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Magnolol is a chemically defined and active polyphenol extracted from magnolia
plants possessing anti-allergic activity, but its low solubility and rapid metabolism
dramatically hinder its clinical application. To improve the therapeutic effects,
magnolol-encapsulated polymeric poly (DL-lactide-co-glycolide)–poly (ethylene
glycol) (PLGA-PEG) nanoparticles were constructed and characterized. The
prophylactic and therapeutic efficacy in a chronic murine model of OVA-induced
asthma and the mechanisms were investigated. The results showed that
administration of magnolol-loaded PLGA-PEG nanoparticles significantly reduced
airway hyperresponsiveness, lung tissue eosinophil infiltration, and levels of IL-4, IL-13,
TGF-β1, IL-17A, and allergen-specific IgE and IgG1 inOVA-exposedmice compared to
their empty nanoparticles-treated mouse counterparts. Magnolol-loaded PLGA-PEG
nanoparticles also significantly prevented mouse chronic allergic airway mucus
overproduction and collagen deposition. Moreover, magnolol-encapsulated PLGA-
PEG nanoparticles showed better therapeutic effects on suppressing allergen-
induced airway hyperactivity, airway eosinophilic inflammation, airway collagen
deposition, and airway mucus hypersecretion, as compared with magnolol-
encapsulated poly (lactic-co-glycolic acid) (PLGA) nanoparticles or magnolol
alone. These data demonstrate the protective effect of magnolol-loaded PLGA-
PEG nanoparticles against the development of allergic phenotypes, implicating its
potential usefulness for the asthma treatment.
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Introduction

Asthma is a common chronic inflammatory disease affecting an
estimated 262 million people in different countries (Asher et al.,
2020). Airway hyperresponsiveness (AHR), type 2 inflammation,
airway remodeling, and mucus hypersecretion are hallmarks of
asthmatic processes (Holgate et al., 2015). These pathological
changes cause asthma symptoms, which can be any combination
of coughing, wheezing, shortness of breath, and chest tightness. To
date, glucocorticoids still represent the mainstay of asthma control,
but these drugs come with side effects, including suppression of the
host defense and metabolic impairments, particularly with
systematic use (Okwuofu et al., 2022).

Magnolol (5,5′-diallyl-2,2′-dihydroxybiphenyl) is an active
polyphenol extracted from Magnolia officinalis, which is a traditional
Chinese medicine with a long history of application to prevent
cardiovascular and cerebrovascular diseases, treat depression and
anxiety, and relieve asthma and cough (Yang et al., 2023).
Pharmaceutically, magnolol has anti-oxidant, anti-inflammatory, anti-
microbial, anti-tumor, cardiovascular, and neural protective properties
(Mainardi et al., 2009). Recently, magnolol has been found to have anti-
allergic effects on allergic rhinitis via the inhibition of ORAI1 (calcium
release-activated calcium channel protein 1) and ANO1 (a calcium-
activated anion channel 1) channels (Phan et al., 2022). Moreover,
magnolol exerts anti-asthmatic effects via its ability to modulate Th1/
Th2/Th17 cytokines in ovalbumin-sensitized asthmatic mice (Huang
et al., 2019). Its isomer, honokiol, has also been shown to alleviate the
inflammatory processes contributing to asthma (Munroe et al., 2010).
However, the low water solubility and bioavailability and the rapid
metabolism of magnolol dramatically limit its clinical application (Tang
et al., 2018). Thus, a critical question regarding magnolol usage is how
bioavailability and stability can be improved.

Biodegradable polymeric nanoparticles have various advantages,
such as high biocompatibility and biosafety, in potentiating the efficacy
of drugs (Shao et al., 2022). Although poly (lactic-co-glycolic acid)
(PLGA), a synthetic polymeric material certified by the FDA, is widely
used to prevent clinical drugs from degradation, it suffers from an array
of shortcomings, including low encapsulation efficiency of polar drugs
and high capture rate by the reticuloendothelial system due to its
hydrophobicity (Younis et al., 2022). Poly (ethylene glycol) (PEG) has
the two affinity characteristics of dissolving in water and organic
solvents, meaning it shows a potential to promote the hydrophilicity,
drug encapsulation efficiency, and blood circulation time of PLGA
(Padin-Gonzalez et al., 2022). Previously, we found that the Ambrosia
artemisiifolia allergen Amb a 1-loaded poly (DL-lactide-co-glycolide)-
poly (ethylene glycol) (PLGA-PEG) nanoparticles have an
immunotherapeutic effect on allergic conjunctivitis in mice (Cao
et al., 2022). In this study, we hypothesized that magnolol-loaded
PLGA-PEG nanoparticles could be effective in attenuating asthma
phenotypes in a chronic murine model.

