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The entry of subcutaneous extracellular matrix proteins into the circulation is a key
step in hemostasis initiation after vascular injury. However, in cases of severe
trauma, extracellular matrix proteins are unable to cover the wound, making it
difficult to effectively initiate hemostasis and resulting in a series of bleeding
events. Acellular-treated extracellular matrix (ECM) hydrogels are widely used in
regenerative medicine and can effectively promote tissue repair due to their high
mimic nature and excellent biocompatibility. ECM hydrogels contain high
concentrations of extracellular matrix proteins, including collagen, fibronectin,
and laminin, which can simulate subcutaneous extracellular matrix components
and participate in the hemostatic process. Therefore, it has unique advantages as a
hemostatic material. This paper first reviewed the preparation, composition and
structure of extracellular hydrogels, as well as their mechanical properties and
safety, and then analyzed the hemostaticmechanism of the hydrogels to provide a
reference for the application and research, and development of ECM hydrogels in
the field of hemostasis.
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1 Introduction

Uncontrolled bleeding is a major challenge in trauma care and surgery. Rapid and
effective hemostasis is essential to improve care quality and save lives (Yang et al., 2019; Fan
et al., 2021). Conventional hemostatic materials, such as tourniquets, gauze, and bandages,
have shown limited efficacy in controlling bleeding (Chen et al., 2020). Moreover, gauze or
bandages need to be completely removed (Leonhardt et al., 2019) after hemostasis because
they are non-biodegradable, resulting in secondary injury, delayed healing, and additional
pain. Therefore, there has been widespread interest in developing novel hemostatic materials
and techniques. The ideal hemostatic material should have the following characteristics
(Ellis-Behnke, 2011; Zhong et al., 2021): 1) the ability to quickly form thrombus; 2) It should
be biocompatible, biodegradable, and conducive to accelerating wound healing; 3) stable,
cost-effective, and safe.

As a novel polymer material, a hydrogel is a three-dimensional network structure with
high water content (Zhang et al., 2021). The hydrogel can be applied to various irregular
wounds and intraluminal injuries (Deng et al., 2017; Palomino-Durand et al., 2019) due to its
injectability and fluidity, which is crucial for rapid and effective hemostasis. Furthermore, the
excellent biodegradability and biocompatibility ensure the safety of hydrogel-based
biomaterials for in vivo application and enhance their ability to promote wound healing
(Labay et al., 2019). Therefore, hydrogel-based hemostatic materials have unique advantages.
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Hemostasis refers to the quick stopping of bleeding (Zhang et al.,
2020; D’Andrea et al., 2009; Wang et al., 2021; Zheng et al., 2020).
Bleeding caused by small vessel injuries usually stops automatically
within a few minutes. This phenomenon is called physiologic
hemostasis. Physiologic hemostasis is one of the important
protective mechanisms of the body, which include three steps: first,
the injured small blood vessel immediately constricts to seal the vessel
and reduce bleeding. Second, the subcutaneous matrix promotes
platelet aggregation and adhesion, forming a soft hemostatic plug to
fill the wound. Third, by activating the blood coagulation system,
soluble fibrinogen in the plasma is converted into insoluble fibrin
polymer, forming a firm mixture composed of fibrin and platelets,
effectively stopping bleeding (Wang et al., 2021). However,
physiological hemostasis only works in case of minor trauma
(Zheng et al., 2020). Injury to an artery or viscera makes it difficult
for the contracted vessels to cover the wound surface, preventing the
subendothelial matrix from playing its role effectively. The
subcutaneous extracellular matrix is essential for hemostasis because
it contains numerous extracellular matrix proteins and can promote
hemostasis in different ways (Watson, 2009; Bergmeier and Hynes,
2012; Wang et al., 2016a). Therefore, it is a novel idea to use an
exogenous extracellular matrix to promote wound hemostasis when
bleeding caused by trauma exceeds the ability of self-hemostasis.

ECM hydrogel has attracted much attention in the field of tissue
repair and regenerative medicine in recent years due to its good
cytocompatibility, biodegradability, and ability to induce tissue
regeneration (Zhang et al., 2021). Native hydrogels contain a host
of ECM proteins that can mimic the subcutaneous matrix to
promote hemostasis. Regeneration and hemostasis can cooperate

to provide tissue specific therapies. For example, When liver, kidney,
or spleen tissue is injured and bleeding due to surgery or trauma, as
shown in Figure 1, the corresponding ECM hydrogel of the liver,
kidney, or spleen can be injected to halt bleeding and promote tissue
regeneration. This review further introduces the preparation,
composition, structure of ECM hydrogels, as well as their
mechanical property and safety, and analyzes the role of various
extracellular matrix components in hemostasis. It can provide a
reference for future hemostatic material research.

