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Introduction:Cross-court and the long-line topspin forehand is the common and
basic stroke skill in table tennis. The purpose of this study was to investigate the
differences in lumbar and pelvis movements between cross-court and long-line
topspin forehand strokes in table tennis based onmusculoskeletal demands using
OpenSim.

Materials and Methods: The eight-camera Vicon system and Kistler force
platform were used to measure kinematics and kinetics in the lumbar and
pelvis movement of sixteen participants (Weight: 69.89 ± 1.58 kg; Height: 1.73
± 0.03 m; Age: 22.89 ± 2.03 years; BMI: 23.45 ± 0.69 kg/m2; Experience: 8.33 ±
0.71 years) during cross-court and long-line topspin forehand play. The data was
imputed into OpenSim providing the establishment of the Giat2392
musculoskeletal model for simulation. One-dimensional statistical parametric
mapping and independent samples t-test was performed in MATLAB and SPSS
to analyze the kinematics and kinetics.

Results: The results show that the range of motion, peak moment, and maximum
angle of the lumbar and pelvis movement in cross-court play were significantly
higher than in the long-line stroke play. The moment of long-line in the sagittal
and frontal plane was significantly higher than cross-court play in the early stroke
phase.

Conclusion: The lumbar and pelvis embody greater weight transfer and greater
energy production mechanisms when players performed cross-court compared
to long-line topspin forehand. Beginners could enhance their motor control
strategies in forehand topspin skills and master this skill more easily based on
the results of this study.
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Introduction

Topspin forehand is regarded as one of the most attacking
strokes in table tennis based on the high speed and fast rotation
(Poizat et al., 2004; Qian et al., 2016; He et al., 2020; He et al., 2022a).
The mastery of the topspin forehand is also considered an important
factor in differentiating elite athletes (Iino and Kojima, 2011; He
et al., 2020). The biomechanical mechanisms inherent in topspin
forehand have been extensively reported in previous studies, such as
the joint kinematics (Iino and Kojima, 2009; He et al., 2020; He et al.,
2021a) and kinetics (Iino and Kojima, 2011), ground reaction force
(GRF) (Zhou et al., 2021a), plantar pressure (Fu et al., 2016; Lam
et al., 2019; He et al., 2021b), and electromyography (EMG) and
information regarding muscle contraction dynamics (Le Mansec
et al., 2018; Chen et al., 2022). These studies amply illustrate the
value and significance of investigating the biomechanical intrinsic
mechanisms of the topspin forehand.

The speed and accuracy of the ball, as well as the success rate, are the
key determinants of the quality of strokes (Landlinger et al., 2012;
Kolman et al., 2019). The key role of ball speed in table tennis supports
the optimization of stroke skills and distinguishes the performance level
of players. Trunk rotation was strongly correlated with the velocity of
the racket (Akutagawa and Kojima, 2005). Due to the critical role of
pelvic movement on the axial rotation of the trunk rotation and hitting
speed, pelvic movement plays a crucial role in powerful hitting sports,
such as table tennis, tennis, and baseball (Elliott and Zatsiorsky, 2000;
Akutagawa andKojima, 2005). In table tennis, the horizontal velocity of
the racket during the topspin forehand stroke was benefited by the peak
angular velocity of pelvic axial rotation and the pelvic axial rotation
torque on the playing hand side (Iino, 2018; He et al., 2022a). In order to
remain powerful and competitive, players need to increase the
acceleration of their playing hand by optimizing their stroke skill
and the efficiency of the power chain transmission, which brings
gains to the spin effect and flight speed of the ball during the
topspin forehand (Qian et al., 2016; Lam et al., 2019; He et al.,
2020; Chen et al., 2022). In tennis, the rotational movement of the
lower trunk in the horizontal plane was very frequent (Muyor et al.,
2013). In baseball, the rotation of the trunk and leg has been reported as
the important power source in ground strokes (Elliott and Zatsiorsky,
2000; Akutagawa and Kojima, 2005). Even though a great deal of
previous research and evidence has strongly supported that the
development of the optimal trunk rotation was one of the most
important factors to master the topspin strokes (Akutagawa and
Kojima, 2005), however, the movement characteristics of the human
pelvis have hardly been specifically studied and reported in table tennis
topspin forehand stroke.