Materials and methods

Animals

Female BALB/c mice (specific pathogen-free grade, body weight
16–22 g, 6–8 weeks old) were purchased from the Animal Center of

Guangdong Province and maintained under specific pathogen-free
conditions in the Animal Experimental Center of Shenzhen
University. All experiments were approved by the Animal Ethic
Committee at Shenzhen University. The experiments were carried
out following the Institutional Guidelines for the Care and Use of
Laboratory Animals.

Preparation of magnolol-loaded
nanoparticles

The nanoparticles were prepared by the emulsification–solvent
evaporation method (Paswan and Saini, 2017). Briefly, 1 mg
magnolol (MCE, United States) and 4 mg PLGA-PEG/PLGA
(Merck, Germany) were dissolved in a 2 mL mixture of
dichloromethane and ethanol (4:1, v/v) and injected into 4 mL
1.5% aqueous PVA solution. The mixture was homogenized with
a probe-ultrasound machine (VCX750, Sonics, United States) for
5 min in an ice bath and stirred uncovered for 12 h at room
temperature to volatilize the organic solvent completely. Then,
the nanoparticle suspension was filtered by a 0.22 μm
microporous membrane.

Characterization of magnolol-loaded
nanoparticles

The zeta potential of the nanoparticles was measured by the
Zetasizer Ultra instrument (Malvern, United Kingdom). After the
nanoparticles were diluted with ultrapure water, the size distribution
of the nanoparticles was also measured by this instrument. After the
nanoparticles were fixed on the stub with double-sided adhesive
tape, they were coated with a platinum layer by an automatic fine
platinum coater (JFC-1300, JEOL) for 1 min, and then their
morphology was observed by a field-emission scanning electron
microscope (FESEM). For the measurement of encapsulation
efficiency, the prepared nanoparticle suspension was added into
an ultrafiltration tube with a molecular weight cut-off of 3 kD,
centrifuged at 4,000 rpm for 30 min to separate the magnolol
that was not coated by nanoparticles, and the concentration of
magnolol was measured by HPLC. The following formula was used
to calculate the encapsulation efficiency (EE): EE (%) = [(mtotal-
mfree)/mtotal] × 100%. Mtotal is the concentration of magnolol in
total suspension, and Mfree is the concentration of magnolol in the
ultrafiltrate.

Sensitization, challenge, and administration
protocols

As shown schematically in Figure 2A, the mice were
immunized intraperitoneally with 10 μg OVA (Sigma-Aldrich,
United States) adsorbed to 1 mg of alum (Thermo Scientific,
United States) on days 0 and 14 (Royce et al., 2013; Wang
et al., 2017a). At day 21, the mice were challenged with
intranasal instillation of 20 μg OVA in a 20 μL PBS. The OVA
challenge was performed three times per week for 6 weeks.
Twenty mg/kg of magnolol (Herbpurify, China) and magnolol-
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loaded nanoparticles were administered intraperitoneally 24 h
before the first OVA challenge and 2 h before each of the
remaining OVA challenges (Tian et al., 2018; Huang et al.,
2019). PBS was used as an experimental control.

AHR assay

AHR was measured with the Buxco whole-body
plethysmography (WBP) system (Buxco Research Company,
United States) in response to inhaled methacholine. After 24 h of
the last OVA challenge, the mice were monitored for about 10 min
in the chamber until their breathing became stable. After a baseline
recording for 5 min, the responses were assessed for 5 min after the
inhaling of different concentrations of atomized methacholine
solutions (0, 6.25, 12.5, 25, 50, and 100 mg/mL). In order to
allow the respiratory intensity to get back to the baseline, an
interval of 5 min was given between each test. AHR was
expressed as enhanced pause (Penh), as described in detail
previously (Wang et al., 2017b).

