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Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed and
malignant cancers worldwide. Conventional therapy strategies may not
completely eradicate the tumor and may cause side effects during treatment.
Nano-catalytic therapy, as a novel strategy, has attracted a great deal of attention.
This study aimed to synthesize a multifunctional magneto-gold nanozyme
AuNC@Fe3O4 and evaluate its anti-cancer potential in HepG2 cells in vitro. The
characteristics of AuNC@Fe3O4 were assessed using a transmission electron
microscope, dynamic light scattering, and energy-dispersive X-ray. The
photothermal performance and peroxidase (POD)-like activity of AuNC@Fe3O4

were detected, using thermal camera and ultraviolet-visible spectrophotometer,
respectively. The anti-cancer potential of AuNC@Fe3O4 was examined using cell
counting kit-8, live/dead cell staining, and apoptosis analysis. Further research on
HepG2 cells included the detection of intracellular reactive oxygen species (ROS)
and lysosomal impairment. We observed that the AuNC@Fe3O4 had a small size,
good photothermal conversion efficiency and high POD-like activity, and also
inhibited cell proliferation and enhanced cell apoptotic ability in HepG2 cells.
Furthermore, the AuNC@Fe3O4 enhanced ROS production and lysosomal
impairment via the synergistic effect of photothermal and nano-catalytic
therapies, which induced cell death or apoptosis. Thus, the magneto-gold
nanozyme AuNC@Fe3O4 may offer a potential anti-cancer strategy for HCC.
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1 Introduction

Data from Global Cancer Incidence, Mortality and Prevalence 2020 revealed that liver
cancer was the sixth commonly diagnosed and the third lethal cancer worldwide (Sung et al.,
2021). China accounted for 23.7% and 30% of the global morbidity and mortality from liver
cancer, respectively (Ferlay et al., 2021). It was predicted that between 2020 and 2040, there
would be a 55% increase in the number of new cases of liver cancer per year, and the
percentage of people who would die from the disease in 2040 would be more than 56.4% of
those in 2020 (Rumgay et al., 2022). Primary liver cancer can be classified into three types:
cholangiocarcinoma, hepatocellular carcinoma (HCC), and a combination of the two, with
HCC accounting for approximately 90% of all cases (Llovet et al., 2016). HCC progression is
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influenced by several risk factors, such as alcohol abuse, smoking,
toxic chemicals, and hepatitis virus (especially for HBV) infections
(Yang et al., 2019). Owing to the absolute number of HBV-infected
populations (Liu et al., 2016), the mortality rate of HBV-related liver
cancer was consistently higher than the global level (Liu et al., 2019),
which increased the burden of HCC in China.

In most cases, conventional treatments, such as surgery,
radiation, and chemotherapy, do not completely eradicate the
tumor and may cause side effects during treatment, such as
cancer palindromia and drug resistance (Zhu et al., 2016; Xu
et al., 2019; Raoul and Edeline, 2020; Liu and Song, 2021). For
example, the surgery was initially considered to be used for patients
with early-stage HCC; However, over 50% of patients experienced a
recurrence within a year following surgery (Gil et al., 2015; Weber
et al., 2015). Sorafenib was an option for patients with advanced-
stage cancer, however, it was only effective in less than a third of
them and caused drug tolerance or cytotoxicity (Llovet et al., 2008;
Cheng et al., 2009; Bruix et al., 2012; Anwanwan et al., 2020). Besides
surgery and chemotherapy, radiation therapy is a non-invasive and
local ablative treatment approach to kill cancer cells. However, the
efficiency of radiation therapy is easily limited by radioresistance,
due to the DNA damage response and cell cycle checkpoints
activation (Yoon and Seong, 2014; Wahl et al., 2016; Sun et al.,
2020). Although the traditional strategies of HCC control the growth
of HCC and prolong the survival time of patients, it still cannot
satisfy their needs. Thus, it is necessary to discover a more efficient
treatment approach to improve the quality of life for patients.

