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Soft electronics can seamlessly integrate with the human skin which will greatly
improve the quality of life in the fields of healthcaremonitoring, disease treatment,
virtual reality, and human-machine interfaces. Currently, the stretchability of most
soft electronics is achieved by incorporating stretchable conductors with elastic
substrates. Among stretchable conductors, liquidmetals stand out for their metal-
grade conductivity, liquid-grade deformability, and relatively low cost. However,
the elastic substrates usually composed of silicone rubber, polyurethane, and
hydrogels have poor air permeability, and long-term exposure can cause skin
redness and irritation. The substrates composed of fibers usually have excellent air
permeability due to their high porosity, making them ideal substrates for soft
electronics in long-term applications. Fibers can be woven directly into various
shapes, or formed into various shapes on themold by spinning techniques such as
electrospinning. Here, we provide an overview of fiber-based soft electronics
enabled by liquid metals. An introduction to the spinning technology is provided.
Typical applications and patterning strategies of liquid metal are presented. We
review the latest progress in the design and fabrication of representative liquid
metal fibers and their application in soft electronics such as conductors, sensors,
and energy harvesting. Finally, we discuss the challenges of fiber-based soft
electronics and provide an outlook on future prospects.
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1 Introduction

In recent years, we have seen the rapid integration of electronics, soft textiles, and human
tissues. The fusion of electronics with textiles or human tissues requires that electronics be
flexible, stretchable, and compatible with human tissues. Soft electronics are usually realized
by connecting electronic components using stretchable conductors on soft substrates. Those
reported stretchable conductors include intrinsically stretchable conductors and structure-
enabled stretchable conductors. The intrinsically stretchable conductors contain liquid
metals (KIM et al., 2015; LI et al., 2015; ZHENG et al., 2019), metal-nanomaterials
(CHEN and LIAO, 2014; KIM et al., 2014; JUNG et al., 2022), carbon-nanomaterials
(DUAN et al., 2016; SCHUTT et al., 2017; WU et al., 2022), and conductive hydrogels
(YANG and YUAN, 2019; HU et al., 2023). Stretchable conductors can also be achieved by
designing conductors such as gold and copper into curved structure (JAHANSHAHI et al.,
2012; WON et al., 2014), serpentine structure (LIN et al., 2017a; JANG et al., 2018) and 3D
structure (GAO et al., 2014; JANG et al., 2017). Those conductors mainly serve as
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interconnects in soft electronics, but also as sensors, heaters,
electrodes and antennas (ZHANG et al., 2018; KIM et al., 2022;
FAZI et al., 2023). Liquid metals have received extensive attention in
the field of soft electronics due to their excellent electrical
conductivity, stretchability, and low cost (CAO et al., 2023; KIM
et al., 2023). Thus, liquid metals are one of the most economical and
commercially promising materials for realizing soft electronics.
Another challenge of soft electronics is that the reported soft
electronics are usually poor in air permeability. Because, most
soft electronics are manufactured with air-impermeable substrate
such as, silicones, styrene resins and polyurethanes (HE et al., 2020;
PAUL et al., 2022; SHI et al., 2022). In addition, the air permeability
of soft electronics will be compromised after encapsulation (KWON
et al., 2019; YANG et al., 2022a). To make the electronics soft, air-
permeable, and biocompatible, fibers with unique structures and
functions have received extensive attention. Substrates composed of
fibers are gradually being used in various fields, such as soft
electronics, tissue engineering, wearable electronics, and human-
machine interfaces. Here we present an overview of recent studies on
the applications of fibers in soft electronics for the following reasons.
Firstly, substrates composed of fibers have excellent air permeability
due to their high porosity (HOMAEIGOHAR and ELBAHRI, 2014),
making them ideal materials for the next-generation of soft devices.
Secondly, fibers can be woven directly into various shapes, or formed
into various shapes on the mold by spinning techniques such as
electrospinning, melt spinning and air-jet spinning. In addition,
fibers can be coated and modified with functional materials such as
liquid metal (WANG et al., 2021), graphene (XU et al., 2013) and
metal nanomaterials (VELGOSOVA et al., 2023). By adjusting the
parameters of the spinning equipment, the fibers with various
structures can be easily manufactured, such as core-shell
structures, layered structures, and hollow structures (CHENG
et al., 2017a). Thirdly, Spinning can change the mechanical
properties of some materials. For example, Oxide ceramics are
usually hard and brittle, which will break when bent. By contrast,
the TiO nanofibers from TiO-containing spinning sol are bendable
and stretchable (ZHANG et al., 2021). Finally, materials from
nanofibers usually have excellent biocompatibility. Because
substrates from nanofibers can achieve anisotropy and layered
structure similar to human tissues, which is suitable for cell
growth to reconstruct human tissue, which cannot be reproduced
by traditional materials (LI et al., 2022a). This characteristic of
nanofibers further promotes the fusion of electronic devices and
human tissues. In this paper, the development of spinning
technology and its applications in various fields are introduced,
the typical application of liquid metals and their patterning
strategies are briefly discussed. The fabrication of liquid metal
fibers and their application in soft electronics are reviewed.
Finally, an outlook on future prospects is also provided.

2 Liquid metal enabled soft electronics

2.1 Typical applications of liquid metal in soft
electronics

In recent years, liquid metal has attracted much attention due to
its good electrical conductivity, thermal conductivity, flexibility, low

toxicity, and deformability. It is believed that liquid metal shows
broad application prospects in 3D printing (DATTA et al., 2020),
wearable devices (ZHANG et al., 2020a), soft robots (HOU et al.,
2018), etc.

As the most famous liquid metal, mercury has a melting point
of −38.83°C, and it has been applied in medical and electronic fields
such as mercury batteries, mercury lamps, and
sphygmomanometers. However, mercury is also known for its
toxicity. The mercury vapor at room temperature can be
absorbed by the alveoli through respiration. Moreover, it can
pass through the blood-brain barrier and affect the human
nervous system (CHEN et al., 2022). Thus, the use of mercury in
biomedical applications and wearable devices is limited, where the
biosafety has been a focus of attention. Some alkali metals such as
caesium (Cs, melting point: 28.5°C), rubidium (Rb, melting point:
39°C) and francium (Fr, melting point: 27°C) have melting points
just above room temperature, and they are usually used in liquid
form. However, such alkali metals are highly reactive and
pyrophoric. They react explosively with water even at low
temperatures, making them difficult to use in soft electronics
(PARK et al., 2021). As an alternative to mercury and highly
reactive alkali metals, gallium and gallium-based alloys are more
stable, biocompatible, and do not generate vapor at room
temperature (COCHRAN and FOSTER, 1962; DICKEY, 2017).
Although pure gallium is not liquid (melting point of 29.8°C) at
room temperature, metals such as indium, tin, and zinc can be
doped into gallium to form gallium alloys to greatly reduce the
melting point of gallium. For example, galinstan (68% gallium, 22%
indium, and 10% tin by weight) has a melting point of −19°C,
GaInZn (72% gallium, 12% indium, and 16% zinc by weight) has a
melting point of 17°C, and EGaIn (75.5% gallium and 24.5% indium
by weight) has a melting point of 15.5°C (MAJIDI et al., 2017). Those
gallium alloys have similar physical properties (a liquid state at room
temperature, viscosity ~2 × 10−3 kg/m/s, density ~6 g/cm3, electrical
conductivity ~3 × 106 S/m) (TANG et al., 2022a), when used in soft
electronics, most gallium alloys can be substituted for each other.

Ga and Ga alloys are generally considered biocompatible
materials (MA et al., 2021; PARK et al., 2021; CHEN et al., 2023)
and have many applications in drug delivery (LU et al., 2015a), skin
electronics (TANG et al., 2022b), implantable devices (DING et al.,
2020), etc. The vapor pressure of Ga is close to zero, which ensures
that Ga will not enter the human body through breathing (TANG
et al., 2021). The Ga are regarded to be non-toxic to mammal cells
(LI et al., 2018a; KIM et al., 2018;WANG et al., 2018). The toxicity of
the gallium-based alloys is believed from the released Ga ions
(MOSCHèNSCHWEIZER et al., 2001). Ga not only reacts with
acidic and alkaline solutions, but also slowly reacts with water to
produce Ga ions. Researchers evaluated the toxicity of Ga ions and
In ions using L929 mouse fibroblasts. The results showed that Ga
and In ions did not inhibit mitochondrial dehydrogenase activity,
indicating that Ga and In ions did not exhibit significant toxicity
(CHANDLER et al., 1994). Research has shown that Ga ions can
disrupt the Fe homeostasis in immune cells, regulate the production
of NO and pro-inflammatory cytokines by activated immune cells,
and have anti-inflammatory effects (SALES et al., 2021; ZHANG
et al., 2022a). Gallium nanodroplets upregulate eIF2α
Phosphorylation level and inhibit NO synthesis without
interfering with Fe homeostasis (ZHANG et al., 2022b). The

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Yang et al. 10.3389/fbioe.2023.1178995

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1178995


toxicity of EGaln nanocapsules was evaluated through in vitro
cytotoxicity tests on HeLa cells and compared with other
nanomaterials. Studies have shown that cells exhibit over 90%
vitality at all concentrations, while the cell viability of other
nanomaterials decreases with increasing concentrations
(CHECHETKA et al., 2017). Thus, Ga-based liquid metals are
one of the most promising materials for fabricating soft
electronics, because they not only have excellent electrical
conductivity, thermal conductivity, and stretchability, but also
has biocompatibility.