The development of musculoskeletal models to investigate the
mechanical performance of human structures during movement is
an important and commonly used tool in the field of biomechanics
research.Motion reconstruction based on captured data allows access to
additional variables of interest to explain some phenomena and intrinsic
patterns. Examples include the reconstruction of musculoskeletal
models in OpenSim and Visual3D to calculate joint kinematics,
kinetics, and muscle forces during movement (Seth et al., 2018;
Dorschky et al., 2019; Nitschke et al., 2020). Iino (2018) created a
musculoskeletalmodel inOpenSim and investigated themuscular effort
of lower limb muscles during the topspin forehand stroke (Iino et al.,
2018). Yang et al. (2022) calculated the angles and moments of lower

limb joints of 36 elite table tennis players during chasse-step footwork
by OpenSim to investigate the gender difference (Yang et al., 2022). He
et al. (2022a) investigated lower limbs muscle force, joint kinematics,
and joint kinetics in footwork during the topspin forehand using
OpenSim (He et al., 2022b). That evidence suggests simulation using
a musculoskeletal model to obtain key information is viable and
recognized for explaining the mechanisms underlying table tennis
topspin forehand stroke movements.

As a typical one-handed racket sport, table tennis has been proven
to have a bad effect on the symmetry of the trunk, and the imbalance of
symmetry is one of the key factors leading to sports injuries (Bańkosz
and Barczyk-Pawelec, 2020). The revealing of the inner mechanism of
the lumbar and pelvis movement during stroke play in table tennis can
provide reference information for exploring sports injuries caused by
symmetry imbalance. The constant interplay of technical and tactical
skills is crucial to winning each point in a competition game (Kolman
et al., 2019). To achieve tactical goals, athletes need to perform specific
skills (Kolman et al., 2019). The importance of the cross-court (CC)
topspin forehand is reflected in the fact that the CC has always been the
object or vehicle of study in previous studies on the biomechanics of
table tennis (Iino and Kojima, 2011; Malagoli Lanzoni et al., 2018; He
et al., 2020; He et al., 2021a; Xing et al., 2022). Besides, the long-line (LL)
topspin forehand, as one of the basic strokes in racket sports, has been
widely studied not only in table tennis but also in tennis (Landlinger
et al., 2010; Pedro et al., 2022). The functional role of the topspin
forehand stroke skills in influencing tactics results in players being able
to optimize their skills to enhance the success of their tactics and further
ensure an advantageous position in the match. Although previous
studies have investigated the kinematics difference between CC and
LL (Malagoli Lanzoni et al., 2018; He et al., 2020), the lumbar and pelvis
movement and the kinetic information have not been measured and
analyzed. To summarize, this study aimed to simulate amusculoskeletal
model using OpenSim software to investigate the difference in lumbar
and pelvis movements between CC and LL topspin forehand strokes in
table tennis. Firstly, this study can be applied to guide the coaching and
training of table tennis players, especially for beginner players to
recognize the role of lumbar and pelvis movement in optimizing
topspin forehand stroke skills for application in the game. Secondly,
the movement information could be provided to explore the injury risk
in table tennis or other racket sports. The hypothesis of this study was
that CC and LL topspin forehand show significantly different
kinematics and kinetics, and the difference would be evident in the
transverse plane.

Methods

Participants

Sixteen male table tennis players from the Ningbo
University table tennis team volunteered to participate in this
study and provided written informed consent after the purpose
and process of this study were explained. All the participants
were at the national-one performance level and right-handed, as
well as free from any neuromuscular injury in the past 6 months.
The demographic information of participants is shown in
Table 1. The Ethics Committee of Ningbo University
approved this study.
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Experimental protocol and equipment

The experiment was performed in the biomechanics laboratory
of the Ningbo University Research Academy of Grand Health. As
shown in Figure 1, the kinematics of participants were captured by
an eight-camera Vicon motion capture system (Oxford Metrics,
Ltd., Oxford, United Kingdom) which was set at the sampling
frequency of 200 Hz. The kinetics of participants was recorded
by a force platform (Kistler, Switzerland) using a sampling
frequency of 1,000 Hz. All devices used for data acquisition were
electronically connected to achieve the multi-parameter
synchronous acquisition of the test data. The Gait2392 model
was selected to simulate the movement of the participant in the
OpenSim (Stanford University, Stanford, CA, United States), and
the thirty-nine reflective markers (12.5 mm in diameter) placement
was replicated according to the previous studies (Delp et al., 2007).