2 Overview of extracellular matrix
hydrogels

2.1 Source of extracellular matrix materials

The extracellular matrix can originate from cell-derived matrix,
various tissues, and organs of mammals. ECM derived from in vitro
cultured cell constructs provides a promising alternative for creating
tissue engineered scaffolds (Cheng et al., 2014). For example,
osteogenic ECMs can be constructed in vitro by culturing specific
cells such as mesenchymal stem cells (Zeitouni et al., 2012),
chondrocytes (Lau et al., 2012) or osteoblasts (Tour et al., 2011)
under osteogenic medium. The extracellular matrix of animal origin
is primarily xenogeneic, commonly derived from pig tissues and
organs, but also from human cadavers and rarely from autogenic
sources (Zhang et al., 2021). The sources of autologous and
allogeneic tissue are minimal. Various tissues from different
animals, such as the bladder (Kao et al., 2020) and heart (Seif-

FIGURE 1
Different derived ECMhydrogels are used for hemostasis and tissue healing. Each tissue has a unique extracellularmatrix structure, andwhen trauma
results in tissue damage and bleeding, ECM hydrogels from the same tissue source can be used to stop bleeding and promote tissue healing (Specialized
hemostasis and tissue healing).
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Naraghi et al., 2013) of pigs and the shin bone of cattle (Sawkins
et al., 2013), have been widely used to overcome the shortage of
human tissue to create decellularized ECM (dECM). Human-
derived ECM can be sourced from cadavers, diseased or injured
tissues and organs of patients, and donated tissues from human
tissue banks. Obtaining autologous tissue-derived extracellular
matrix requires surgical intervention (Fuller et al., 2013),
decellularization, and detoxification procedures, which makes the
process time-consuming.

2.2 Preparation of extracellular matrix
hydrogels

Decellularization of biomaterials removes cellular
components while maintaining the original structure,

composition, biochemical, and mechanical properties of
natural ECMs. Researchers have developed various
decellularization methods, including physical, chemical, and
enzyme treatments and combinations of these methods. For
example, Sellaro et al. utilized mechanical agitation, trypsin/
Ethylene diamine tetraacetic acid (EDTA), sodium deoxycholic
(SDC), and Triton X-100 to create porcine liver ECM (Sellaro
et al., 2010). However, each of the techniques mentioned above
has its benefits and limitations. The physical method causes
minimal damage to the tissue structure, but it is difficult to
remove cellular components effectively (Burk et al., 2014).
Chemical agents can effectively eliminate cellular components
while destroying extracellular matrix proteins (Kasimir et al.,
2003). Protein composition and content significantly affect the
formation of extracellular matrix hydrogels. Therefore, it is
crucial to consider the effect of chemical reagents on

TABLE 1 The function and effection of acellular agents on ECM proteins in the process of decellularization.

Chemical reagent Function Effects on ECM proteins Reference

Ionic
detergents

SDS Damaging cell membranes and dissociating DNA
from proteins

Damaged collagen structure, reduce GAG content
and growth factors

Courtman et al. (1994)

SDC Kasimir et al. (2003)

Non-ionic
Detergents

Trition X 100 Destroyed collagen structure, increased collagen
degeneration and reduce laminins/fibronectin
content

Cartmell and Dunn
(2000)

Huh et al. (2018)

Acids Hydrochloric acid Donating hydrogen ion or form a covalent bond with
an electron pair to catalyze hydrolytic degradation

Reduce collagen content Gupta et al. (2018)

Peracetic acid Tsuchiya et al. (2014)

Lin et al. (2019)

Alkalies Ammonium
hydroxide

Inducing cellular lysis by denaturation of the
chromosomal DNA

Reduce GAG and collage content, eliminate ECM
growth factors

Paulo Zambon, et al.
(2020)

Sodium
hydroxide

Sheridan et al. (2012)

Calcium
hydroxide

Mendoza-Novelo et al.
(2011)

Sodium sulfide Brown et al. (2011)

Simões et al. (2017)

Sengyoku et al. (2018)

Chelators EDTA Bind divalent metal cations at cell-adhesion sites of
the ECM causing cell and ECM dissociation

Disrupt protein-protein interactions, and denature
proteins in ECM

Brown et al. (2011)

EGTA Loneker et al. (2016)

Enzymes Nuclease Cleave nucleic acids Harmful effects on the ECM constituents such as
GAG, laminin and collagen IV

Ali et al. (2019)

Dispase Cleave collagen Ⅳ and fibronectin Pati et al. (2014)

Lipase Catalyze the hydrolysis of lipids and aids in
delipidation

Rahman et al. (2018)

Phospholipase Hydrolyze phospholipid components of cells and
solubilizes cells

Yang et al. (2018)

Trypsin Cleave arginine and lysine Meder et al. (2021)

Kuljanin et al. (2017)

Chirco et al. (2017)

Abbreviations: SDS, sodium dodecyl sulfate; SDC, Sodium deoxycholate; EDTA, ethylene diamine tetraacetic acid; EGTA, ethylene glycol tetraacetic acid.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Cai and Weng 10.3389/fbioe.2023.1187474

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1187474


TABLE 2 ECM hydrogels derived from pig and human.