Before the advent of soft electronics, liquid metals are particularly
attractive because of their lowmelting points, so they were often used in
coolant, dentures, thermometers, and phase change material (ZHU
et al., 2016; LIU et al., 2022a; IREI, 2022). With the development of soft
electronics, more applications are developed according to the different
properties of liquid metals. Those applications include:

Stretchable conductors for interconnects: liquid metals have
liquid-grade deformability and metal-grade electrical conductivity,
which makes them stretchable interconnects/wires for connecting
electronics. Thus, stretchable devices with multifunctional purposes
can be realized when combined with liquid metal printing techniques
(TANG et al., 2018; GUO et al., 2019; GUO et al., 2022; LEE et al.,
2022) (Figure 1A). It is also possible to implement multi-layered
stretchable circuits through vias (GREEN et al., 2019; LOPES et al.,
2021a) (Figure 1B). The excellent electrical conductivity and
stretchability of liquid metal also make it a candidate material for
electrodes (Figure 1C). It should be noted that the stretchability of the
stretchable devices is usually much lower than that of stretchable

conductors due the limitation of the connection between stretchable
conductors and the rigid electronics. For example, the stretchability of
some stretchable conductors such as liquid metals and gold nanowires
has been reported to be as high as 1,000% (ZHU et al., 2013; CHOI
et al., 2018; TANG et al., 2019a), however, when such stretchable
conductors are used to make stretchable devices, the stretchability is
usually below 300% (LU et al., 2015b; TANG et al., 2020). That is
because most reported stretchable devices are realized by connecting
rigid electrical components with stretchable conductors to achieve
stretchability. When the stretchable devices are deformed, electrical
failures usually occur at the interfaces between the stretchable
conductors and rigid electronic components (soft–rigid
connections) due to the stress concentration (LOPES et al., 2021b;
TANG et al., 2022b).

Stretchable Antennas: With excellent electrical conductivity and
stretchability, the liquid metal can be patterned into stretchable
antennas for wireless communication and wireless power supply for
soft electronics (XIE et al., 2020). Electronic devices are becoming
softer, thinner and more conformable to human organs due to the
fast development of conformal sensors, electrodes, and
interconnects. However, making the battery conform to the
human body is still challenging. To obtain 100% conformal
devices, antennas composed of liquid metal could replace
batteries to power the device. Through liquid metal printing
technology, liquid metal can be made into antennas of different
shapes, and the performance of the antenna can be easily adjusted by
the shape of the antenna (CHENG et al., 2009; KUBO et al., 2010;
QUSBA et al., 2014). While supplying energy, some liquid metal

FIGURE 1
Applications of liquid metals in soft electronics. (A) Printing for making stretchable conductor (TANG et al., 2018) (B) Printing liquid metal to realize
multi-layer circuit (LOPES et al., 2021a) (C)Highly stretchable liquid metal electrode array for Electrophysiology (DONG et al., 2021a). (D) Pressure sensor
made of liquid metal (GAO et al., 2017) (E) Soft pacemaker made of liquid metal (HANG et al., 2021).
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antennas can also transmit data from sensors in the device. For
example, liquid metal antenna can integrate with a liquid metal
strain sensors and NFC (near-field-communication) chips to
constitute a stretchable devices for monitoring various human
motions in a purely wireless fashion (JEONG et al., 2017). When
the liquid metal antennas are combined with potentiometric
electrochemical sensors such as sodium ion electrodes, potassium
ion electrodes and ion selective electrodes, the devices have the
potential to wirelessly detect metabolites (glucose) and electrolytes
in sweat (MOU et al., 2021; MOU et al., 2022). The liquid metal
antennas can maintain high-quality factor (q > 20) under stretching
(>200% uniaxial strain), twisting (180° twist), and bending
deformation (3.0 mm radius of curvature) (YAMAGISHI et al.,
2021). Designing the antenna as different wavy structures based
on structural engineering can greatly improve the performance of
antenna under externally applied tensile strain (ZHU et al., 2019).

Soft sensors: When the liquid metal is deformed, its electrical
parameters such as resistance and capacitance will also change. After
the substrate undergoes deformation, the distance between adjacent
serpentine liquid metal circuits changes, which alters the conductive
path in the circuit. For example, when stretching, the distance
between adjacent serpentine circuits increases and the resistance
increases. The corresponding change in resistance or capacitance
can be utilized as strain, pressure and tactile sensors. The most
common liquid metal based-sensor is a resistive strain sensor,
usually realized by printing liquid metal in a serpentine shape.
Patterning tracks with reduced line width is necessary to increase
the output sensitivity of the soft sensors. Liquid metal strain sensors
generally cannot distinguish in-plane strain from normal stress, that
is, stretching a sensor often gives a similar signal to pressing the
sensor. To solve this problem, the structural design of the strain
sensor can turn the strain sensor into a pressure/tactile sensor that is
only sensitive to pressure (Figure 1D) (GAO et al., 2017). In
addition, some capacitive strain sensors are insensitive to normal
stress (ZHANG et al., 2022c). Liquid metal has high conductivity, so
liquid metal resistance sensors usually have a small initial resistance,
and the initial resistance is usually between 0.1 and 100 Ω.
Compared with strain sensors based on nano-materials (YAN
et al., 2021; KUMARESAN et al., 2022), both the resistant and
the capacitive liquid metal sensors have low gauge factor, varying
between 0.1 and 10, which means that the liquid metal sensors
usually has a low sensitivity and a large measurement range (usually
0%–100%) (BOLEY et al., 2014; HIRSCH et al., 2016; COOPER
et al., 2017; JEONG et al., 2017; DEJACE et al., 2019a; WU et al.,
2021). Thus, liquid metal sensors are very suitable for measuring
human motions by monitoring the angels of different joints
(SHENG et al., 2016; DEJACE et al., 2019b; ZHANG et al., 2022c).

Soft electrodes for electrophysiological measurements: The
liquid metal has extremely low modules. When patterning on
thin and soft substrates, liquid metal can serve as conformal
electrodes for electrophysiological measurements (YU et al.,
2013; LI et al., 2022b) such as ECG, EMG, and EEG
(Figure 1C). To realize electrodes with better conformability,
free-standing liquid metal electrodes can be a better choice.
Electrodes can be printed both on planar and 3D complex
surfaces (ZHANG et al., 2019).

Soft thermal management materials: Liquid metals have been
widely used as thermal management materials in high-performance

convective coolants, phase change materials and thermal interface
materials, which are mainly benefitting from their intrinsic high
thermal conductivity (WANG et al., 2022a). To achieve stretchable
thermally conductive materials stretchable, liquid metals can be
embedded into the host of elastomers as thermally conductive
pathways. This composite material enables rapid heat dissipation
and prevents heat from being concentrated on the wearable device
(BARTLETT et al., 2017).

Implantable devices: The gallium-based liquid metals have good
biocompatibility because the gallium are regarded to be non-toxic to
mammal cells (LI et al., 2018a; KIM et al., 2018; WANG et al., 2018).
The toxicity of the liquid metal is believed from the released gallium
ions (MOSCHèNSCHWEIZER et al., 2001), but the concentration
of the gallium ion released by the implantable devices fabricated by
liquid metal is well below the toxicity threshold. For example, Liquid
metal wire has good stretchability and can be used as a lead for soft
pacemakers for correcting abnormal heart rates in a rabbit model.
The liquid metal soft pacemakers can be absorbed over time in the
body, avoiding secondary injury caused by the remaining lead wires
permanently left in the body (HANG et al., 2021) (Figure 1E). They
also found that the amounts of Ga and In the major organs of the
rabbit model are much lower than the LD50 value and the LD0 value.
The liquid metal can also integrate with tissue engineering blood
vessels as electronic blood vessel to promote cell proliferation and
achieve gene delivery through electroporation (CHENG et al.,
2017b). Thus, gallium-based liquid metals have great potential in
fabricating implantable devices.