Participants used uniform rackets (Butterfly Tenergy 05 Max
and DHC Hurricane 3 rubber sheets), balls (D40+, Double
Happiness Sports Company, Shanghai, China), and playing
table (Rainbow, Double Happiness Sports Company, Shanghai,
China), as well as match table tennis shoes and tights during the
experiment.

Procedure

Prior to the commencement of the formal test, participants
were allowed to complete 5 min of static stretching and 10 min of
running in a spacious area to warm up. Subjects were required to
stand on the force platform to complete the static coordinates

collection process after putting the reflective markers on the
subjects’ bodies. To check the operation of all the equipment and
help the subjects quickly familiarize themselves with the
laboratory environment, subjects were asked to perform five
topspin forehand stroke tasks before the formal data collection
session.

As shown in Figure 1, in the formal test, the coach was
shooting the ball with normal service to the impact area (0.25 m *
0.3 m). The subject stands on the right side of the playing table
and was required to perform the topspin forehand stroke to
return the ball to the long-line target area (0.25 m * 0.3 m) and
cross-court target area (0.25 m * 0.3 m), respectively. The CC
topspin forehand started first, then perform the LL topspin
forehand. There is no rest time during the formal test until
the successfully recorded 5 trials data of the CC and the LL
topspin forehand for each participant, respectively. The subject
and a qualified coach judged the quality of motion during the test.
The test data were excluded if the drop point of the ball was out of
the target area and the motion quality was questioned.
Meanwhile, the data performance was also used to evaluate
the validity of data collection. The size set of the impact and
target area was as same as in previous studies (Zhou et al., 2021a;
He et al., 2022b).

Definition

In this study, only the data in the forward swing phase during the
stroke were collected and analyzed. The pelvis movement in the
transverse plane was defined as pelvis axial rotation (PAR), as well as

TABLE 1 Demographic information.

Weight (Kg) Height (M) Age (Y) BMI (Kg/m2) Experience (Y)

69.89 ± 1.58 1.73 ± 0.03 22.89 ± 2.03 23.45 ± 0.69 8.33 ± 0.71

FIGURE 1
Experimental environment and set-up.
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the lumbar movement in the sagittal, frontal, and transverse plane,
was defined as lumber flexion (LF), lumbar left lateral bending
(LLB), and lumbar axial rotation (LAR) in this study.

As shown in Figure 2, “A”, “B”, and “C” are the CC and LL
topspin forehand stroke process in the full body, lumbar, and
pelvis view, respectively. Besides, the “a-c”, “g-I”, and “m-o” in

CC and “d-f”, “j-l”, and “p-r” in LL indicate the “end of the
backward swing (EB)”, “medium forward swing (MF)”, and
“end of the forward swing (EF)”, respectively. The definition
of EB, MF, and EF was completed in the Vicon Nexus
1.8.6 software (Oxford Metrics, Ltd., Oxford,
United Kingdom). When the GRF wave reached the first

FIGURE 2
Diagram of the human musculoskeletal model of the CC and LL topspin forehand stroke. (A) indicate the topspin forehand stroke process.
(a–c) and (d–f) indicate the CC and LL, respectively. (B) shows the lumbar and pelvis movement during the topspin forehand stroke. (g–i) and (j–l)
indicate the CC and LL, respectively. (C) shows the pelvis movement during the topspin forehand stroke. (m–o) and (p–r) indicate the CC and LL,
respectively.

FIGURE 3
Flow chart and data processing.
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peak value was defined as EB. After the first peak in the GRF
wave, the medium value was defined as MF. And the second
peak value in the GRF wave was defined as EF.