Tissue
source

Tissue
category

Collagen sGAG In vivostudies In vitro studies Clinical products (ECM scafford)

Product and
References

Function

Porcine Artery 64% 0.54%
± 0.02%

Fu et al. (2019) Davidov et al. (2021)

Cardiac tissue 84%–91% 1.50%
± 0.03%

Wassenaar et al. (2016) Davidov et al. (2021) Prima™Plus Christ et al.
(2014)

Repair of heart valves

Mitral valve
chordae

42% ± 4% 0.22% Seif-Naraghi et al.
(2013)

Jeffords et al. (2015) Hancock®II Valfrè et al.
(2006)

Aortic valve
leaflet

23% ± 3% 0.22% DeQuach et al. (2010) Mosaic® Jamieson et al.
(2011)

Mitral valve leafle 51% ± 7% 0.22% Wu et al. (2019) Freestyle® Khazaal et al.
(2022)

Pancreas 95.4% 1.30%
± 0.05%

Chaimov et al. (2017) Davidov et al. (2021)

Gaetani et al. (2018)

Adipose 84%–91% 0.60%
± 0.02%

Tan et al. (2017) Davidov et al. (2021)

Lin et al. (2016) van Dongen et al. (2019)

Poon et al. (2013) Lin et al. (2016)

Dermal 85% ± 4% 0.11% Wolf et al. (2012) Wolf et al. (2012) Permacol® Brunner et al.
(2019)

Repair of anal fistulas

Ventura et al. (2020) Ozpinar et al. (2021) Strattice™ Demant et al.
(2022)

Used in breast
reconstruction

Cheng et al. (2010) Ventura et al. (2020)

Cheng et al. (2010)

Urinary bladder 58% ± 3% 0.32% Wolf et al. (2012) Kao et al. (2020) MatriStem® Liang et al.
(2017)

Repair of vaginal
prolapses

Ghuman et al. (2018) Freytes et al. (2008)

Tukmachev et al.
(2016)

Kobayashi et al. (2020)

Endometrium 61.3% 17.3% López-Martínez et al.
(2021a)

López-Martínez et al. (2021a)

López-Martínez et al.
(2021b)

López-Martínez et al. (2021b)

Cornea 72% ± 10% 20% ± 3% Yazdanpanah et al.
(2021a)

Yazdanpanah et al. (2021b)

Wang et al. (2020) Fernández-Pérez and Ahearne
(2019)

Yazdanpanah et al. (2021a)

Wang et al. (2020)

Brain 53.75%
± 2.69%

0.51%
± 0.14%

No reported Medberry et al. (2013)

Simsa et al. (2021)

Seo et al. (2020)

Spinal cord 70.32%
± 4.73%

0.13%
± 0.09%

Tukmachev et al.
(2016)

Medberry et al. (2013)

Intestinal
submucosa

51% 0.39%
± 0.03%

Wang et al. (2016b)
(Okada et al. (2010)
(Mao et al. (2022)

Kim and Kim, (2016)

Kobayashi et al. (2020)
Kellaway et al. (2023)
Kim et al. (2022)

Crapo and Wnag, (2010)
Wang et al. (2019)

Oasis® Holmes et al.
(2013)

Repair of skin wounds

CuffPatch® Barber et al.
(2006)

Repair of tendon tears

(Continued on following page)
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extracellular matrix proteins during the decellularization
process, as shown in Table 1.

The formation of extracellular matrix-derived hydrogels after
decellularization is based on the self-assembly of collagen and is
influenced by glycosaminoglycans, proteoglycans, and various
proteins (Saldin et al., 2017; Zhang et al., 2021). The powdered
decellularized extracellular matrix (dECM) is first dissolved into
a homogeneous solution by enzymatic hydrolysis and acid
dissolution. The formation of cross-linking gel can then be
induced by adjusting the temperature, pH, or addition of
cross-linking agent (Uriel et al., 2008). After the ECM powder
is digested into a solution with pepsin, it contains dispersed
collagen, glycosaminoglycan, proteoglycan, and ECM protein
monomer. Under the suitable temperature and pH conditions
or the addition of cross-linking agent, intramolecular and
intermolecular cross-links of the three-dimensional helical
structure of collagen monomers can be generated by covalent
bonding to improve the tension and stability of collagen fibers
and making ECM gel solution. Small intestinal submucosa (Mao
et al., 2022), bladder (Kobayashi et al., 2020), fat (Tan et al.,
2017), heart (Seif-Naraghi et al., 2013), cornea (Yazdanpanah
et al., 2021a), dermis (Wolf et al., 2012), central nervous system
(Tukmachev et al., 2016), umbilical cord (Výborný et al., 2019)
and pancreas (Sackett et al., 2018) have been used to prepare
ECM hydrogels successfully.

2.3 Constitutive structure of ECM hydrogels

Extracellular matrix-derived hydrogels are naturally occurring
substances. After acellular treatment, the extracellular matrix retains