Printed OLED and batteries: The liquid metals have potentials to
fabricate fully printed OLEDs and batteries. The liquid metal can
serve as electron injecting (negative) electrode in an OLED. When
OLED is composed of liquid metal cathode, electroluminescent
polymer (such as poly (2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-
phenylenevinylene) and Ru (bpy)3(ClO4)2) and transparent anode
electrodematerial (such as ITO and PEDOT:PSS), it can emit light at
a voltage of about 3 V. All the components of the OLED can be
realized by printing (GAO and BARD, 2000; SU et al., 2022).
Though printing, liquid metal (anode) and Ag2O (cathode) can
also form fully printed soft batteries (COSTA et al., 2022), which
makes fully printed wearable devices possible in the future.

2.2 Patterning liquid metals for soft
electronics

Liquid metals need to be patterned before being made into soft
electronics. Methods for patterning liquid metals can be divided into
patterning bulky liquid metal and patterning liquid metal emulsions.
The difference between the two methods is that the liquid metal
pattern in the former method is conductive after printing, while the
liquid metal pattern in the latter method needs to be sintered after
patterning to be conductive.

Patterning bulky liquid metal includes inkjet printing,
microfluidic channel method, spraying, and vapor deposition.
Inkjet printing is an efficient and low-cost technology for
depositing and patterning materials. Because inkjet printing
technology can form patterned film without the mask. The inkjet
printing device usually includes an ink cartridge and an inkjet head
capable of accurately depositing the solution in the design area.
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Inkjet printing can precisely control the volume and position of
liquid metal deposition. And it is pollution-free and has high
material utilization rate. Thus, inkjet printing has the most
commercial application prospects in the field of personalized
printed electronics. However, the low resolution of inkjet printing
limits its application. Because liquid metals have great surface
tension, liquid metals are limited to printing on surfaces that can
be wetted by liquid metals (LU et al., 2022). The wettability of the
liquid metal to the substrate, the viscosity, the oxide film on the
liquid metal, and the nozzle diameter are essential parameters that
affect the resolution.

Liquid metals patterned by microfluidic channels method
usually have higher resolutions than inkjet printing, and it is
reported that the minimum line width of liquid metal patterned
by microfluidic channel can reach 0.5–10 μm (PAN et al., 2018; AN
et al., 2022). Briefly, the researchers fabricated the microfluidic
channel based on silicones by soft photolithography, and then
injected the liquid metal into the microfluidic channel by
injection syringe (ZHANG et al., 2022d). Researchers fill the
microchannel with liquid metal through electrochemical method,
which avoids the influence of bubbles when injecting LM into the
microfluidic channel (LI et al., 2022c). Soft sensors fabricated by
microfluidic methods can accurately identify deformation,
effectively reduce the hysteresis of the sensor, significantly reduce
the error in themeasurement process, reduce hysteresis and improve
stretchability (CHEN et al., 2020a) (Figure 2A). The conductor
produced using this method has a tensile strain of up to 200%.
However, microfluidic channels can only be used to print

continuous patterns of connected inlets and outlets due to the
limitation of injection. In addition, the liquid metal requires
greater injection pressure to fill the fine channels, and air also
remains inside the micro-channels, which may lead to leakage
and device failure.

Liquid metals have good liquidity and can be loaded into a spray
gun (airbrush) for spray coating. Atomizing droplets of liquid metal
rapidly oxidize in the air, which can significantly increase the
adhesion of liquid metal. Thus, bulky liquid metal can be
patterned in almost all kinds of substrates through masks
(Figure 2B) (ZHANG et al., 2013; GUO et al., 2014a). The
resolution of liquid metal patterns usually depend on the masks,
and the line width for spray printing can reach 100 μm (GUO et al.,
2014b). Microfluidic channels from soft lithography are used to
achieve liquid metal patterns with high resolution (REN et al., 2019).
Liquid metals are spraying on the PDMS substrate with the
microfluidic grooves, and then the liquid metal outside the
grooves is removed. After sealing the grooves with another layer
of PDMS by ionic bonding, microfluidic channels filled with liquid
metals are achieved.

Vapor deposition is a method of reactive synthesis of coatings or
nanomaterials on the surface of a substrate, and is the most widely
used technique in the semiconductor industry to deposit various
materials, including a wide range of insulating materials, most
metals and metal alloys. Two or more gaseous raw materials are
introduced into a reaction chamber and then chemically react with
each other to form a new material that is deposited on the wafer
surface. At room temperature, LM has low vapor pressure (LIU

FIGURE 2
Patterning liquid metals for soft electronics. (A) Patterning of liquid metals by microfluidic (CHEN et al., 2020a) (B) Spray patterning of liquid metal
and SEM images of spray on paper (ZHANG et al., 2013) (C) Printing liquid metals circuits by magnetic printing (ZHANG et al., 2022e) (D) Patterned liquid
metal circuit by screen printing (DONG et al., 2021b) (E) Cross-section of the paper-liquid metal interface (ZHANG et al., 2013).

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Yang et al. 10.3389/fbioe.2023.1178995

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1178995


et al., 2012). Heat Ga under a vacuum to obtain hot metal steam, and
then condense on the receiving substrates, usually gold and copper
substrates (HIRSCH et al., 2019), to form LM film. This approach
allows for precise control of the deposited LM quantity and prevents
the formation of the oxide skin. Liquid metal patterns from vapor
deposition usually have high resolution (~4.5 μm), which has
potential for developing transparent conductors based on liquid
metals (PAN et al., 2018). Moreover, a stretchable network of liquid
metal conductors can be made on an elastic sponge by physical
deposition, put a sponge mixed with styrene-isoprene-styrene (SIS)
and salicylic acid in a thermal evaporator, then deposit liquid metal
to produce a porous network of conductive sponges.

Usually, to obtain gallium-based liquid metal emulsions, large
pieces of liquid metal need to be dispersed in solution through
vigorous physical stirring such as ultrasonic treatment, high-speed
stirring, and shearing. Compared with patterning bulky liquid metal,
liquid metal emulsions can be printed onto the desirable substrates
without being limited by the huge surface tension of the liquid
metals. We can adjust the printability and stability of the liquid
metal emulsion by adding additives such as surfactant, thickener,
and special polymers (LOPES et al., 2021c; WANG et al., 2022b; JO
et al., 2022), so that they can be successfully printed on different
substrates.

Screen printing is a highly efficient method for patterning liquid
metal emulsions, which takes the screen-printing plate with the pattern
as the stencil. When printing the liquid metal emulsions, we pour ink
into one end of the screen-printing plate, and apply a certain pressure to
the ink part on the screen-printing plate with a scraper, and moving
towards the other end at a constant speed, and the ink is squeezed from
the mesh of the pattern to the substrate by the scraper during the
movement (Figure 2C) (ZHANG et al., 2022e). The pattern resolution
depends on the stencil fineness. The stencil thickness needs to be
reduced to obtain high-resolution patterns, but the thinner the stencil,
the more fragile it becomes (KIM and HONE, 2017). Although screen
printing technology is usually used to print patterns with a larger width,
liquid metal with a line width of 100 microns can also be printed by
optimizing the screen printing process (DONG et al., 2021b). Screen
printing can also be combined with spray coating, which can quickly
spray liquid metal onto substrates and stencils over large areas (REN
et al., 2019). However, the surface and edges of the pattern formed are
usually not flat, and the liquid metal can remain on surfaces beyond the
intended pattern.

Liquid metal emulsions can also be patterned by inkjet printers.
Liquid metal emulsions are deposited onto substrate by a digital
computer-controlled printer (BOLEY et al., 2015; ZHOU et al.,
2020), allowing precise control of the amount of liquid metal
deposited and improving printing resolution in the sub-micron
range (DONG et al., 2021c; CHO et al., 2022; LEMARCHAND
et al., 2022). Liquid metal with a resolution of up to 90 μm can be
achieved by Ink jet printing (ZHOU et al., 2020). Compared with
bulk liquid metal inkjet printing, liquid metal emulsion inkjet
printing is not limited by the wettability of liquid metal, and
there are more choices of substrates that can be printed.