Data processing

As shown in Figure 3, GRF and kinematic data during CC and
LL topspin forehand were identified and acquired using Vicon
Nexus 1.8.6 software. The data was exported from the Vicon
Nexus with a c3d. format file, and use MATLAB R2019a (The
MathWorks, Natick, MA, United States) to perform coordinate
system conversion, lower pass filtering, data extraction, and
format conversation for all data. The detailed process in
MATLAB R2019 has been outlined in previous studies (Zhou
et al., 2021b; He et al., 2022b) that as follows: convert the
coordinate to the subsequent simulation coordinate system, filter
the marker trajectory and the GRF, and convert the formats of data
to the trc. and mot. formats that are required by OpenSim. The
statics model of the subjects was imported into OpenSim and the
anthropometric model was obtained. Then we identified the
muscle’s starting and ending points and ensured the moment
arms were consistent with the length of the subject’s limb (Delp
et al., 2007; He et al., 2022b).We used the inverse kinematic tool (IK)
to calculate the kinematics data of the subject during CC and LL
topspin forehand and created a motion file using mot format. We
then imported the GRF andmarkers files using the inverse dynamics
tool (ID) and calculated the joint moment. In OpenSim, the
weighted least square problem was solved by the IK function to
minimize the distance of markers’ placements between the
experimental and virtual; the generalized positions, velocities, and
accelerations defined the motion of the model, which resulted in the
unknown generalized forces were calculated by those knownmotion
variables.

Statistical analysis

Kinematics and the moment of the pelvis and lumbar were
analyzed by one-dimensional statistical parametric mapping

(SPM1d) analysis in MATLAB R2019a. The Rom and peak
moment of the pelvis and lumbar were analyzed by independent
samples t-test in SPSS 24.0 (SPSSs Inc., Chicago, IL, United States).
In the SPM analysis, we performed the custom script in MATLAB to
expend all data into a time series curve of 101 data points. The
significance level in this study was set as p < 0.05.

Result

Lumbar movement

Table 2; Figure 4 show the SPM1d analysis result of the angle and
moment in the LAR, LLB, and LF between the CC and LL topspin
forehand. In the LAR, the LL showed a significantly higher moment
than CC in the 0%–1.75% (p = 0.045, t = 3.331) and 3.80%–28.14%
(p < 0.001, t = 3.331) phase, and a significantly higher angle in 3.30%–
22.79% (p < 0.001, t = 3.129) phase. However, the LL showed a
significantly lower moment and angle in the 34.51%–57.98% (p <
0.001, t = 3.331) and 30.29%–60.43% (p < 0.001, t = 3.129) phase than
CC, respectively. In the LLB, CC showed a significantly higher
moment than LL in the 27.93%–49.48% (p < 0.001, t = 3.258),
55.56%–72.87% (p < 0.001, t = 3.258), 97.38%–100% (p = 0.043,
t = 3.258) phase, and a significantly higher angle in the 12.29%–
75.30% (p < 0.001, t = 3.125) and 85.68%–100% (p = 0.004, t = 3.125)
phase. The LL showed a significantly higher moment in the 1.30%–
19.81% (p < 0.001, t = 3.258) phase than CC. In the LF, the moment of
LL was significantly higher than CC in the 6.38%–29.08% (p < 0.001,
t = 3.344) and 90.29%–99.25% (p = 0.003, t = 3.344) phase, and the
angle were higher than CC in the 55.13%–100% (p < 0.001, t = 3.08)
phase. The CC showed a significantly higher moment in the 0%–
2.52% (p = 0.04, t = 3.344), 37.81%–58.06% (p < 0.001, t = 3.344), and
63.86%–76.60% (p < 0.001, t = 3.344) phase, and a significantly higher
angle in the 5.26%–10.63% (p = 0.038, t = 3.080) and 18.40%–39.10%
(p = 0.001, t = 3.080) phase than LL.

As shown in Table 3; Figure 5, the Rom and peak moment of LLB
and LF in CC were significantly higher than LL (Rom: t = 16.55, p = 0;
t = 12.139, p = 0. Peak moment: t = −3.396, p = 0.002; t = 3.412, p =
0.003). The maximum LAR, LLB, and LF in the CC were significantly
higher than LL (t = −2.84, p = 0.008; t = 13.206, p = 0; t = −3.307, p =
0.003).

TABLE 2 The moment and angle results of the SPM analysis. (Unit: %).