the intrinsic structural and chemical integrity of the original tissue,
which consists mainly of protein and non-protein components such
as collagen, elastin, fibronectin, laminin, glycosaminoglycan, and
hyaluronic acid (Halper, 2021). The ECM of each tissue is produced
by its resident cells through interactions with other cell types. These
cells secrete molecules that develop unique tissue structures and
biochemical properties, creating an ideal microenvironment for
their function. Therefore, the ECM formed by different tissues
and organs after acellular treatment differs in composition,
structure, and content as show in Table 2. Collagen is the main
component of ECM hydrogel. Davidov et al. (2021) performed a
quantitative analysis of hydrogels’ composition; artery-derived
hydrogels contained approximately 64% collagen, while heart
muscle, pancreas, and fat-derived hydrogels contained 20% more
collagen than artery-derived hydrogels, ranging from 84% to 91%.
Fibronectin (FN) is a multidomain glycoprotein present in most
extracellular matrices and is involved in cell adhesion, migration,
metastasis, proliferation, and differentiation (Xiao et al., 2018).
Laminin is a high molecular weight multifunctional protein
found in the extracellular matrix. Laminin-mediated interactions
are crucial for cellular architecture formation through cell adhesion,
spreading, and migration (Higaki et al., 2002). The ECM is also
composed of many glycosaminoglycans (GAGs) mixtures that bind
growth factors and improve water retention while giving the ECM
some gel-like properties. The amount of GAG left in the tissue after
decellularization largely depends on the method of decellularization.
For example, ion stain removers are often used during
decellularization to remove GAG from the ECM (Ebrahimi
Sadrabadi et al., 2021). Therefore, ECM-derived hydrogels have a
very complex composition in which different components play
different roles in hemostasis.

TABLE 2 (Continued) ECM hydrogels derived from pig and human.

Tissue
source

Tissue
category

Collagen sGAG In vivostudies In vitro studies Clinical products (ECM scafford)

Product and
References

Function

Skeletal muscle 64.8% ± 6.9% 1.67%
± 0.01%

Zhang et al. (2018) Zhang et al. (2018)

DeQuach et al. (2010)

Ungerleider et al. (2015)

Fu et al. (2016)

Human Umbilical cord 54.3% 0.66% Výborný et al. (2019) Výborný et al. (2019)

Ramzan et al. (2022)

Cardiac tissue 71.55% 0.08%–

0.96%
Johnson et al. (2014) Johnson et al. (2014) IOPatch™Chen and Liu,

(2016)
Ophthalmologic repair

Johnson et al. (2016)

Pancreas 7.54%
± 1.68%

15.2% Sackett et al. (2018) Sackett et al. (2018)

Peloso et al. (2016)

Tremmel et al. (2022)

Adipose 72% ± 4% 0.23%
± 0.05%

Chen et al. (2021) Chen et al. (2021)

Zhao et al. (2019) Zhao et al. (2019)

Adam Young et al.
(2014)

Getova et al. (2019)
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2.4 The safety of ECM hydrogels

ECM hydrogels are widely used as scaffold materials in
regenerative medicine due to their unique biological activity and
good biocompatibility (Saldin et al., 2017; Zhang et al., 2021). ECM
components are less vulnerable to rejection because their structure
and function are highly conserved and nearly identical across
species. ECM hydrogels, which eliminate many cell components
compared to allograft and xenograft, can effectively reduce the
potential for adverse host reactions after implantation. When
compared to other synthetic polymers, ECM components of
hydrogels are retained after decellularization, providing a better
microenvironment for cell attachment and cell-ECM interaction
(Badylak and Gilbert, 2008; Saldin et al., 2017).

ECM scaffolds are manufactured using various tissues derived from
cells, animals, or humans. The dECM scaffold derived from cells has
several advantages. For example, cultured cells can be screened for
pathogens and then kept free of pathogens for ECM. In addition, after
acellular treatment, the cell-derived matrix has improved plasticity and
optimal porosity due to its loose structure (Zhu et al., 2021).
Importantly, they can generate autologous ECM scaffolds from
autologous cells, thereby avoiding the adverse host reactions induced
by allogeneic or heterogeneous materials and circumventing the limited
availability of autologous tissue. However, cell-derived dECM typically
has limited mechanical properties (Guan et al., 2022).

Pigs are the primary source of animal extracellular matrix
components. Compared with other animals, porcine organs are
readily available in larger quantities and are comparable in size
and function to human organs. Therefore, pigs have always been the
preferred source of cellular scaffolds of tissues and organs (Zhang
et al., 2021). Many commercialized porcine extracellular matrix
products (Prima™ Plus, Hancock® II, Mosaic®, Freestyle®,
Permacol®, Strattice™, MatriStem®, Oasis®, and CuffPatch®)
(Table 2) are employed in tissue regeneration. For example,
Oasis®, derived from acellular porcine small intestinal submucosa,
is an acellular product primarily used in the treatment of chronic
wounds (Holmes et al., 2013). Extracellular matrix hydrogels are
prepared based on extracellular matrix scaffolds. Traverse et al.
(2019) conducted a first-in-man, single-arm, multicenter trial to
demonstrate the safety, feasibility, and preliminary efficacy of
percutaneous trans-endocardial delivery of VentriGel (an
extracellular matrix hydrogel derived from decellularized porcine
myocardium) in early and late MI (Myocardial infarction) patients
with left ventricular (LV) dysfunction, which is the first
demonstration of using a decellularized ECM hydrogel in any
tissue in patients. Interestingly, ECM hydrogel can be used as an
embolic agent to embolize arteries and promote vascular healing.
Animal experiments have shown no signs of lymphadenopathy,
pulmonary emboli, or stroke, suggesting that ECM-based
nanocomposite hydrogel was safe even when used in blood
vessels (Hu et al., 2020). Porcine endogenous retroviruses
(PERV) are present in the pig genome and could pose a safety
hazard (Kimsa et al., 2014). However, the risk is minimal because the
source pigs will be housed in specific pathogen-free, biosecure
conditions and are regularly monitored (Cooper et al., 2018).