Liquid metal can be patterned with magnetic fields. Adding
magnetic particles to liquid metal can make liquid metal produce a
magnetic response, and we can use magnets to control the patterning of
liquid metal (Figure 2D) (DONG et al., 2021b). Magnetic printing can
overcome the high surface tension of liquid metal and realize patterned

liquid metal. The locomotion and morphological manipulation of the
magnetic Liquid metal droplets can also be realized using arrays of
electromagnets (LI et al., 2020a).

Compared with patterns consisting of conductive bulky liquid
metals (Figure 2E), patterns from liquid metal emulsions are
composed of liquid metal particles that need to be sintered to be
conductive. It should be noted that the pattern composed of liquid
metal particles is not electrically conductive after printing, because
there is an insulating oxide film on the surface of gallium-based
liquidmetal particles, whichmust be broken by the external stimulus
to form conductive paths (LIN et al., 2017b). This process is also
called sinter the liquid metal particles. Many external stimulus can
sinter the liquid metal particles and make the pattern conductive,
which include strain (Figure 3A) (TANG et al., 2019b), pressure
(Figure 3B) (LIN et al., 2015), thermal sintering (Figure 3C) (NIU
et al., 2022), dielectrophoresis (Figure 3D) (KRISNADI et al., 2020),
chemical sintering (Figure 3E) (LI et al., 2020b), laser irradiation
(Figure 3F) (DENG and CHENG, 2019), humidity (Figure 3G)
(TANG et al., 2020) and freezing sintering (Figures 3H, I) (CHEN
et al., 2019). For example, strain and pressure can sinter the patterns
composed of liquid metal particles. Before the strain/pressure is
applied, the particles are complete and isolated by the oxide layer.
When the liquid metal particles are subjected to strain/pressure, the
liquid metal particles will break and merge to form conductive ways.
Thermal expansion microspheres are added for thermal sintering of
liquid metal particles (NIU et al., 2022). After printing, LM is
sintered into a conductive path through mechanical pressure
caused by expansion of the microspheres after heating. Liquid
metal particles can be sintered in dielectrophoresis. In a non-
uniform electric field, particles suspended in the dielectric
medium are polarized and subjected to a force, and this
phenomenon is referred to as dielectrophoresis. The resulting
dielectrophoretic force depends on the position of these particles
in the electric field and the relative polarizability of the particles and
the medium (LUMSDON and SCOTT, 2005). Thus,
dielectrophoresis can be used to assemble, align, and sinter liquid
metal droplets in uncured PDMS to form conductive paths
(KRISNADI et al., 2020). Chemical sintering is to expose the
liquid metal to acid smoke for a short time to remove the surface
passivation oxide (LI et al., 2020b). This sintering method requires
adding additional Cu to the liquid metal ink. After exposure to the
acid smoke, the oxide layer of the liquid metal particles will dissolve
and the liquid metal diffuses on the Cu nanosheet and forms a fully
connected liquid metal layer. There are two possible mechanisms for
laser-irradiated liquid metal sintering (DENG and CHENG, 2019).
One is thermal cracking, and the other is evaporation. The liquid
metal is heated by pulsed laser irradiation. The ultra-fast laser pulse
will cause the rapid thermal expansion of the liquid core, which will
generate tension on the solid shell. When the stress exceeds the
critical value, the liquid metal shell will break and form a conductive
path. Laser irradiates liquidmetal and rapidly heats it above its vapor
point, and the core material evaporates or ablates. The vapor radiates
from the metal core, and disrupts the oxide shell. The vapor is then
rapidly cooled in air or on the substrate and forms metal
nanoparticles. In humidity sintering, the hygroscopic polymer
should be added to the liquid metal ink, because the hygroscopic
polymer on the liquid metal particles will shrink when the humidity
changes from high to low. And the squeezed liquid metal particles
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will break and form a conductive path between the particles. Low
temperature can also sinter the liquid metal particles since the liquid
metal droplets expand as they freeze, decreasing the distance
between the liquid metal droplets. Finally, the expanded droplets
will contact and form a conductive path.

3 The spinning technologies for soft
electronics

3.1 Electrospinning

The earliest electrospinning may date back to 1934, in which
Formalas developed an experimental apparatus for preparing
polymer fibers by electrostatic forces (XUE et al., 2019). By this
device, it is feasible to fabricate micrometer or nanoscale fibers in the
presence of electric field forces with polymer solutions. An
electrospinning device usually constitutes a high-voltage power
supply and an injection pump. The positive cathode of a high-
voltage power supply is connected to the spinning nozzle, and the
negative cathode is connected to the receiver. The polymer solution
is charged and ejected at the nozzle, and then shoots to the receiver
and solidifies into fiber under the electric field force (Figure 4A)
(ROSTAMITABAR et al., 2021). Compared with the melt spinning,

the application of electrospinning materials is more extensive,
making it possible to spin polymers that are not resistant to high
temperatures such as natural polymers, fibroin protein, etc (HAN
et al., 2022). In addition, electrospinning is usually performed at
room temperature, which allows it to make drug-loaded or natural
polymer fibers that are sensitive to high temperatures. For example,
researchers used the electrospun poly (ε-caprolactone) and poly (dl-
lactide-co-glycolide) membrane as the inner and outer layers of
tissue-engineered blood vessels, respectively. In vivo observation and
in vitro experiments show that this kind of blood vessel has good
performance in shape maintenance and structural remodeling,
which can approximately simulate natural blood vessels, paving
the way for making biodegradable artificial blood vessels (CHENG
et al., 2017b). Electric field is a significant parameter in
electrospinning, irregular distribution of electric field strength can
lead to irregular distribution of nanofiber, which reduces the
efficiency of electrospinning process and strength of the fibers
(SMOLKA et al., 2022). The temperature and humidity of the
spinning environment can affect the diameter and shape of the
fibers. The environment with high temperature and low humidity
can make the faster evaporation of the spinning solvent, as is
beneficial to facilitate the fiber formation. For different
macromolecule polymers, the environment has a diverse effect on
the fiber. For instance, the higher the humidity is, the larger the

FIGURE 3
Sintered liquid metal (A) Strain sintered liquid metal (TANG et al., 2019b) (B) Pressure sintered liquid metal (LIN et al., 2015). (C)Heated sintered liquid
metal (NIU et al., 2022). (D) Dielectrophoresis sintering of liquid metal (KRISNADI et al., 2020). (E) Chemical sintering of liquid metal (LI et al., 2020b) (F)
SEM image of laser sintering (DENG andCHENG, 2019) (G) SEM characterization of the LM after different wet-dry cycles (TANG et al., 2020) (H) Pictures of
liquid metal microdrops show that the liquid metal droplets cannot contact each other at room temperature (CHEN et al., 2019) (I) Schematic
diagram of the conductor-insulation transition of the materials (CHEN et al., 2019).
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average diameter of chitosan nanofibers becomes, while the smaller
the diameter of polyvinyl pyrrolidone nanofibers gets (SZEWCZYK
and STACHEWICZ, 2020). It was found that the average diameter
of silk fibroin/poval nanofibers decreases with increasing humidity,
so that different environmental parameters should be controlled for
different polymer materials to obtain an ideal fiber morphology
(PARK and UM, 2021). Electrospinning fibers can also form beaded
structures, affecting the stretchability of the fiber membrane. The main
causes of beaded structures include: the concentration of the polymer
solution, the electrospinning voltage, and the molecular weight of the
polymer. At lower concentrations, the fibers containing more bead-
string structures will be gained. As the concentration increases, the
resulting fibers are gradually uniform, and when the concentration is
further increased, the spiral nanoribbons will be obtained (KOSKI et al.,
2004; EDA and SHIVKUMAR, 2007). The lowmolecular weight of the
polymer creates resistance to the jet stretching flow, so electrospun
nanofibers tend to form beaded structures. When the molecular weight
reaches the appropriate range, jet stretching flow will stabilize and
form a uniform nanofiber. When the molecular weight is overly
high, the diameter of the fiber and the fiber interval further
increases, and the shape of the fiber cross section gradually
changes from round to flat shape (MEDEIROS et al., 2022).
On the condition that the applied voltage exceeds a certain
threshold value, a stable polymer solution jet will take shape.
The researchers found that a higher voltage will make the fiber
diameter finer, which is propitious to the fabrication of nanoscale
fibers (PARHAM et al., 2020). However, if the voltage continues
to increase, the fiber diameters will be larger and evenness will be

poorer, forming beaded or string-beaded nanofibers (LU et al.,
2021).