Bronchoalveolar lavage fluid (BALF)
collection

The mice were subjected to tracheotomy and intubation after
euthanasia via carbon dioxide inhalation. A five-bouts lavage with
0.8 mL PBS was performed on each mouse three times. A total
volume of about 2 mL BALF per mouse (recovery rate >80%) was
collected and centrifuged at 4°C, 1500 rpm for 10 min. The
supernatant was used for cytokine determination, and the
precipitate was resuspended and stained for inflammatory cell
differential counting via Liu’s staining method, following the
instructions of the manufacturer (Baso, China).

Lung histological staining

The lungs were immediately removed after sacrifice, fixed in 4%
paraformaldehyde, and embedded in paraffin. Lung sections (4 µm)
were stained with hematoxylin–eosin (H&E), periodic acid–Schiff
(PAS), and Masson’s trichrome methods. The degree of
inflammatory infiltration on H&E staining sections was scored
using previously described methods (Wang et al., 2017b). PAS
staining was used to identify the mucus-producing goblet cells in
the airway mucosa (Wang et al., 2017b). Masson’s trichrome
staining was used to detect peri-bronchial collagen deposition. A
score ranging from 0 to 3 was applied to each observed bronchus,
with an approximate total of 10 areas being scored (Li et al., 2013).

Quantitative reverse transcription PCR
(qRT-PCR)

The total RNA was extracted from the lung tissues with TRIzol
Reagent (Thermo Scientific, United States), as recommended by the
manufacturer. A total of 1.5 μg of total RNA preparation was reverse
transcribed using a cDNA synthesis kit (RevertAid First Strand
cDNA Synthesis Kit, Thermo Scientific, United States). cDNA was
1/5 diluted, and 5 μL was used as a template in a 50 μL SYBR-Green
PCR reaction system, according to the manufacturer’s instruction
(iQ™ SYBR® Green, Bio-Rad, United States). β-actin premier (sense,
5′-CATCCGTAAAGACCTCTATGCCAAC-3’; antisense, 5′-ATG
GAGCCACCGATCCACA-3′), Muc5ac premier (sense, 5′-CTG
TGACATTATCCCATAAGCCC-3’; antisense, 5′-ACCGATCCC
GCCCAGTGACA-3′), and Col1a1 premier (sense, 5′-TGTTCG
TGGTTCTCAGGGTAG-3’; antisense, 5′-TTGTCGTAGCAG
GGTTCTTTC-3′) were synthesized by Sangon Biotech
(Shanghai, China). Specificity was controlled by the omission of
the template or the reverse transcription. All the samples were run in

FIGURE 1
Characterization of magnolol-loaded PLGA-PEG nanoparticles. (A) Field emission scanning electron microscopic image. (B) Mean diameter and
zeta potential of the two nanoparticle preparations (n = 3). PLGA-MG: magnolol-loaded PLGA nanoparticle; PLGA-PEG-MG: magnolol-loaded PLGA-
PEG nanoparticle.
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triplicate, and the qRT-PCR results were obtained using the 2−△△Ct

method and were normalized to β-actin.

Enzyme-linked immunosorbent assay
(ELISA)

The levels of IL-4, IL-13, IL-17A, and TGF-β1 in the BALF were
determined by ELISA with commercial kits (eBioscience,
United States), in accordance with instructions of the
manufacturer. OVA-specific IgE (sIgE) and OVA-specific IgG1

(sIgG1) were measured by indirect ELISA (Tian et al., 2018).
Briefly, the 96-well plates were coated with 100 ng OVA
overnight at 4°C, blocked at room temperature for 1 h, and
100 μL murine serum (diluted 5 times) was added to each well
for 2 h. Peroxidase-conjugated rat anti-mouse IgE and IgG1 (1:
2000 dilution, Southern Biotech, United States) were added to
each well for 1 h (37°C), and then 100 μL/well
tetramethylbenzidine was added to develop. After being stopped
by 2 M H2SO4 (50 μL/well), the results were measured by an
absorbance microplate reader (BioTek, United States) at 450 nm.

Statistical methodology

The data were represented as means ± SD from at least three
independent experiments. Statistical analyses were performed using
a non-paired t-test for comparing two groups, and multiple
comparisons were carried out with ANOVA, followed by
Dunnett’s test or the Bonferroni test for those with more than

two groups. p < 0.05 was considered statistically significant. All data
were analyzed by the SPSS 21.0 software.