Various human tissues and organs, such as cardiac tissue
(Johnson et al., 2014), pancreas (Sackett et al., 2018), and adipose
(Chen et al., 2021), are utilized to produce dECM. Gao et al.

developed a human cardiac tissue-derived scaffold using
decellularization, which improved the functional behavior of
cardiac progenitor cells from patients with congenital heart
disease, including cell adhesion, survival, and proliferation (Gao
et al., 2022). Human-derived ECM materials are not controllable
and are easily affected by donor age, degree of damage, and storage
period (Johnson et al., 2014). However, those materials can
effectively prevent the transmission of xenogenetic diseases.

3 Hemostatic mechanism of hydrogel

3.1 Physical barrier

Temperature-sensitive hydrogels are of interest for achieving
effective hemostasis and wound closure because they are suitable for
wounds of various shapes (Liu et al., 2018; Cao et al., 2020). ECM
hydrogels have good temperature sensitivity, existing in a liquid
state at 4°C and a gel state at 37°C. Fully gelated ECMs usually appear
as irregular nanofiber scaffolds with interconnected pores on SEM
images (Freytes et al., 2008; Wolf et al., 2012). The thermal
characteristics of hydrogels can be used to stop bleeding in
wounds, especially irregular wounds. The liquid hydrogel can
cover irregular wounds at low temperatures; when the
temperature rises to body temperature, the hydrogel transforms
into a gel. The microstate showed irregular fibrous reticular scaffolds
that mechanically sealed the vascular breach and formed a physical
barrier as shown in Figure 2. The hydrogel is injectable and can be
injected into deep tissue wounds for hemostasis (Pourshahrestani
et al., 2020). Compared to natural tissues, hydrogels exhibit poor
mechanical properties (Grover et al., 2014; Ahearne and Coyle,
2016), making them susceptible to deformation. Increasing hydrogel
mechanical strength can effectively facilitate wound sealing and
prevent blood loss. There are two main methods to improve the
mechanical properties of ECM hydrogel. The first approach is to
increase the initial concentration of the extracellular matrix. The
second approach is to use cross-linking techniques to improve the
mechanical properties of hydrogels.

3.1.1 Effect of concentration on mechanical
properties

Extracellular matrix hydrogels have different mechanical
properties closely connected to their composition. Davidov et al.
compared the mechanical properties of ECM hydrogels derived
from the porcine liver, pancreas, artery, and heart (Davidov et al.,
2021). It was found that arterial hydrogels exhibit the highest
mechanical properties, while pancreatic hydrogels exhibit the
lowest. The mechanical properties of hydrogels vary with the
species of origin. The porcine myocardial matrix is significantly
higher than the Human myocardial matrix by measuring storage
and loss modulus with a parallel plate rheometer (Johnson et al.,
2014). The mechanical properties of hydrogels vary with the species
of origin Matrix, and mechanical properties can be effectively
enhanced by increasing the concentration of its extracellular
matrix. Tissue fibrosis typically increases various extracellular
matrix components. Normal heart tissue has an elastic modulus
of 10–15 kPa, while fibrotic tissue can be 2 to 10 times stiffer.
Healthy lung tissue is relatively soft, ranging from 1 to 5 kPa, and

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Cai and Weng 10.3389/fbioe.2023.1187474

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1187474


can stiffen above 10 kPa in pulmonary fibrosis (Hewawasam et al.,
2023).

Hydrogels prepared with a high concentration of extracellular
matrix typically have greater mechanical strength. Medberry et al.
(2013) prepared brain-ECM, spinal cord-ECM, and urinary
bladder-ECM hydrogels. As the temperature rapidly increased
from 10°C to 37°C, the maximum storage modulus, maximum
loss modulus, and the time to complete gelation increased for the
three hydrogels with increasing ECM concentration. Dermal-ECM
hydrogels were evaluated for their structural, mechanical, and
in vitro cell response characteristics, which were found to depend
on the ECM concentration (Wolf et al., 2012). These findings
suggest that the ECM concentration can influence and control
the physical properties of an ECM hydrogel.

3.1.2 Effect of crosslinking technology on
mechanical properties

The application of crosslinking agents has been investigated
to enhance the mechanical properties of hydrogels (Pilipchuk
et al., 2013; Ahearne and Coyle, 2016; Parthiban et al., 2021).

Crosslinking agents are introduced to modify various
biomaterials and improve their mechanical properties by
considering their composition and structural characteristics.
Cell compatibility is a crucial evaluation factor, for example,
using glutaraldehyde (GA) as a crosslinking agent might cause
cell toxicity (Wang et al., 2014). Therefore, it is vital to consider
the reaction of crosslinking agents on cells while enhancing
mechanical features, as shown in Table 3.