Electrospinning technology have been widely used to
fabricate nanoscale fibers. The advantages of electrospinned
nanofiber mesh include large surface area to volume ratio and
high porosity (YAN et al., 2019). In recent years, electrospinning
has been commonly used to make nanofiber scaffolds. Compared
to traditional scaffolds, cells are more likely to penetrate and
migrate on electrospinned scaffolds (LIN et al., 2020). The
cellulose scaffold made by electrospinning has a porosity of up
to 94%. Compared with other scaffolds, the scaffold significantly
increased cell proliferation after 7 days of cell inoculation (KI
et al., 2008). The different electrospinning materials will also
affect the porosity of the fiber mesh. The scaffolds with low
(76%), medium (83%) and high (90%) porosity were prepared
using polyethylene oxide. Research shows that fiber scaffolds
with high porosity are more suitable for cell migration and
proliferation because of lower fiber density (VOORNEVELD
et al., 2017). The polyurethane fiber film made by
electrospinning exhibits a tensile strain of 372.4% and a water
contact angle of 137.1°, exhibiting excellent waterproof and
breathable properties, making it an ideal candidate substrate
for skin electronics (ZHOU et al., 2021a). A polyurethane
solution containing MXene was electrospun to produce
conductive yarns with a tensile strain of up to 253% and a
conductivity of 1195 S/cm, which showed potential in body
motion monitoring (LEVITT et al., 2020). Electrospinning can
also make rigid materials into stretchable materials, and ceramic

FIGURE 4
Schematic diagram of spinning equipment. (A) Schematic diagram of electrospinning device (ROSTAMITABAR et al., 2021) (B) Needle free air jet
spinning with nylon rope instead of syringe (LI et al., 2022d) (C) Morphology of nanofibers prepared by different spinning methods (CAO et al., 2021) (I)
Electrospinning and air jet spinning (II) Air jet spinning (III) Electrospinning (D) Schematic diagram of melt spinning (ROSTAMITABAR et al., 2021).
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nanofibers produced by electrospinning have a tensile strain of
up to 100% (CHENG et al., 2022).

3.2 Air-jet spinning

In 2009, Medeiros proposed air-jet spinning, which is a new
spinning method in recent years, producing polylactic acid and
polystyrene fibers and studying the influence of airflow on fiber
morphology through air-jet spinning technology (GAO et al.,
2021). In this process, the solution is extruded from the needle tip
to eject liquid jet in the direction of the gas flow. The gas flow not
only acts as a driver but also effectively assists in the evaporation
of the solvent, leaving uniform fibers. This technology has
applied to construct a spirally arranged cardiomyocyte
scaffold, on which cardiomyocytes were successfully cultured
and beat (CHANG et al., 2022). Spinning needle-based
technology is an established method to produce fibers
efficiently, but there is a risk of needle clogging due to the
rapid evaporation of the solvent. Researcher developed
needleless air-jet spinning technology, which can strengthen
the shear stress of liquid jet through stronger spinning airflow,
enhance the drawing effect and solvent evaporation significantly
during spinning (LI et al., 2022d) (Figure 4B). Air-jet spinning
materials are more versatile than melt spinning and
electrospinning, which is independent of electrical
conductivity and thermoplasticity, so they have a wide range
of applications. However, the fibers produced by air-jet spinning
have loose and flexible morphology and poor mechanical
properties (GRANADOS-HERNáNDEZ et al., 2018).

Air-jet spinning can be combined with electrospinning. For
example, in a spinning device, the cathode of the high-voltage
power supply is connected to the roll collector, and the anode is
connected to the spinning needle to provide an electrostatic field.
The solution is blown out through both high-speed airflow and
the electrostatic field to obtain nanofibers. The introduction of an
electrostatic field in air-jet spinning can effectively enhance the
traction and stretching effect of the solution, which is beneficial
for obtaining uniform fibers. The researchers have developed a
flame-retardant rayon/graphene nano-ion electronic skin by
electrospinning and air jet spinning technology (CAO et al.,
2021), which has the advantages of electrospinning and air-jet
spinning. The produced fiber is more uniform, unpliant, strong
stretchability and high production efficiency, and has bright
prospects in artificial skin protection (Figure 4C). The looser
fibers produced by air-jet spinning are more suitable for the
production of cell scaffolds than the denser fibers produced by
electrospinning, which will affect the penetration of cells.
Researcher prepared polycaprolactone cell scaffolds containing
diamond nanosheets by air-jet spinning, which not only
improves the mechanical strength of scaffolds, but also
promotes the cell proliferation, and can be extended to cell
scaffolds required by various tissue engineering (AUGUSTINE
et al., 2023). Tests showed that it is easier to form cylindrical
uniform fibers by increasing the concentration of solute in the
solution; while the low-concentration polymer solution will
produce beaded structure and reduce the tensile properties of
the fiber membrane although the fiber membrane will become

thinner (YANG et al., 2023). The air-jet spinning technology with
high efficiency, short preparation time and low solution
requirement will be beneficial to the large-scale production of
nanofibers and realize industrial production.

Air-jet spinning can produce fibers with high porosity, and
the diameter of fibers usually varies from nanometer to
micrometer. Compared with electrospinning, air-jet spinning
has a higher yield and has the potential to achieve mass
production (GAO et al., 2021). For example, polyethylene
oxide and polyvinylpyrrolidone fiber membranes produced by
a specially designed jet spinning method usually have fiber
diameters ranging from tens of nanometers to several microns
(BENAVIDES et al., 2012), and the production speed is
10–20 times that of a single electrospinning (usually range
from 0.1–1.0 g/h per jet) (LI and XIA, 2004; GREINER and
WENDORFF, 2007). The polyvinyl acetate fiber membrane
containing titanium dioxide produced by airbrush spraying
apparatus has a porosity of up to 93%, with an average pore
size of 1.58–5.12 μm (ABDAL-HAY et al., 2015). Through the
improvement of spinning equipment, the production rate can be
further increased. The hyaluronic acid scaffold made by
immersion rotary jet spinning has a porosity of up to 95% and
a diameter from 500 nm to 3 μm. And the manufacturing
throughput of the air-jet spinning reaches about 1 g/min
which is much higher than electrospinning. The scaffold
accelerates granulation tissue formation, blood vessel
formation, and re-epithelialization, promoting wound closure
(CHANTRE et al., 2019).

3.3 Melt spinning

Melt spinning is a kind of method of producing nanofibers, and
it uses molten polymers as the spinning solution. In the past, melt
spinning has become an essential method for manufacturing
nanofibers. It is first, heating Polymer to the melting point. Then,
the molten polymer is extruded from the spinning head
(ROSTAMITABAR et al., 2021) (Figure 4D). The most
commonly used materials for melt-spinning are polyamides
(HABERKORN et al., 1993), polyesters (ALATAWI et al., 2023)
and polyolefins (KIM et al., 2021). The basic requirement for melt
spinning is that polymer does not decompose when melted at
relative high temperature. Thus the melt-spinning technology
does not apply to some natural polymers or fibers containing
medications, especially when medications need to be directly
added to the spinning material, which limits its application in
the medical field.

In melt spinning, some additives are usually added to the melt to
facilitate processing or improve the function of fibers. There are
three basic types of additives: Processing aids (HUFENUS et al.,
2020a; ZHANG et al., 2023), Enhancing additives (MAQSOOD
et al., 2019; PENG et al., 2019; HUFENUS et al., 2020a), and
Functional additives (HUFENUS et al., 2020b; BELKHIR et al.,
2021; GOLL et al., 2021). Processing aids make nanofibers easier to
form, reinforcing additives improve mechanical properties of
nanofibers, while functional additives expand the properties of
nanofibers. Moisture can strongly influence processability and
cause the degradation of polymers in extrusion. Because melt
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hydrolysis leads to lower molecular weight, making fibers difficult to
form. Thus, drying polymers is critical to the Melt spinning
(ROSENBAUM et al., 2022). For some polymer materials, the
hydrolysis of polymer materials will produce harmful substances.
For example, the hydrolyzed PVDF melt will have highly corrosive
and toxic hydrogen fluoride. Improper setting of process parameters
in the melt spinning process will lead to the formation of a spherical
structure in the fiber film, which will make the fiber brittle and not
conducive to stretching (LI et al., 2018b). The construction of this
structure mainly depends on the feeding rate and quenching rate at
the nozzle. A higher feeding rate will make it easier to form this bead
structure.