Variables Percentage (p)

LAR Moment 0–1.75 (0.045), 3.80–28.14 (<0.001), 34.51–57.98 (<0.001)

LLB Moment 1.30–19.81 (<0.001), 27.93–49.48 (<0.001), 55.56–72.87 (<0.001), 97.38–100 (0.043)

LF Moment 0–2.52 (0.04), 6.38–29.08 (<0.001), 37.81–58.06 (<0.001), 63.86–76.6 (<0.001), 90.29–99.25 (0.003)

PAR Moment 4.15–30.01 (<0.001), 45.01–80.63 (<0.001),

LAR Angle 3.30–22.79 (<0.001), 30.29–60.43 (<0.001)

LLB Angle 12.29–75.30 (<0.001), 85.68–100 (0.004),

LF Angle 5.26–10.63 (0.038), 18.40–39.10 (0.001), 55.13–100 (<0.001)

PAR Angle 0–1.69 (0.049), 10.29–78.31 (<0.001), 88.90–100 (0.027)

Note: the percentage indicates the process of the stroke play phase.
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Pelvis axial rotation

Table 2; Figure 6 show the SPM1d analysis result of the angle
and moment of PAR between the CC and LL topspin forehand. The
PAR angle of CC was significantly higher than LL in the 10.29%–

78.31% (p < 0.001, t = 2.86) and 88.90%–100% (p = 0.027, t = 2.86)
phase, but significantly lower than LL in 0%–1.69% (p = 0.049, t =
2.86) phase. The PAR moment of CC was significantly higher than
LL in the 4.15%–30.01% (p < 0.001, t = 3.288) phase and significantly
lower than LL in the 45.01%–80.63% (p < 0.001, t = 3.288) phase.

FIGURE 4
Illustration of the result of the angle andmoment in the LAR, LLB, and LF between theCC and LL topspin forehand showing the SPM1d outputs. Grey-
shaded areas indicate that there are significant differences (p < 0.05) between the CC and LL. LL indicates long-line topspin forehand, CC indicates cross-
court topspin forehand.

TABLE 3 Comparison of Rom, Peak moment, and Maximum angle of lumbar and pelvis movement between CC and LL topspin forehand.

Rom (Deg) Peak moment (Nm) Maximum angle (Deg)

Mean ± SD t p 95%CI Mean ± SD t p 95%CI Mean ± SD t p 95%CI

LAR CC 20.10 ± 2.91 1.853 0.073 −1.90, 4.00 66.69 ± 3.97 1.06 0.30 −2.26, 7.13 −14.13 ± 1.80 −2.84 0.008* −2.83, −0.47

LL 18.19 ± 3.07 64.25 ± 8.29 −12.48 ± 1.57

LLB CC 35.39 ± 1.85 16.55 0* 10.16, 13.02 −194.0 ± 14.11 −3.396 0.002* −54.72, 13.62 27.78 ± 2.19 13.206 0* 6.55, 8.94

LL 23.80 ± 2.22 −159.82 ± 37.70 20.04 ± 1.03

LF CC 14.20 ± 2.44 12.139 0* 7.16, 10.06 231.10 ± 13.87 3.412 0.003* 11.43, 47.19 −51.46 ± 1.77 −3.307 0.003* −2.84, −0.67

LL 5.59 ± 1.61 201.79 ± 31.44 −49.71 ± 1.28

PAR CC 75.96 ± 5.64 12.798 0* 19.08, 26.31 597.68 ± 115.84 2.245 0.034* 6.01, 143.78 −52.02 ± 3.31 −9.627 0* −15.08, −9.81

LL 53.26 ± 4.65 522.78 ± 66.27 −39.57 ± 4.17

Note: “*” indicate a significant difference between LL and CC. LL indicates long-line topspin forehand, CC indicates cross-court topspin forehand. LAR indicates lumbar axial rotation, LLB indicates

lumbar left lateral bending, LF indicates lumbar flexion, and PAR indicates pelvis axial rotation.
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As shown in Table 3; Figure 7, The maximum PAR in the CC
was significantly higher than LL (t = −9.627, p = 0), and Rom and
peak moment of PAR in the CC was significantly higher than LL (p =
0, t = 12.798; p = 0.034, t = 2.245).