3.2 Simulate physiologic hemostasis

The inner wall of most blood vessels is covered by a
continuous layer of endothelial cells that seals the
subcutaneous extracellular matrix components and provides
an anti-thrombotic surface for the body. Moreover, it actively
secretes platelet activation inhibitors, such as nitric oxide and
prostacyclin (Hein et al., 2009). Which regulate blood circulation
and prevent thrombosis (Gimbrone et al., 2000). However, in the
case of trauma, the ruptured vascular wall is difficult to effectively

FIGURE 2
Schematic diagram of the use of ECM hydrogel showed irregular fibrous reticular scaffolds that mechanically sealed the vascular breach and formed
a physical barrier.
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play the role of hemostasis, leading to a series of bleeding and
even death events. Exogenous ECM hydrogels mimic the
significant components of the extracellular matrix, including
collagen, laminin, fibronectin, and vitronectin, which induce
platelet adhesion and activation and promote hemostasis and
thrombosis. Due to the different molecular environments of the
original tissue ECM, these hydrogels have varying compositions
and contents, which play different roles in hemostasis (Figure 3).
According to the research of Cai et al., 2021 as shown in Figure 4,
extracellular matrix hydrogels derived from porcine dermal were
used in liver, kidney, and vascular trauma models of Sprague-
Dawley rats and the pathological section suggests thrombosis,
which was found that ECM hydrogels effectively played a
hemostatic role.

3.2.1 The role of collagen in hemastasis
Collagen is the main component of extracellular matrix hydrogel

and is also a potent platelets activator. Its hemostatic mechanism is the
effect on platelets to shorten the thrombosis time. Glycoprotein VI
(GPVI) and α2β1 integrin are the collagen receptors on platelets (Sarratt
et al., 2005). Collagen interacts directly with platelets viaGPVI,mediates
platelet activation, and integrin α2β1, which supports platelet adhesion
to collagen (Jarvis et al., 2008; Attwood et al., 2013). Furthermore,
collagen induces exposure of procoagulant phospholipids on platelets
via GPVI(Manon-Jensen et al., 2016). The exposure of phospholipids
provides an assembly site for coagulation factors, resulting in thrombin
production required for platelet-fibrin thrombus. Simultaneously,
collagen activates the intrinsic coagulation pathway by binding to
factor XII(FXII, a coagulation factor) (van der Meijden et al., 2009).

TABLE 3 Application of crosslinking agents in ECM hydrogels.

Tissue
source

Crosslinking mode Function Cytocompatibility Reference

Human derived
dentin matrix

dECM strongly interacted with the
GelMA matrix via covalent interactions
between aldehyde in dECM and amine

groups in GelMA

The compressive strength improved 2-
fold with increasing dECM content from

2.5 wt% to 10 wt%

Hydrogels showed a tendency to increase cell
viability with the increase of dECM

concentration

Sadeghian et al.
(2023)

Human derived
bone matrix

Demineralized and decellularized bone
matrix was functionalized with
methacrylate group to form

photocrosslinked methacrylate bone
ECM hydrogel

The mechanical properties of BoneMA
were tunable, with the elastic modulus

increasing as a function of
photocrosslinking time

Hydrogels supported vascularization of
endothelial cells and within a day led to the

formation of interconnected vascular
networks

Parthiban et al.
(2021)

Rat derived
dermal matrix

The dermal extracellular matrix hydrogel
was prepared and covalently cross-linked

by glutaraldehyde (GA)

Compression tests indicated that elastic
moduli and yield stress values increased
signifificantly with GA exposure time

Hydrogels supported cell adhesion and
showed good tolerance in vivo

Pilipchuk et al.
(2013)

porcine cornea
matrix

The cornea, liver and heart extracellular
matrix hydrogel was prepared

respectively and covalently cross-linked
by UVA-riboflavin

It can be used to enhance the mechanical
properties of ECM

Hydrogels. The stiffness can be controlled
by varying the UVA exposure time

Hydrogels did not have any significant adverse
effects on cell viability

Ahearne and
Coyle (2016)

ovine liver
matrix

ovine heart
matrix

Porcine
myocardial
matrix

Cross-linking the ECM proteins with an
amine-reactive PEG-star

Addition of PEG to the myocardial matrix
did increase the stiffness of the hydrogels,
although this was greater with the radical
polymerization with the four-armed PEG

Hydrogels did not prevent cell adhesion and
migration through the hydrogels

Wang et al.
(2014)

Myocardial matrix, PEG-acrylate, and
Irgacure 2,959 were mixedand Gel
formation photo-induced radical

polymerization

Myocardial matrix, PEG-diacrylate, and
Irgacure 2,959 were mixed and Gel
formation photo-induced radical

polymerization

Crosslinking of the myocardial matrix
was induced during self-assembly,

through the addition of
glutaraldehyde (GA)

Crosslinking increases the stiffness and
elasticity of the hydrogel, as assessed by

parallel plate rheology

Migration of cells through crosslinked gels was
slowed, but not inhibited

Singelyn and
Christman
(2011)

human
cartilage matrix

The forming hydrogels were composed of
different ionic crosslinked alginate

concentrations with 1% w/v
enzymatically crosslinked phenolized

cartilage ECM, resulting in an
interpenetrating polymer network (IPN)

The results demonstrated that upon
increasing the alginate concentration, the

compression modulus improved

Hydrogels provide a suitable
microenvironment for the growth and viability

of Human primary chondrocyte cells

Shojarazavi et al.
(2021)

Abbreviations: BG, bioactive glass; GelMA, gelatin methacrylate; BoneMA, a photocrosslinkable methacrylate bone ECM, hydrogel-bone-derived biomaterial; PEG-star, Four-arm polyethylene

glycol. UVA, Ultraviolet Radiation A.
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Therefore, collagen can promote blood coagulation through various
pathways and plays a leading role in the process of ECM hemostasis.