Results

Characterization of magnolol-loaded
PLGA-PEG nanoparticles

We prepared the magnolol-loaded nanoparticles with PLGA-
PEG and PLGA as carriers (Figure 1A), and their average particle
size and zeta potential are shown in Figure 1B. The average particle
size and zeta potential of PLGA-PEG-magnolol were 230 nm and
12.5 mV, respectively. The average particle size and zeta potential of
PLGA-magnolol were 290 nm and 14.5 mV, respectively. The
encapsulation efficiency of PLGA-PEG to magnolol was 90.5% ±
5%, and PLGA to magnolol was 90.2% ± 4%.

Magnolol-loaded PLGA-PEG nanoparticles
migrate allergen-induced AHR

AHR is a fundamental hallmark of asthma (Holgate et al., 2015).
In order to investigate whether the magnolol-loaded nanoparticles
improved lung function in asthmatic mice, we assessed AHR by
methacholine exposure 24 h after the last OVA challenge
(Figure 2B). The enhanced pause (Penh) scores of the OVA
model (OVA) group and the two drug-free vehicle nanoparticle
(PLGA and PLAG-PEG) groups were increased in a dose-dependent
manner as compared to the saline control (CTRL) group. However,
AHR was significantly inhibited in the magnolol-treated (MG)
group and the two magnolol-loaded nanoparticles (PLGA-MG
and PLGA-PEG-MG) groups. Moreover, among the three groups,
the PLGA-PEG-MG group exhibited the lowest Penh levels. These
data show that magnolol-loaded PLGA-PEG nanoparticles
markedly inhibit OVA-induced AHR.

Magnolol-loaded PLGA-PEG nanoparticles
alleviate OVA-induced lung inflammation

The lung tissues and bronchoalveolar lavage fluid (BALF) were
collected 24 h after the last OVA exposure. To evaluate the
inflammatory infiltration, the lung tissues were stained with H&E
(Figure 3A) and scored in a blinded fashion (Figure 3B). The
number of infiltrating inflammatory cells was also evaluated on
the HE-stained sections (Figure 3C). Compared to the OVA group,
the inflammatory cell infiltration in the lungs was reduced in PLGA-
PEG-MG group, PLGA-MG group, and MG group. The PLGA-
PEG-MG group had less inflammatory infiltration in the lungs
compared to the PLGA-MG group and MG group. In the
meantime, the counts of total cells, eosinophils, and lymphocytes
in the BALF upon OVA exposure were also decreased significantly
after the treatments of magnolol-loaded nanoparticles and magnolol
alone (Figure 3D). Of these, the treatment of the magnolol-loaded
PLGA-PEG nanoparticles exhibited the most pronounced reduction
in inflammatory cell numbers. However, the mice treated with drug-
free nanoparticles did not display the similar reduction of

FIGURE 2
Magnolol-loaded PLGA-PEG nanoparticles migrate allergen-
induced AHR. (A) Schematic representation of the mouse model. (B)
The data are shown as means ± SD from four individual mice. CTRL:
saline control group; OVA: OVA model group; PLGA: drug-free
PLGA nanoparticle group; PLAG-PEG: drug-free PLGA-PEG
nanoparticle group; PLGA-MG: magnolol-loaded PLGA nanoparticle
group; PLGA-PEG-MG: magnolol-loaded PLGA-PEG nanoparticle
group; MG: magnolol group. *p < 0.05 versus OVA group, **p <
0.05 versus magnolol-loaded PLGA-PEG nanoparticle group.
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inflammatory cell infiltration both in the lungs and BALF. These
findings indicate that magnolol-loaded PLGA-PEG nanoparticles
attenuate OVA-induced lung inflammation.