Melt spinning can also produce substrates with pores, but
compared to fiber substrates made by other methods, the fiber
substrates made by melt spinning have smaller porosity and

larger fiber diameters (KRIEGEL et al., 2008). For example,
the average porosity of polyvinyl chloride fiber membrane
prepared by melt spinning is approximately 60% (LU et al.,
2019). The porosity of the polycaprolactone scaffold made by
melt spinning is 75% (CHUNG et al., 2010), and the diameters of
both fibers range from several to hundreds of microns. After melt
spinning, immersion coating and freeze-drying can not only
improve the stability of the cell scaffold, but also increase the
porosity to 97% (BUTTAFOCO et al., 2006).

4 Fabrication of liquid metal fibers

Fiber is the basic unit of the nanofibrous membrane. We can
achieve liquid metal-based breathable electronics by weaving

TABLE 1 Structure, fabrication, and applications of liquid metal fibers.

LMF core LMF
sheath

Manufacturing
method

Stretchability Applications Diameter

EGaIn (ZHU et al., 2013) SEBS resin Injection 700% Conductive fiber ~240 μm

EGaIn (COOPER et al., 2017) Hytrel Injection 150% Torsion, strain, Touch sensor ~800 μm

EGaIn (LAI et al., 2021) SEBS resin Injection >650% Nanogenerator, Dynamic monitoring
sensor

2000 μm

Ga-In-Sn-Zn alloy (YU et al., 2020) PU Injection 480% Dynamic force sensor, motion indicator 250 μm

EGaIn (ZHENG et al., 2013) - 3D-printing - 3D conductor structure, flexible antenna 510 μm

PU (MI et al., 2021) EGaIn/ Dip-coating up to 400% Electroluminescent fibers, conductive
fibers

~600 μm

Polymethacrylates coated PU (CHEN
et al., 2020b)

EGaIn Dip-coating 500% Conductive fiber ~200 μm

EGaIn (MA et al., 2022) PU Dip-coating 1,273% 3D stretchable conductors, sensors 108 μm

Polymethacrylates coated PU (GUO
et al., 2020)

EGaIn + Cu
particles

Coating 300% Conductive fiber, artificial muscle ~112 μm

Ag coated-SBS (ZHUANG et al., 2021) EGaInSn Electrospinning + inkjet
printing

2,500% Stretchable circuits 8.6 μm

LM particles (NING et al., 2023) PU Coaxial wet spinning 232% Energy harvesting and self-powered
sensing

180 μm

LM particles + TPU (LIU et al., 2022b) CNT + AgNW Wet-spinning + dip-
coating

500% Wearable sensor ~6–100 μm

Ga-In-Sn (YU et al., 2022) PU Coaxial wet-spinning 373% Wearable sensor, heater ~1,000 μm

LM particles + PVDF (ZHENG et al.,
2021)

PVDF +
PEGDA

Coaxial wet-spinning 1,170% Heater, self-powered sensing ~270 μm

LM-silk fiber (GAO et al., 2022) - Silkworm feeding 70% Wearable sensor ~40–250 nm

PVDF-LM particles (YU et al., 2018) - Electrospinning ~30% Nanogenerators ~100 nm

Low melting point alloy (Tm = 62 °C)
(NING et al., 2023)

Silicone rubber Injection 400% Variable Stiffness Fiber 250 μm

LM particles + Bisphenol-A epoxy
(PENG et al., 2021)

- Mold - - Temperature-sensitive conductors 89 μm

LM particles + PDMS (LIU et al., 2020) - Injection ~1,400 Shape memory conductors, temperature
electrical switches

1,100 μm

EGaIn + Fe particles (HONG et al.,
2021)

SEBS resin Injection ~600% Electrical switches for remote magnetic
actuation

1,400 μm
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liquid metal fibers or directly printing liquid metal on spun films.
Thus, it is usually necessary to prepare liquid metal fibers (LMFs)
before weaving. There are several strategies for fabricating liquid
metal fibers including injecting LM into a hollow fiber, dip
coating, 3D printing, electrospinning, and biological
manufacturing (Table 1).

Injecting LM into a hollow fiber is one of the earliest reported
strategies to fabricate LMFs. Injecting liquid metal into hollow a
fiber by using a syringe can form a core-shell structure with a liquid
metal core and polymer shell (COOPER et al., 2017; LAI et al., 2021).
The LM-injected fibers usually have stretchable polymer shells
(usually styrene resin) that can be stretched to strains of up to
800%, and maintains metallic conductivity due to the LM core.
These LM-injected fibers are usually used as temperature, torsion,
strain, and touch sensors, because external physical stimuli
(deformation, temperature) induce changes in liquid metal
resistance or capacitance. Also, those fibers can be used as a
stretchable wire for earphones and battery chargers, with the
same performance as standard components (ZHU et al., 2013).
The mechanical measurement with or without liquid metal inside
the fiber shows that the effect of liquid core on the mechanical
properties of the fiber is negligible. The diameter of the LMF mainly
depends on the inner diameter of the hollow shell, which ranges

from several hundred micrometers to several millimeters. When the
diameter is large, it is difficult for the internal LM to fill the hollow
shell, resulting in uneven distribution of LM. Conversely, when the
diameter is small, it is difficult for LM to inject extremely minuscule
hollow fiber as the injection resistance increases dramatically. Using
microfluidic technology (YU et al., 2020) (Figure 5A) or vacuum
suction (LIN et al., 2017c), not only can the liquid metal be
effectively injected into the fiber, but also the air trapped in the
fiber can be reduced. For example, one inlet of the hollow fiber can
be covered with LM, and the structure can be placed in a vacuum
chamber to remove the air inside. After restoring the atmospheric
pressure, the positive pressure gradient could quickly push the metal
through the fiber.

LM can adhere to the surface of some fibers after dip coating.
LMFs can be manufactured by immersing polymer fibers into LM or
inks composed of LM particles, and LM/LM particles will directly
adhere to the surface of the fiber through dip coating to form a liquid
metal fiber. This method can apply to various fibers, such as
polyurethane, hemp, and cotton (GUI et al., 2017; CHEN et al.,
2020b; GUO et al., 2020). Using dip-coating method, highly
stretchable fibers with superior stretchability and electrical
conductivity (>100 S/cm when stretched to 500% strain) can be
fabricated, which usually contains a polymer core, an intermediate

FIGURE 5
Manufacturing of liquid metal fibers. (A) Hollow fiber and injected liquid metal enter hollow fiber to produce liquid metal fiber (YU et al., 2020) (B)
Schematic for the preparation of LM-coated fiber (CHEN et al., 2020b) (C) Schematic diagram of making core-shell liquid metal fiber by electrospinning
(ZHENG et al., 2021) (D) Liquid metal feeding silkworm to obtain liquid metal fiber (GAO et al., 2022) (E) Schematic diagram of liquid metal fiber produced
by 3D printing (ZHENG et al., 2013) (F) SEM of liquid metal fiber with 3D structure (PARK et al., 2019).

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Yang et al. 10.3389/fbioe.2023.1178995

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1178995


modified layer to enhance the wettability of the liquid metal, and an
outer liquid metal layer. Those fibers show excellent thermal
stability, and the maximum operating temperature is close to
250°C. Those fibers can sever as wires for charging mobile
phones, as sensors to detect the motion of the human body
(CHEN et al., 2020b), and as light-emitting fibers (Figure 5B)
that can be woven into glowing cloth (DONG et al., 2022). A
study found that ultrasonic liquid metal treatment in fluid
lactone will generate ring-opening polymerization. Through
polymerization, liquid metal droplets are sealed in polyester
shells and dry to a solid powder. Then, it is imported to
thermoplastic composite by liquid casting and hot forming to
produce liquid metal fiber. This method can improve the issue
that liquid metals do not adhere easily to polymers (LI et al.,
2020c). In addition, it has been reported that adding metallic
particles such as nickel, iron, and copper through sufficient
stirring generates more oxide within the LM, thus significantly
enhancing the wettability and adhesion of the LM to the
substrates. Thus, LM doped with copper particles can directly
coat the fiber surface, and the resulting fiber exhibits desirable
mechanical and electrical properties (GUO et al., 2020).
Modifying the liquid metal particles with MXene can enhance
the particles’ adhesion to the fiber. And the MXene can also
bridge the adjacent particles to form conductive paths. Due to the
addition of the MXene, the fibers also have electromagnetic
interference shielding and joule heating properties (YI et al.,
2022). The polymer core in the LMFs can be porous, for example,
porous wires can be prepared after cutting SBS electrospinning
mat into wires, and then LM can be coat can the porous wire to
form a core-shell structure. The porous core of the LMFs can
substantially improve the stretchability (~2000%) and electrical
stability of the LMF compared with the fiber with a nonporous
core (ZHOU et al., 2021b).