3.2.2 The role of laminin in hemastasis
Laminin is a heterotrimeric glycoprotein found in almost all ECM

tissues, especially in the basement membrane of the vasculature. Platelet
recruitment by VWF (vonWillebrand Factor) enables integrin α6β1 and
GPVI to interact with laminin, supporting integrin activation and
resulting in stable adhesion and platelet aggregates formation (Inoue
et al., 2006). Thismechanismof platelet adhesion and activation is similar
to platelet-collagen interaction; integrin α2β1 binding to collagen
facilitates the interaction between GPVI and collagen. Further studies
by Inoue et al. (2008) discovered that immobilized laminin promotes
platelet recruitment under shear flow in a GPIbα-vWF dependent
manner. White-Adams et al. demonstrated that laminin can activate
FXII and that surface-associated laminin alone can trigger fibrin- and
platelet-rich clots formation under shear (White-Adams et al., 2010).
Therefore, the process of platelet recruitment, activation, and adhesion on
laminin is mechanically similar to the interaction between platelets and
collagen under shearing, and both can activate FXII, suggesting that
laminin and collagen may jointly promote hemostasis.

Laminin is aweak platelet agonist, with a 10-fold lower affinity for the
interaction between laminin and GPVI than collagen binding (Watson,
2009). Because superficial injury does not expose fibrous collagen,
laminin-mediated platelet adhesion activation may be more effective.
When the vessel wall is severely damaged, the exposed collagen in the
deeper layers of the extracellular matrix collaborates with the superficial
laminin to promote hemostasis. Moreover, laminin-111 can induce
fibronectin assembly after adhesion to platelets via integrin α6β1.
Therefore, laminin can indirectly affect hemostasis and thrombosis by

regulating fibronectin deposition in thrombus (Cho and Mosher, 2006).
As an important component of extracellularmatrix hydrogel, laminin can
collaborate with other hydrogel components to exert a hemostatic effect.

3.2.3 The role of fibronectin in hemastasis
Fibronectin (FN) is a dimeric protein composed of two

approximately 250 kDa subunits that have many biological functions
and is involved in cell migration, adhesion, proliferation, hemostasis,
and tissue repair (Wang et al., 2008; Tong et al., 2016). FN is present as
plasma Fibronectin (pFN) and cell Fibronectin (cFN) in extracellular
connective tissue matrix and extracellular fluid (Roberts et al., 2020).
pFN is produced by hepatocytes and endothelial cells in the liver and
exists as a soluble non-complex molecule in the blood, whereas cFN is
secreted and synthesized by fibroblast andmesenchymal cells and exists
in the ECM as an insoluble polymer. Fibronectin is an essential
component of tissue ECM, and it exists in two forms: as a soluble
form in plasma and as an insoluble polymerized form. The main
difference between the two forms of existence is that cFN has an extra
domain A (EDA) and an extra domain B (EDB) compared to
pFN(Wang et al., 2008).

The fibrillar cFN in the ECM is a strong prothrombotic
surface that promotes platelet adhesion, aggregation, and
coagulation. Fibrillar cFN effectively supports platelet
adhesion, and adherent platelets can be activated to form a
thrombus. This process depends on the integration of
α5β1 and αIIbβ3, together with the GPIb-V-IX complexes,
GPVI, and TLR4 (Maurer et al., 2015). Integrins α5β1 and
αIIbβ3 ensure the initial phase of platelet adhesion to fibrillar
cFN. Integrins can effectively promote platelet activation once
platelets are attached to fibrillar cFn (McCarty et al., 2004; Lickert