Magnolol-loaded PLGA-PEG nanoparticles
inhibit OVA-induced airway mucus
hypersecretion

Excessive mucus in asthma obstructs airflow, leading to severe
and potentially fatal outcomes (Holgate et al., 2015). A previous
study suggested that chronic allergen exposure promotes goblet cell
hyperplasia and mucin overproduction (Southam et al., 2008). We
first observed the impact of the magnolol-loaded nanoparticles on
aspects of goblet cell hyperplasia by PAS staining (Figures 4A, B).
The PAS-positive cells were readily seen in the OVA group and the
two drug-free nanoparticle groups, but they were much less
apparent in the PLGA-PEG-MG group, PLGA-MG group, and
MG group. Furthermore, the number of positively stained cells
was significantly lower in the PLGA-PEG-MG group than those of
the PLGA-MG group and MG group. We then determined the
Muc5ac expression levels in the lungs via qRT-PCR (Figure 4C).
Consistently, the expression of Muc5ac induced by OVA exposure
was dramatically inhibited by treatments with magnolol-loaded
nanoparticles and magnolol alone. In particular, the PLGA-PEG-

MG group had the lowest expression of Muc5ac. Treatment with
drug-free nanoparticles had no effect on the PAS-positive cell
number and Muc5ac expression. These results suggest that
magnolol-loaded PLGA-PEG nanoparticles reduce OVA-induced
goblet cell hyperplasia and mucin hyperproduction.

Magnolol-loaded PLGA-PEG nanoparticles
suppress OVA-induced peri-bronchial
collagen deposition

Airway remodeling contributes to the progressive loss of lung
function in asthma (Li et al., 2013). Collagen deposition is an
acknowledged feature of airway remodeling during asthma
(Ramis et al., 2022). Using Masson’s trichrome staining (Figures
5A, B), we found that chronic OVA exposure increased the
deposition of collagen around the airways, and these increases
were attenuated in the PLGA-PEG-MG group, PLGA-MG group,
and MG group. Furthermore, the PLGA-PEG-MG group had the
greatest inhibition in the three treatments. Meanwhile, the
expression of Col1a1 was evaluated by qRT-PCR (Figure 5C).
Consistently, the treatments of magnolol-loaded nanoparticles
and magnolol alone suppressed the enhanced levels of Col1a1 in
OVA-exposed mice. Compared with the magnolol-loaded PLGA
nanoparticles and magnolol-treated mice, the levels of Col1a1

FIGURE 3
Magnolol-loaded PLGA-PEG nanoparticles alleviate OVA-induced lung inflammation. (A) Representative histological images of lungs by H&E
staining (Magnification: ×200). (B,C) Inflammation scores (B) and numbers of inflammatory cells (C) estimated from lung tissues with H&E staining. (D)
Counts of total cells, eosinophils, lymphocytes, and neutrophils in the BALF. The data are shown as means ± SD from six individual mice. CTRL: saline
control group; OVA: OVA model group; PLGA: drug-free PLGA nanoparticle group; PLAG-PEG: drug-free PLGA-PEG nanoparticle group; PLGA-
MG: magnolol-loaded PLGA nanoparticle group; PLGA-PEG-MG: magnolol-loaded PLGA-PEG nanoparticle group; MG: magnolol group. *p <
0.05 versus OVA group, **p < 0.05 versus magnolol-loaded PLGA-PEG nanoparticle group.
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FIGURE 4
Magnolol-loaded PLGA-PEG nanoparticles inhibit OVA-induced airway mucus hypersecretion. (A) Representative histological images of lungs by
PAS staining (Magnification: ×400). (B) Scoring for PAS-positive mucus-producing cells from lung tissues. (C) qRT-PCR determination of mRNA levels for
Muc5ac. The data are shown as means ± SD from three individual mice. CTRL: saline control group; OVA: OVA model group; PLGA: drug-free PLGA
nanoparticle group; PLAG-PEG: drug-free PLGA-PEG nanoparticle group; PLGA-MG: magnolol-loaded PLGA nanoparticle group; PLGA-PEG-MG:
magnolol-loaded PLGA-PEG nanoparticle group; MG: magnolol group. *p < 0.05 versus OVA group, **p < 0.05 versus magnolol-loaded PLGA-PEG
nanoparticle group.