Discussion

This study simulated the musculoskeletal model in OpenSim
to investigate the lumbar and pelvis movement difference

FIGURE 5
The Rom and peak moment comparison of lumbar movement between the CC and LL topspin forehand. “*” indicate a significant difference
between LL and CC. LL indicates long-line topspin forehand, CC indicates cross-court topspin forehand. LAR indicates lumbar axial rotation, LLB
indicates lumbar left lateral bending, and LF indicates lumbar flexion.

FIGURE 6
Illustration of the result of angle and moment of the PAR between the CC and LL topspin forehand showing the SPM1d outputs. Grey-shaded areas
indicate that there are significant differences (p < 0.05) between the CC and LL. LL indicates long-line topspin forehand, CC indicates cross-court topspin
forehand.
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between the CC and LL topspin forehand in table tennis. The key
finding of this study was (Qian et al., 2016) the main difference
between CC and LL topspin forehand in the lumbar movement
was found in the LLB and LF, the Rom, peak moment, and
maximum angle of the LLB and LF in CC were significantly
higher than LL (He et al., 2022a); the Rom, peak moment and
maximum angle of PAR in CC were significantly higher than LL
(Poizat et al., 2004); the moment of LL in the LF and LLB was
significantly higher than CC in the early stroke phase. The results
of the current study were consistent with our hypothesis, the CC
and LL showed a significant difference in lumbar and pelvis
movement in the transverse plane. Investigating the difference in
lumbar and pelvis movement between the CC and LL topspin
forehand could provide guidelines for coaches and players to
understand the mechanisms inherent from a biomechanical
perspective, especially the information could help beginners to
build awareness of CC and LL topspin forehand skills more easily
for enhance their stroke skill and motor control.

The lumbar movement is widely focused, especially in racket
sports. The Rom and maximum angle of the LLB and LF in CC
were significantly higher than LL in this study. This could be
explained by the fact that the target area in CC is the left side of
the playing body, and the players need to adjust their bodies to hit
the ball correctly. A higher LLB Rom and maximum angle could
bring a completed body weight transfer which could benefit the
energy transfer from the trunk to the upper limb following the
proximal-to-distal segmental sequences in the kinetic chain (Fu
et al., 2016; Bańkosz and Winiarski, 2018; Lam et al., 2019; He
et al., 2022b). A higher LF in CC probably means a more forward
shift of the center of gravity in the sagittal plane, furthermore, the
shift in the center of gravity will result in greater energy transfer,

which may mean greater racket acceleration during the forward
swing phase. In previous studies, lower back pain (LBP) in
athletes of racket sports has been thought to be closely
associated with lumbar movement (Kawasaki et al., 2005;
Campbell et al., 2013; Campbell et al., 2014; Connolly et al.,
2020; Connolly et al., 2021). The lumbar section as the main core
region of the body plays a coordinating role in the compound
movement of the upper and lower extremities, however, this is
also a major cause of LBP, because in the topspin forehand motor,
the LLB, LAR, and LF have occurred simultaneously, the ‘coupled
movements’ could bring more pressure and load to vertebral
structures than the single plane movement (Gunzburg et al.,
1992; Haberl et al., 2004). Previous studies have shown that 32%
of athletes experience pain in the lumbar and spinal column
during competition or immediately after training, and 36% of
athletes even quit training due to pain (He et al., 2022a). In the
topspin forehand, the athlete’s unilateral upper extremity needs
to hit the ball with maximum force, and this often leads to full
body involvement, increasing the impact of the stroke through a
large transfer of full body weight. However, the foot on the non-
playing side needs to be locked on the ground to maintain
dynamic body balance. Extensive repetition of this
compensatory movement leads to severe overload of the
posterior side of the disc and causes injury. Further, the
significantly greater maximum angle and peak moment of LF
and LLB exhibited in CC relative to LL may imply a greater risk of
injury.

