0.2455 0.9555

8 0.2196 0.9518

16 0.2215 0.9518

32 0.1489 0.9704

64 0.1411 0.9852
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The results showed that data from leg and trunk are the most
important in the assessment of balance during walking. These results
are expected because balance is related to body’s center of gravity,
and leg and trunk play an important role in its position change. On
the other side, human hands and upper limbs are usually moving
freely during walking, thus when we exclude these data, the accuracy
of the classification improved.

3.4 DCNN model interpretation with LRP

We further used LRP technique to explain DCNN decisions in
the balance assessment process as shown in Figure 7, which is the
representation of data contribution matrix for H4 condition which
has the best accuracy performance. The darker the color, the greater
the value of the matrix.

In walking (X) direction, the matrix values gradually increased
with time, which implies that the importance of data roughly
increased with time. In reality, when a subject is walking, his/her
position in X direction is gradually increase in X direction. The
relationship of position and time is dependent on step size, walking
speed and some other parameters that are widely used in popular
balance assessment scales. The subjects with low balance ability have
smaller walking speed, step frequency and step length, thus the
distance difference between subjects with different balance levels
gets bigger and bigger as time frames go on.

In left-right (Y) direction, the color of the entire Y block is much
lighter than the color of X and Z blocks, suggesting left-right
direction is the least important one for the classification task of
balance levels. We believe that this is because the movement of the
body in left-right (Y) direction during walking is relatively small,
leading to a failure to recognize the left-right (Y) direction difference
between different balance levels.

In the up-and-down direction (Z), lower limb data (left and
right) have relative darker color, suggesting ankles and legs are the
important parts for the classification task of balance levels. We
believed that this is because the subjects with different balance
abilities have different heights of foot lifting. In some assessment
scales, lifting height of foot is also an important parameter to judge
the level of human balance ability. The ankle joints and foot joints

TABLE 3 Performance of DCNN with different number of residual blocks.

The number of residual blocks Train loss Validation loss Validation accuracy

1 0.1386 0.1663 0.8333

2 0.1237 0.1569 0.9556

3 0.1235 0.1539 0.9741

4 0.1001 0.1856 0.9667

TABLE 4 Performance of DCNN with different optimization methods.

Optimizer Epoch Validation loss Validation accuracy

SGD 79 0.3040 0.9184

RMsProp 80 0.2982 0.9259

Adam 95 0.1539 0.9741

TABLE 5 Performance of different joint groups.

Group Description Selected joints Accuracy Improvement

A0 All joints 0, 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26 89.83

T1 Joints except for head 0, 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25 86.34 −3.49

T2 Joints expect for head, neck 0, 1, 2, 4, 5, 6, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25 86.67 −3.16

H1 Joints except for wrists 0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26 88.67 −1.16

H2 Joints except for wrists, elbows 0, 1, 2, 3, 4, 5, 11, 12, 18, 19, 20, 21, 22, 23, 24, 25, 26 91.33 1.50

H3 Joints except for wrists, elbows, shoulders 0, 1, 2, 3, 4, 11, 18, 19, 20, 21, 22, 23, 24, 25, 26 91.00 1.17

H4 Joints except for wrists, elbows, shoulders, clavicles 0, 1, 2, 3, 18, 19, 20, 21, 22, 23, 24, 25, 26 93.67 3.84

L1 Joints expert for feet 0, 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 18, 19, 20, 22, 23, 24, 26 89.00 −0.83

L2 Joints expert for feet, ankles 0, 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 18, 19, 22, 23, 26 88.67 −1.16

L3 Joints expert for feet, ankles, knees 0, 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 18, 22, 26 87.33 −2.50

L4 Joints expert for feet, ankles, knees, hips 0, 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 26 84.33 −5.50

G1 Joints only include pelvis, spine naval, spine chest 0, 1, 2 76.00 −13.83

G2 Joints only include feet, ankles, knees, hips 18, 19, 20, 21, 22, 23, 24, 25 67.33 −22.50
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vary fast in the vertical direction during the lifting of foot.
Additionally, the color of normal balance group (Level-0) was
lighter than the other two, suggesting normal balance group is
relatively stable and has less position changes than balance
impaired groups (Level-1 and Level-2).

3.5 Comparison of the proposed DCNNwith
traditional machine learning methods

To validate the effectiveness of the proposed DCNNmethod, we
compared the results of DCNN with those of traditional machine
learning methods, such as Naive Bayes, Random Forest and support
vector machines (SVM). We used an exhaustive grid search method
to compute optimal values for hyperparameters of Naive Bayes,
Decision Tree, and SVM to obtain the highest recognition accuracy
for all three methods. Naive Bayes is used to fit the distribution of
data samples, and gaussian naive Bayes is used here. For the three
hyperparameters of random forest classifier, the number of weak
classifiers, evaluation criteria and maximum depth, the grid search
method is used to search for optimal values. The number of weak
classifiers is {50, 100, 150, 200}, the evaluation criteria is {“entropy,”
“gini”}, and the maximum depth is set to a range of 5–50. Random
forest classifiers perform best when the number of weak classifiers is
50, the evaluation criterion is “entropy”, and the maximum depth is
24. SVM classifier has three important hyperparameter kernel types,
kernel coefficients and penalty parameters. The kernel type is
{“RBF,” “Linear,” “Poly”}, the kernel coefficient is {0.0001, 0.001,

0.01, 0.1, 1.0, 10.0}, and the penalty parameter is {1, 5, 10, 100,
1,000}. When the kernel type is Linear, the kernel coefficient is 1.0,
and the penalty parameter is 1, the SVM classifier can achieve the
best performance. In addition, we use two LSTM layers and one full
connection layer to construct the LSTM network, where the number
of neurons in LSTM layer is 32, and the number of neurons in full
connection layer is 32.