FIGURE 5
Magnolol-loaded PLGA-PEG nanoparticles suppress OVA-induced peri-bronchial collagen deposition. (A) Representative histological images of
lungs by Masson’s trichrome staining (Magnification: ×400). (B) Peri-bronchial collagen deposition scores estimated from lung tissues with Masson’s
trichrome staining. (C) qRT-PCR determination of mRNA levels for Col1a1. The data are shown as means ± SD from three individual mice. CTRL: saline
control group; OVA: OVA model group; PLGA: drug-free PLGA nanoparticle group; PLAG-PEG: drug-free PLGA-PEG nanoparticle group; PLGA-
MG: magnolol-loaded PLGA nanoparticle group; PLGA-PEG-MG: magnolol-loaded PLGA-PEG nanoparticle group; MG: magnolol group. *p <
0.05 versus OVA group, **p < 0.05 versus magnolol-loaded PLGA-PEG nanoparticle group.
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mRNA were significantly decreased in the magnolol-loaded PLGA-
PEG nanoparticles-treated mice. In addition, no significant
inhibition of either collagen deposition or Col1a1 expression was
observed in drug-free nanoparticles-treated mice. These results
demonstrate that PLGA-PEG nanoparticles containing magnolol
suppress collagen deposition induced by chronic OVA exposure.

Magnolol-loaded PLGA-PEG nanoparticles
reduce OVA-induced specific
immunoglobulin levels in serum

Serum was collected 24 h after the last OVA challenge, and then
OVA-specific IgE (sIgE) (Figure 6A) and OVA-specific IgG1 (sIgG1)
(Figure 6B) levels were determined via ELISA. OVA exposure with or
without administration of empty nanoparticles led to a marked
elevation in the levels of sIgE and sIgG1 as compared with the
control mice. These elevations were suppressed by the magnolol-
loaded PLGA-PEG nanoparticles, magnolol-loaded PLGA
nanoparticles, and magnolol. The suppression of the magnolol-
loaded PLGA-PEG nanoparticles was greater than those of the
magnolol-loaded PLGA nanoparticles and magnolol. These findings

indicate that magnolol-loaded PLGA-PEG nanoparticles decrease
OVA-induced sIgE and sIgG1 secretion in serum.

Magnolol-loaded PLGA-PEG nanoparticles
regulate OVA-induced cytokine production

The levels of cytokines in the BALF were measured with ELISA.
We observed a robust reduction of IL-4 (Figure 7A), IL-13
(Figure 7B), TGF-β1 (Figure 7C), and IL-17A (Figure 7D) levels
in the magnolol-loaded nanoparticles and magnolol-treated animals
compared to the OVA-exposed animals. Meanwhile, the
concentrations of IL-4, IL-13, TGF-β1, and IL-17A in the PLGA-
PEG-MG mice were significantly lower compared to the PLGA-MG
mice and MG mice. These results suggest that magnolol-loaded
PLGA-PEG nanoparticles decrease IL-4, IL-13, TGF-β1, and IL-17A
expression during OVA-induced airway inflammation.

Discussion

Here, we successfully constructed magnolol-loaded PLGA-PEG
nanoparticles through the w/o/w double emulsion–solvent
evaporation method. The results showed that the mean
hydrodynamic size of the magnolol-loaded PLGA-PEG nanoparticles
was about 200.1–260.2 nm in diameter. This property is excellent for
passive targeting to the sites of inflammation. Moreover, the size
distribution of the magnolol-loaded nanoparticles was comparatively
narrow, which is conducive for magnolol delivery.

Allergic airway inflammation is mainly orchestrated by type
2 cytokines such as IL-4 and IL-13, and it is marked by the massive
infiltration of eosinophils (Holgate et al., 2015). Activation of the IL-4/IL-
13 pathway promotes profound airway hyperresponsiveness (Manson
et al., 2020). Inhibition of IL-4 and IL-13 significantly reduces IgE
secretion in response to allergen challenge and further improves the
infiltration of inflammatory cells in the airways (Castro et al., 2018). In
an acute allergic mouse model, Huang et al. found that magnolol
decreased cellular infiltration in the lungs, levels of IL-4 and IL-13 in
the BALF, and sIgE levels in serum induced by an allergen (Huang et al.,
2019). In this study, accompanied by high levels of IL-4, IL-13, and
allergen-specific immunoglobulins, AHR and the number of eosinophils
increased significantly in the lungs of chronic OVA-exposed mice. The
treatments of magnolol-loaded PLGA-PEG nanoparticles, magnolol-
loaded PLGA nanoparticles, and magnolol effectively mitigated these
pathological changes. As expected, the magnolol-loaded PLGA-PEG
nanoparticles successfully exhibited a more dramatic effect on the
inhibition of AHR and type 2 cytokine-mediated airway
inflammation, indicating a therapeutic potential of PLGA-PEG
nanoparticles coated with anti-inflammatory drugs in allergic diseases.