Extensive research on topspin forehand already exists, but
few studies have reported detailed information on pelvis
movement during topspin forehand stroke. The result shows
that the Rom, peak moment and maximum angle of PAR in CC

FIGURE 7
The Rom and peak moment comparison of PAR between CC and LL topspin forehand. “*” indicate a significant difference between LL and CC. LL
indicates long-line topspin forehand, CC indicates cross-court topspin forehand.
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were significantly higher than in LL. The ROM value of PAR in
this study was basically consistent with the study of Bańkosz and
Winiarski (2018) and Malagoli Lanzoni et al. (2018) respectively,
this indicates that during the topspin forehand, the players follow
a steady motor program and execute it repeatedly, which may be
gradually fixed and standardized in daily training and practice.
Players will make small adjustments to their own movement
patterns according to the changes in the situation during the
match, and finally complete the stroke task. Previous studies have
reported the important role of pelvic axial rotation on racket
acceleration (Iino, 2018; Xia et al., 2020), even trunk rotation is
probably the most critical factor in the development of racket
speed (Landlinger et al., 2010), a higher velocity was observed in
CC as compared with LL in tennis (Landlinger et al., 2010). The
CC has a longer trajectory than the LL (Malagoli Lanzoni et al.,
2018), and the target area was on the left side of the playing body,
these were the results obtained in players trying to get a racket
acceleration during the forward swing phase through full muscle
elongation and a greater axial rotation of the lower trunk in CC.
The ROM and peak moment of PAR in CC was significantly
higher than in LL in the current study, this also could be linked to
a more weight transfer that could bring more energy transfer to
further enhance the racket acceleration (He et al., 2022b), because
the playing arm was the endpoint of the body during stroke
motor program which follows the proximal-to-distal segmental
sequences in the kinetic chain (Fu et al., 2016; Bańkosz and
Winiarski, 2018; Lam et al., 2019; He et al., 2022b). However, the
result of the pelvis movement between CC and LL was different
from the study of Malagoli Lanzoni et al. (2018). This is due to the
different calculations, in their study the angle of axial pelvic
movement was calculated relative to the table and not based on
the player’s own body, and the position of the player’s feet when
hitting the ball was not taken into account, the player’s position
was different in CC and LL, so the movement information of the
pelvis is not comprehensive enough if only the playing table was
used as a reference in evaluation. The moment of LL in the LF and
LLB was significantly higher than CC in the early stroke phase.
This result could support the hypothesis of Xing et al. (2022) in
the discussion section. Furthermore, this could probably be
explained that LL has a shorter trajectory (Malagoli Lanzoni
et al., 2018) and less forward swing time compared with CC (Xing
et al., 2022), which results in the players having to pull their
muscles as soon as possible in a limited time to gain more elastic
energy to complete an attractive stroke. On the other hand, a
shorter running trajectory of the ball in LL means a shorter
reaction time for the player, which further requires the player to
return to the ready position for the next stroke. This could
explain the ROM and maximum angle of LF and LLB in the
LL were significantly less than in the CC.

After understanding the differences between the lumbar and
pelvis movements of CC and LL topspin forehand, players could
enhance the motor control of lumbar and pelvis movements
according to the movement characteristics, either by enhancing
core strength to improve the explosive power of lumbar and
pelvis movements or by flexibility training to enhance lumbar
and pelvis synergy, as these modalities are able to enhance the
level of energy transfer in the power chain and improve
performance. Beginners could quickly understand the role and

contribution of the lumbar and pelvis in topspin forehand skills
based on the results of this study, thus making it easier to master
CC and LL topspin forehand skills.

There are several limitations of this study that have to be
mentioned (Qian et al., 2016): the result of this study was
limited to male table tennis players; therefore, the result may
not be generalizable to female players (He et al., 2022a); the
results of this study were generated in a laboratory environment
and the results may be inaccurate in relation to a real game
environment, for example, where the player needs to judge the
rotation and direction of the next ball, which may result in the
player having to adjust their body to ensure they can move to the
correct position at all time (Poizat et al., 2004); the motion time
of stroke in each phase and racket velocity should be measured
in further studies.

Conclusion

This study analyzed and compared the movement of the
lumbar and pelvis during the CC and LL topspin forehand.
The results showed that the lumbar and pelvis embody greater
weight transfer and greater energy production mechanisms when
players performed CC compared to LL, while it is important to
note that players are also at greater risk of lumbar injury in CC.
Beginners could enhance their motor control strategies in
forehand topspin skills and master this skill more easily based
on the findings of this study.
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