Solid gallium wire can be easily made into a 3D helical structure.
Coating polyurethane to the solid wire and liquefying the solid wires
can retain the structure of the wire, thus forming stretchable
conductors with 3D structures. The study shows that such
conductors have a 1,273% breaking strain. The fiber diameter can
be reduced by applying strain to the fibers during polyurethane
curing (MA et al., 2022). The abrasion resistance and stability of LM-
coated fibers during practical applications should be considered.
After stretching, the highly oxidized LM are at risk of cracking,
leading to electrical failure. When the LM-based conductive coating
of fibers is exposed to the ambient environment, the coating easily
adheres to any other contacted objects, leading to the contamination
of neighboring objects and the loss of the LM coating. The LMF
made by these methods can be directly woven into cloth to make
breathable, soft devices. Those fabrics need to be strong, low-cost,
wear-resistant, and washable before daily use, and thus we are still
facing so challenges such as good encapsulation, surface
modification, and mass-production of LMFs.

Electrospinning is a straightforward method for fabricating micro/
nano fibers in the laboratory. However, due to the high conductivity of
LM, it is difficult to charge it directly. Thus, using electrospinning
technology to instantly produce ultra-thin LMF is still a challenge.Wet-
spinning process can be a substitute for electrospinning. To obtain
LMFs by wet-spinning, liquid metals need to incorporate different
polymers to form composite spinning solutions composed of liquid

metal and uncured polymers (LIU et al., 2022b). Coaxial wet spinning of
liquid metal and polymer solution can form microfibers with core-
sheath structure (usually liquid metal core and elastic polymer sheath).
Coaxial electrospinning requires a coaxial needle. The inner channel of
the needle is usually filledwith liquidmetal ink, and the outer channel of
the needle is generally filled with elastic polymer solutions that
constitute the sheath of the fiber after curing. A Recent study used
LM as the inner channel and polyurethane polymer solution as the
outer channel to produce fibers with high stretchability (up to 373%)
and electrical conductivity (up to 3.4 × 106 S/m) through a coaxial wet
spinning process (YU et al., 2022). To further reduce the diameter of the
fiber fabricated by coaxial spinning, a liquid metal composite consisting
of liquid metal particles and polymer fillers can be used to fill the
internal channels of the needle. The diameter of the fiber can reach
about 270 μm, which is slightly larger than the hair. The fiber has a
uniform surface and stable conductance, which can be easily woven into
an everyday glove or fabric, acting as excellent joule heaters,
electrothermochromic displays, and self-powered wearable sensors to
monitor human activities (ZHENG et al., 2021) (Figure 5C).

The liquid metal is non-toxic and biocompatible, so it can
also be mixed with silkworm feed to produce silk fiber by drip-
feeding worms. The fiber produced by this method can
significantly improve the tenacity of silk, and is an ideal
material for making stretchable devices (GAO et al., 2022).
Liquid metal-feeding worms produce silk containing liquid
metal (Figure 5D). This kind of silk is conductive and easy to
stretch. The silk containing LM obtained by feeding silkworms
with LM may solve the problem that LM is not easy to charge
during electrospinning, and also avoid the mutual interference of
the spiral cones of the inner and outer fluids during coaxial
spinning, and become an excellent electrospinning material
(GAO et al., 2022).

Combining with 3D printing technology, liquid metal ink
can be directly printed into liquid metal fiber (LMF) (ZHENG
et al., 2013) (Figure 5E). It is reported that the minimum width
of the 3D LMF reached 1.9 μm when printed through fine
nozzle. Those LMFs can be used to develop ultra-fine, soft,
and conductive interconnects for stretchable integrated circuit
(PARK et al., 2019) (Figure 5F). Furthermore, they have the
potential to be woven into textiles to be wearable devices after
solidification of the LMF. The combination of LM and 3D
printing technology reduces the etching process required by
LMF manufacturing. It should be noted that LM ink usually
needs pre-treatment to decrease the surface tension to the
substrate. 3D printing technology is expected to promote the
rapid prototyping of LM fiber. Although promising, the printed
LM wire cannot be applied in stretchable electronics without
proper substrate and encapsulation. Overall, integrating LM
with 3D printing technology will great simplify the fabrication
process of the LMF.

5 Liquid metal enabled soft electronics
based on fibers

Electronics enabled by liquid metals usually have excellent
stretchability. When porous substrates composed of fibers are
adopted, such electronics will become air-permeable and
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conformal, allowing the electronics to adhere to the skin for a long
time without causing redness and irritation. The liquid metal-
enabled elastic electronics based on fibers can be achieved by
weaving LMFs into smart textiles or patterning liquid metal
directly on the electrospinning mats (ZHANG et al., 2020b;
DONG et al., 2020; LAI et al., 2021).

The successful fabrication of nanoscale fibers has also lead to
great advances in the soft electronics. It is reported that the high
specific surface area of the nanofiber membrane is not only
conducive to improving water permeability and air permeability,
but also conducive to improving mechanical and electrical
performances such as electrical conductivity (WANG et al.,
2022c), stretchability, and sensitivity of sensors (TANG et al.,
2022c). At present, electrospinning is an effective method to
produce nanofibers, which can realize the production of fibers
with different diameters and shapes by adjusting the parameters
of electrospinning devices. Printing, spraying, coating and other
methods are adopted to pattern liquid metal on the electrospinning
mat, and liquid metal can be infiltrated into the fiber membrane to
realize the conductive stretchable substrate. The nanofiber
membrane prepared by electrospinning owns a unique network
structure, and its deformation and fracture can change the
conductive network and lead to a short-term change in
resistance. With good encapsulation of liquid metal, sensors with
high elasticity, high sensitivity, and good air permeability can also be
achieved on the electrospinning substrates (WANG et al., 2021)
(Figure 6A). Compared with the sensors printed on non-fibrous

membranes, those printed on the fiber membrane exhibit higher
sensitivity and elasticity, enabling them to respond quickly to micro-
signals such as pulse, respiration, and voice. Compared with strain
sensors based on the TPU/LM fibers (Figure 6B) (UZABAKIRIHO
et al., 2022), those printed strain sensors have a straightforward
fabrication process. Besides, the unique 3D porous network
structures bring them excellent air permeability, so that they can
fit onto the human skin surface more comfortably.

To achieve stretchable circuit on porous substrate, liquid metals
can be directly printed on the TPU nanofiber membrane through
masks. The rigid electronics are fixed on the stretchable substrate
through a polyvinyl alcohol glue, thus ensuring the stability and
reliability (WANG et al., 2022d) (Figure 6C) In order to obtain a
stable connector suitable for connecting soft conductors and rigid
components, researchers obtained a newmaterial that can be used as
conductive adhesive after uniformly mixing liquid metal with SBS
solution by ultrasound. 11-mercaptoundecanoic acid was added into
the solution to remove the oxide on the surface of liquid metal
particles to make them conductive. And this material is also suitable
for printing or casting soft conductive matrix (MOU et al., 2020). To
enhance the wettability of nanofiber membranes by liquid metal, the
researchers modified the nanofibers with silver nanoparticles to
obtain the LM-superlyophilic mat, on which LM can be readily
coated or printed. The liquid metal forms a network in the lateral
and vertical directions in the nanofiber membrane, realizing the
stretchable electronic equipment with high air permeability and high
stretchability. The air permeability and moisture permeability of the

FIGURE 6
Liquid metal enabled elastic electronics based on fibers. (A) Sensor made of liquid metal printed on electrospinning substrate (WANG et al., 2021) (B)
Making soft sensor by coating liquid metal on electrospun fiber (UZABAKIRIHO et al., 2022) (C) Stretchable adhesive liquid metal fiber mat (WANG et al.,
2022d) (D)Composite electrodemade of liquid metal fiber mat (ZHUANG et al., 2021) (E) Liquid metal fiber mat with LED (MA et al., 2021) (F) Liquid metal
fiber that can emit light and image (MI et al., 2021).

Frontiers in Bioengineering and Biotechnology frontiersin.org13

Yang et al. 10.3389/fbioe.2023.1178995

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1178995


fiber mat is higher than those of nylon cloth and medical patch by
testing. The resistance of the fiber membrane changed by less than
25% after 25,000 tensile cycles at 60% strain, making it a good
material for wearable devices (ZHUANG et al., 2021; PARK et al.,
2012) (Figure 6D). Researchers also found that liquid metals can be
easily coated or printed onto the poly (styrene-block-butadiene-
block-styrene) (SBS) fiber mat, which offers simultaneously high
permeability, stretchability, conductivity and electrical stability.
When a liquid metal circuit is encapsulated with a second layer
of SBS mat, the encapsulated device remains functional even after
washing under water (MA et al., 2021) (Figure 6E).