Airway remodeling is a prominent clinical feature of severe asthma
and may be responsible for the failure of standard anti-asthmatic
therapy (Hirota and Martin, 2013). On the one hand, goblet cell
hyperplasia and mucus hypersecretion are critical features of airway
remodeling, leading to airway plugging and an increased risk of
mortality (Boonpiyathad et al., 2019). Type 2 cytokines such as IL-
13 promote hyperplasia of the goblet cell and hypersecretion of mucins
including MUC5AC in asthmatics (Conde et al., 2021). Here, in
addition to inhibition of type 2 cytokines, we also found that

FIGURE 6
Magnolol-loaded PLGA-PEG nanoparticles reduce OVA-
induced specific immunoglobulin levels in serum. (A,B) OVA-specific
IgE (A) and OVA-specific IgG1 (B) levels in serum by indirect ELISA. The
data are shown as means ± SD from six individual mice. CTRL:
saline control group; OVA: OVA model group; PLGA: drug-free PLGA
nanoparticle group; PLAG-PEG: drug-free PLGA-PEG nanoparticle
group; PLGA-MG: magnolol-loaded PLGA nanoparticle group; PLGA-
PEG-MG: magnolol-loaded PLGA-PEG nanoparticle group; MG:
magnolol group. *p < 0.05 versus OVA group, **p < 0.05 versus
magnolol-loaded PLGA-PEG nanoparticle group.
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magnolol-loaded PLGA-PEG nanoparticles exhibited a greater
improvement of goblet hyperplasia and MUC5AC overproduction
than those of magnolol-loaded PLGA nanoparticles and magnolol.
On the other hand, the chronic deposition of collagen fibers thickened
the air–blood barrier, contributing to an irreversible decrement in lung
function (Hirota and Martin, 2013). TGF-β1 is a member of the family
of growth factors of crucial importance in fibrogenesis, and it plays an
integral role in airway remodeling (Ojiaku et al., 2017). In the present
study, peri-bronchial collagen deposition induced by allergen exposure
was apparently decreased by the administration of magnolol-loaded
nanoparticles and magnolol. The effects of magnolol-loaded PLGA-
PEG nanoparticles were found to be much better than those of
magnolol-loaded PLGA nanoparticles and magnolol alone. It was
further confirmed by the observation that magnolol-loaded PLGA-
PEG nanoparticles effectively downregulated TGF-β1 production in the
lungs.

In addition, Th17 cells have emerged as an independent subset
of CD4+ T-help cells. Th17 cells synthesizing IL-17A have been
shown to play a crucial role in the induction of inflammatory
diseases (Saviano et al., 2022). Accumulating evidence suggests
that activation of the IL-17-producing cells is associated with the
development of severe forms of asthma (Xie et al., 2022). A previous
study showed that magnolol exerts anti-inflammatory effects when
reducing the serum levels of IL-17 and IL-6 in a rat colitis model
(Zhang et al., 2018). Another study showed that magnolol reduced
the Th17 cell population and effectively modulated the JAK-STAT
and Notch-1 signaling (Huang et al., 2019). Consistently, it had been

also shown in the present study that magnolol-loaded PLGA-PEG
nanoparticles remarkably suppressed the IL-17A expression in lungs
and had a more potent effect than magnolol-loaded PLGA
nanoparticles and magnolol alone.

In conclusion, we constructed PLGA-PEG nanoparticles as a
magnolol delivery system and developed an OVA-induced chronic
asthma murine model to evaluate the anti-inflammatory effects of
these drug-loaded nanoparticles. Our results proved that magnolol-
loaded PLGA-PEG nanoparticles could effectively suppress
allergen-induced airway hyperactivity, airway eosinophilic
inflammation, airway collagen deposition, and airway mucus
hypersecretion. Furthermore, magnolol-loaded PLGA-PEG
nanoparticles have a better therapeutic effect on OVA-induced
asthmatic phenotypes than magnolol-loaded PLGA nanoparticles
and magnolol alone, which may be due to their greater
hydrophilicity, stability, and passive targeting effects. It should be
acknowledged, however, that our study is limited by the OVA-
induced model, which does not mimic the natural route of exposure
to allergens. Future studies with more relevant allergic models, such
as fungi and dust mites, are needed to validate and expand upon our
findings.
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nanoparticle group.
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