Table 6 shows the comparison results of DCNN and different
traditional machine learning methods. Among them, Naïve Bayes
performed the worst, with accuracy of 73.33%, precision of 81.71%
and F1 score of 73.37%. The accuracy of SVM is 86.66%, the
precision is 87.96%, and the F1 score is 86.92%. The accuracy of
Random Forest is 86.66%, the precision is 87.96%, and the F1 score
is 86.81%. LSTM has 83.33% accuracy, 86.71% precision and 82.83%
F1 score. Compared with these methods, the performance of DCNN
classifier proposed by us is better. The improvement indicated the
potential of the proposed DCNN in balance ability assessment.

Because DCNN can effectively extract low and high dimensional
features, it has demonstrated better performance than traditional
machine learning classifiers in many areas (Khagi et al., 2019; Mete
and Ensari, 2019). DCNN and LSTM are often used to process image
data and sequence data respectively. In this paper, we compared the two
deep learning models in our experiments, and we found that the
proposed DCNN model with residual structure has better
performance than LSTM. The result is consistent with other
previous literatures (Bai et al., 2018), in which word-level language
are studied. With the help of residual architecture, one-dimensional
convolutional networks can also make effective use of historical

FIGURE 7
Color diagram of the contribution matrix of the sample input in the three levels of the subject. (A) Balance Level-0; (B) Balance Level-1; (C) Balance
Level-2. The y-axis represents 13 joints in H4 skeleton node group and the x-axis represents 20 frames (time). The X refers to the front and back direction
of the human body, the Y refers to the left and right direction, and the Z refers to the up-and-down direction.
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information. Therefore, in some cases, one-dimensional residual
convolution networks can match or exceed the performance of LSTM.

3.6 Comparison of the proposed DCNNwith
commonly used CNN-based methods

To further validate the effectiveness of the proposed DCNN
method, we also compared the results of DCNNwith those of several
commonly used CNN-based methods. These commonly used CNN-
based methods including the AlexNet, the VGGNet and the ResNet-
18. The hyperparameters of these three CNN-based networks were
optimized to achieve better prediction accuracy.

Table 7 shows the comparison results of DCNN and different
CNN-based methods. Among them, ResNet-18 performed the worst,
with accuracy of 83.33%, precision of 88.89% and F1 score of 82.22%.
The accuracy of AlexNet is 90.00%, the precision is 90.74%, and the
F1 score is 89.95%. The accuracy of VGGNet is 86.67%, the precision is
90.48%, and the F1 score is 86.11%. Compared with these methods, the
performance of DCNN classifier proposed by us is better. The
architecture of the proposed DCNN is more suitable for the
classification of walking balance ability task.

3.7 Comparing with posture description
method

There are many studies that use Kinect for posture and motion
recognition, but few studies that use Kinect to assess balance ability
during walking. Although the goals of the two tasks are different,
they are achieved using classification methods, so it can be
considered to migrate the postures classification model to the
walking balance ability classification.

To further validate the performance of the proposed method, we
migrated and applied a state of art posture classification method

proposed by Klishkovakaia et al. (Klishkovskaia et al., 2020). Briefly,
the authors developed a low-cost and high-precision posture
classification method based on posture description composed of
vector lengths and angles. Movement can be described as a collection
of postures. We can analyze differences in walking balance ability by
establishing balance ability posture collections.

The performances of the reproduced method and the proposed
DCNN method are shown in Table 8. We can see that the proposed
model is better in the walking balance classification task. In the
classification of postures task, the difference between postures is
more obvious, such as walking and standing. However, in the
classification of walking balance ability task, the postures are all
walking postures. Therefore, the classification of walking balance
ability may need more powerful feature extraction capability, which
is the strong point of DCNN method.

4 Conclusion

In this study, we used the Kinect 3D skeleton data and DCNN to
assess balance abilities of human body during walking. Thorough
parametric study including hyperparameters setting of DCNN and
skeleton node selection was performed in order to obtain better
performance. The proposed DCNN was compared with traditional
machine learning methods, and the results showed that DCNN has
the best performance. Our results suggest that 3D skeleton data and
DCNN can be used for balance assessment with decent accuracy.
The proposed method should be useful in early screening balance
impaired people. It can partially replace commonly used balance
measures and reduce the influence of subjective factors. In future
work, we plan to further validate the proposed deep convolutional
neural network model on 3D skeleton datasets from real patients. In
addition, we plan to further subdivide the levels of walking balance
ability to assess the patient’s situation more accurately. Moreover,
we plan to use multiple Kinects in combination to increase data
accuracy.
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TABLE 7 Performance of DCNN and different CNN-based methods.

Classifier Accuracy Precision F1-score

DCNN 93.33 94.44 93.46

AlexNet 90.00 90.74 89.95

VGGNet 86.67 90.48 86.11

ResNet-18 83.33 88.89 82.22

TABLE 8 Performance of DCNN and posture description method.

Method Accuracy Precision F1-score

Posture description method 86.67 87.68 86.43

DCNN 93.33 94.44 93.46

TABLE 6 Performance of DCNN and different traditional machine learning
methods.

Classifier Accuracy Precision F1-score

DCNN 93.33 94.44 93.46

SVM 86.67 87.96 86.92

Random Forest 86.67 90.47 86.81

LSTM 83.33 86.71 82.83

Naive Bayes 73.33 81.71 73.37
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