The performance of liquid metal devices can also be tuned by
changing the orientation of the fibers. A high-speed collection device
is adopted to prepare a unidirectional fiber membrane, based on
which a high-sensitivity sensor with unidirectional sensing can be
produced by printing the liquid metal on the fiber membrane
through screen printing (YANG et al., 2022b). In this way, a
directional biaxial strain sensor can be made by placing two
layers of fiber membranes orthogonally, and the magnitude and
direction of the strain can be obtained by theoretical calculation. The
directional sensing sensor fabricated by this method shows great
potential in human motion monitoring and human-computer
interaction.

The LMFs have applications in energy harvesting. Researcher
embedded liquid metal into the hollow fiber-shape silicone rubber
and weave these fibers into textiles as triboelectric nanogenerator
(LMS) that can harvest mechanical energy from human activities
(YANG et al., 2018). The silicone rubber layer serve as the
triboelectric and encapsulation material and the liquid metal as
the stretchable electrodes. The researcher found that TENG
electrical output can be efficiently increased by introducing liquid
metal into electrolysis PVD nanofibers as a negative friction layer
and thermoplastic polyurethane as a positive friction layer (YU et al.,
2018). The peak value of TENG open circuit voltage is up to 1680 V,
significantly higher than the current technical value of PVDF-based
TENG. The possible reason is that the introduced liquid metal
droplets are secondarily polarized inside the fiber, which improves
the dielectric constant of the nano-generator and reduces the
dielectric loss. However, with the increase in liquid metal
content, the mechanical properties of nanofiber membranes
decrease gradually. Composite nanofiber membranes containing
2 wt% liquid metal have the best balance of mechanical
performance and electrical output balance (SHA et al., 2022).
Combining with the coaxial wet spinning process, extremely fine
soft triboelectric fibers with polyurethane sheath and liquid metal
cores can be produces, and the diameter is only 0.18 mm. In
addition, the fiber has good electrical output performance. The
output voltage of a 20 cm optical fiber is 20.8 V, which can be
used for embroidery or fabric of wearable self-powered sensor
(NING et al., 2023).

Liquidmetals usually have a lowmelting point, and we can easily
convert liquid metals between solid and liquid states by adjusting the
temperature, thus the stiffness of the liquid metals can be greatly
changed by converting liquid metals from liquid to solid. Based on
the low melting point alloys (47–62°C), medical instruments with
variable stiffness can be developed. Researchers injected the liquid
metal into a hollow fiber composed of silicone rubber, which were
wrapped with helical wires that acted as heaters for melting themetal

and greatly change of stiffness of the fiber. In their research, their
LMF conformed to the shape of the finger in the soft state and
provided support for immobilizing the finger in the stiff state
(TONAZZINI et al., 2016). The fibers can be woven into various
shapes to be the device for fracture-adaptive splints. Using the
property of changing stiffness, liquid metal also has excellent
applications in implanting electrodes. The electrode has variable
rigidity: High-stiffness electrodes are good for implantation, but are
less compatible with human tissue, which may cause tissue damage
and signal distortion. Soft electrodes are not suitable for
implantation, but they fit well with human tissues, which can
reduce damage to the human body and are suitable for long-term
monitoring (DENG and LIU, 2014). Because liquid metal can keep
certain rigidity under low temperatures while it becomes soft under
the environment above the LM melting point. Injecting the liquid
metal into a micro-channel to produce LMF, and cooling it to a rigid
state can produce electrodes for implanting into the brain. After
implantation, the LM is melted to enable the electrodes to conform
to the human brain, facilitating long-term monitoring (WEN et al.,
2019).

The soft electronics from fibers composed of liquid metal
particles and polymers can also respond to external stimulus
such as temperature and stretching speed. To obtain a conductor
whose resistance is temperature-regulated, liquid metal particles are
dispersing in the polymer of bisphenol-A epoxy with a glass
transition temperature about 25°C and finally formed into fibers.
The temperature-dependent conductors realize several orders of
magnitude change in resistance via temperature regulation, and such
behavior is fundamentally attributed to the chain dynamics of
polymers. Temperature-dependent conductors can work as
special thermal conductors, which present programmable and
sharp changes in resistance upon temperature fluctuations. The
temperature-dependent conductors can serve as thermal conductors
to avoid fire, because their resistance will rise sharply when the
critical temperature is reached (PENG et al., 2021). In addition to
controlling the electrical conductivity of the fibers composed of
liquid metal particles and polymers, temperature changes can also
change the shape of the fibers. And both the shape and conductivity
transition were reversible by heating and cooling (LIU et al., 2020).
The liquid metal fibers can also respond to stretching speed. The
material maintains electric conductive under low stretching speed,
but immediately became an insulator at high stretching speeds. This
transformation phenomenon is repeatable, which makes it a
promising material for stimulus-response switches (LIU et al.,
2021). Injecting the magnetic liquid metal into hollow optical
fibers facilitate the use of the fiber in electrical switches for
remote magnetic actuation. This fiber with a magnetic liquid
metal core has an electrical and magnetic response, which can
turn on a circuit and light up an LED through magnetic
actuation (HONG et al., 2021).

Liquid metal also can be used to make electroluminescent fiber
combined with ZnS micro-particles. Liquid metal-based
electroluminescent fibers that can be woven into textiles show
potential in healthcare and fashion design. The
electroluminescent textile was usually woven by two types of
liquid metal fiber: electroluminescent fiber and conductive fiber.
Electroluminescent fibers typically contain an elastic polymer core,
which is then coated with a liquid metal layer, and a light-emitting
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layer. Weaving conductive fiber and luminescent fiber forms
micrometer-scale electroluminescent units at the contact points.
The cross-point between two different fibers form pixels that can be
switched on or off independently (MI et al., 2021) (Figure 6F). By
doping with different elements, ZnS-based electroluminescent fibers
can emit green, blue, or yellow lights. The conductive fiber based on
liquid metal can be replaced by a transparent conductor, so that the
light emitted by the fiber is not blocked by the conductive fibers (SHI
et al., 2021).

6 Summary and outlook

In this progress report, we provide an overview of studies to
develop breathable liquid metal electronics. We summarized two
main strategies to fabricate breathable liquid metal electronics:
patterning liquid metal on fiber membranes and weaving liquid
metal fibers into breathable e-textiles. Porous fiber membranes can
be made by various spinning technologies, such as electrospinning,
melt spinning, and air-jet spinning. The appropriate spinning
methods should be selected according to the spinning materials,
solvent, and environment. An important step in making liquid metal
electronics is to pattern the liquid metal on the fiber membrane. The
pattern of liquid metals on the porous fiber membranes is achieved
by screen printing, inkjet printing, spraying, and dip coating. Before
patterning, surface modification is necessary to increase the
wettability of fiber membrane by the liquid metal. Preparing
liquid metal fibers and weaving them into textiles is also an
important strategy to develop liquid metal electronics. Liquid
metal fibers are usually prepared by combing liquid metal with
different polymers usually spinning methods as summarized above.
These fibers usually maintain excellent electrical conductivity and
stretchability due to the incorporation of liquid metals. When woven
into textiles, liquid metal electronics can be breathable while
maintaining stretchability. Those fibers and their textiles have a
wide range of applications in soft sensors, nanogenerators, heat
dissipation devices, switches, and luminescent wearables.

Although many previous studies have demonstrated the
feasibility and superiority of the combination of liquid metal and
spinning technology, there are still many challenges that limit the
daily application of the breathable liquid metal electronics. For
example, the porous structure of the substrate makes it difficult
to encapsulate electronic devices, and it will be a huge challenge to

make electronic devices waterproof and prevent air oxidation while
maintaining air permeability. In addition to encapsulation, it is also
important to decrease the diameter of the liquid metal fibers and
increase the patterning resolution of liquid metals on porous
membrane. Although the spun film is very soft, it is usually non-
sticky, and increasing the stickiness of the spun membrane allows
electronics to stick to the skin without the need for tape and
wristbands. Exciting opportunities remain for developing
functional fibers by combining liquid metals with functional
polymers, potentially advancing the emerging fields of soft
sensors, energy harvesting, and soft robotics.
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