FIGURE 3
Schematic of the complex mechanism of blood vessel hemostasis. Vessel wall rupture makes it difficult for ECM proteins to play a hemostatic role,
resulting in a series of bleeding events and even death. Exogenous ECM hydrogels mimic extracellular matrix main ingredients, including collagen,
laminin, fibronectin, and vitronectin, which induce platelet adhesion and activation and promote hemostasis and thrombosis.
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FIGURE 4
In vitro and in vivo hemostasis test. (A) In vitro dynamic whole-blood clotting evaluation (A1, A2, and A3) of the ADM, VADM1, VADM2, VADM4, and
VADM6 hydrogels, with gelatin sponge and gauze used as the control. (B) Photographs captured during the liver lacerationmodel and renal tissue-defect
model. (B1) A wound with a length of 1 cm in the liver. (B2) VADM1 hydrogel formed in situ on the trauma injury. (B3) A small portion of the kidney tissue
was removed with surgical scissors. (B4) VADM1 hydrogel formed in situ on the defective tissue. (C) Photographs captured during a hemostasis test
on the abdominal aorta (highlighted by red circles and ellipses). (c1) Clipped abdominal aorta. (c2,c3) Arterial spurts can be observed after release of the
artery clip. (c4) VADM1 hydrogel applied to the wound. (c5) Abdominal aorta surrounded by VADM1 hydrogel. (c6) Artery clip was removed after 5 min,
and the bleeding was stopped completely. The abdominal aorta was clogged with hydrogel. (c7–c9) Arterial spurts still occur on the control group after
5 min, when the artery clip was released. (D) H&E stained micrographs, showing signifificant accumulation of red cells (yellow arrow) within the incision
site. Scale bar ¼ 100 μm. (E) Blood loss from liver and kidney incisions. Three replicates of each sample were tested and the data were shown as mean ±
SD. VADM:acellular dermal matrix hydrogel blended with vancomycin. Reprinted from (Cai et al., 2021) with permission from Elsevier Publisher, Ltd.
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et al., 2022). GPIb-V-IX complex is a membrane protein
component on the surface of platelets that plays a key role in
platelet thrombosis initiation and coagulation. The binding of
von Willebrand factor (VWF) to the platelet membrane
glycoprotein (GP) Ib-IX-V complex initiates a signaling
cascade that activates αIIbβ3 and causes platelet aggregation
(Liu et al., 2005). As a fibronectin receptor, activated
αIIbβ3 can further promote platelet adhesion and activation.
Maurer et al. (2015) decreased thrombus formation on fibrillar
cFN by antagonizing the binding of VWF and GPIb-V-IX
complexes. GPVI is not only a collagen and laminin agonist
but also a ligand and agonist for fibronectin, which, together with
integrins, promotes platelet adhesion activation (Perrella et al.,
2021). TLR4 is an EDA-binding receptor involved in platelet
aggregation on fibrillar cFN, and the volume of thrombus on
fibrillar cFN was reduced by using TLR4 blockers (Maurer et al.,
2015; Prakash et al., 2015). Fibronectin can bind to various
platelet receptors and play an important role in hemostasis
and thrombosis.

3.2.4 The role of vitronectin in hemastasis
Vitronectin (VN) is a multifunctional 75-kDa glycoprotein

present in plasma, extracellular matrix, and the α-granules of
platelets (Bergmeier and Hynes, 2012). Vitronectin can not only
improve platelet adhesion and aggregation during thrombus
formation, but it also promotes thrombus stability. Ekmekci et al.
(2002) discovered high vitronectin levels in growing thrombus,
suggesting that it is actively involved in thrombosis after vascular
injury. Vitronectin has two fibrin binding sites that have the
potential to link fibrin monomers to polymers, binding them to
fibrin clots to promote further platelet adhesion and aggregation
(Schvartz et al., 2002). Platelets are covered by VN after initial
binding to fibrin, and VN incorporated into fibrin clots enhances
platelet adhesion and aggregation via the homotypic binding of VN
molecules present on platelet surfaces and in clots. Wu et al. (2004)
perfused whole blood onto a fibrin network made from purified
fibrinogen, resulting in approximately 20% of the surface being
covered with platelets binding purified polymeric VN to the fibrin
network, resulting in a 2-fold increase in platelet surface coverage
and enhanced platelet aggregate formation.

Plasminogen activator inhibitor-1 (PAI-1) can prevent
fibrinolysis by inhibiting the conversion of plasminogen to
plasmin. VN can bind to the β-sheet-A subunit of PAI-1,
stabilize its structure, inhibit its spontaneous inactivation, and
prolong its role in the fibrinolytic system, reducing the
fibrinolysis of thrombi (Eitzman et al., 1995; Hess et al., 1995).
Multiple protein components of ECM hydrogel could effectively
induce platelet adhesion and aggregation to achieve hemostasis;
vitronectin further promotes thrombogenesis in platelets by binding
to fibrin sites. Moreover, thrombus stability was effectively enhanced
by stabilizing the PAI-I structure and inhibiting thrombus
degradation.

4 Conclusion and future perspectives

This study discusses the manufacturing methods, composition,
safety, mechanical properties, and role of extracellular matrix

proteins in the hemostasis of extracellular matrix hydrogels. With
continued research and development, ECM hydrogel will be the
most competitive material in the field of hemostasis. ECM hydrogels
have developed a mature preparation and validation system to
promote tissue regeneration, including material acquisition,
acellular treatment, hydrogel formation, in vitro cytocompatibility
experiment, in vivo regeneration experiment, and clinical trials.
These experimental and theoretical findings facilitate the
investigation of ECM hydrogels for hemostasis. Although ECM
hydrogel has the potential to be hemostatic, significant
experimental studies are required before clinical application. The
formation and hemostatic function of the hydrogel primarily
depend on extracellular matrix proteins. Protein contents vary
between hydrogels from different sources and tissues, and the
application of acellular reagents may destroy extracellular matrix
proteins. Therefore, the hemostatic effects of hydrogels from various
sources and tissues can be compared to select appropriate
hemostatic agents. Optimizing the decellularization method and
reducing the destructive effect of chemical reagents on ECM are
essential processes. Combining tissue regeneration and hemostasis
will be the focus of future research on ECM hydrogel. The primary
focus of research is to promote tissue healing while enhancing the
hemostatic effect. Although the hemostatic effect can be improved
by introducing cross-linking agent or increasing extracellular matrix
protein, hydrogel’s regeneration and repair effect is easily
influenced. In conclusion, extracellular matrix hydrogels have
shown immense potential in the field of hemostasis. However,
further research and exploration are necessary fully realize its
potential.
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