In recent years, nano-catalytic therapy, as a new tumor
treatment strategy, has attracted the attention of an increasing
number of researchers. Nanozymes are nanomaterials that
catalyze chemical reactions of substrates under physiological
states, obeying the patterns of enzyme kinetics (Wei et al., 2021).
In 2007, Yan’s team was the first to report that magnetic
nanoparticles Fe3O4 possessed peroxidase (POD)-like activity,
and proposed the concept of nano-catalysis (Gao et al., 2007).
Furthermore, Shi et al. innovatively paved the way for further
applications of nanoparticles in tumor nano-catalytic therapy, by
disrupting the Fenton reaction that induced H2O2

disproportionation for •OH generation (Zhang et al., 2016).
Currently, nano-catalytic therapy and photothermal therapy
(PTT) are frequently employed in the treatment of tumors. The
integration of PTT and nano-catalytic therapy has contributed to
improving their cancer therapy efficiency. For instance,
hyperthermia promoted the enzymatic activity of Fe3O4

nanozyme to generate more •OH, and simultaneously, •OH
heightened the therapeutic impact of PTT (Wu et al., 2019; Zuo
et al., 2022). It has also been reported that the Fe3O4@ZIF-8/GOx@
MnO2 hybrid nanozyme can enhance the efficiency of nanoparticles
in anti-tumor therapy by combining multiple therapeutics (Zhang
et al., 2021b).

Fe3O4 and Au nanoparticles, as is well known, demonstrated the
unique characteristics of a high photothermal effect and POD-like
activity (Zeng et al., 2013; Vallabani et al., 2017; Ghosh et al., 2022;
Huang et al., 2022). Encouraged by the aforementioned description,
we wonder if AuNC@Fe3O4 which has been employed as magnetic
resonance imaging/com-puterized tomography multimodal
imaging contrast agents of cancer owing to their high relaxivity
value and excellent contrast enhancement (Wang et al., 2016b), also

retains the photothermal and catalytic ability, or is beneficial to
cancer therapy.

In this study, we synthesized multifunctional magneto-gold
nanozyme AuNC@Fe3O4 and evaluated their anti-cancer ability
in HCC cells in vitro. The AuNC@Fe3O4 exhibited high
photothermal effect and POD-like activity. The results also
reflected the influence of AuNC@Fe3O4 on engendering cell
death and apoptosis. Furthermore, the synergistic effect of PTT
and nano-catalytic therapy on reactive oxygen species (ROS) and
lysosomal impairment in HepG2 cells were also studied.

2 Materials and methods

2.1 Materials and reagents

Ferric slat, gold (III) chloride (HAuCl4), other reagents related
to AuNC@Fe3O4 synthesis and 3,3′,5,5′-Tetramethylbenzidine
(TMB) were purchased from Sigma, Inc. (St. Louis,
United States). H2O2 solution and different pH buffer solutions
(pH = 2, 3, 4, 5, 6, 7, 8, and 9) were bought from Aladdin (Shanghai,
China). Human umbilical vein endothelial cells (HUVEC), human
HCC cell lines (HepG2 cells) and the specific culture mediums for
the two cell lines were purchased from Procell (Wuhan, China). Cell
Counting Kit-8 (CCK-8) was obtained from Sangon Biotech
(Shanghai, China). 2′,7′-Dichlorodihydrofluorescein diacetate
(DCFH-DA) was obtained from MedChemExpress (New Jersey,
United States). Calcein-AM/propidium iodide (PI) kit, Annexin
V-FITC apoptosis detection kit, Lyso-Tracker Red kit and
Hoechst 33342 staining solution were purchased from Beyotime.
Inc. (Shanghai, China).

2.2 AuNC@Fe3O4 synthesis

The AuNC@Fe3O4 was synthesized according to previous
methods (Wang et al., 2016b). AuNC was initially synthesized
and coated with poly (vinyl pyrrolidone) (PVP). Subsequently,
PVP was replaced with 2-aminoethanethiol, and AuNC was
transformed into AuNC-NH2 for interacting with carboxyl group
functionalized Fe3O4 nanoparticles. The ultra-small Fe3O4 particles
were prepared. To produce Fe3O4-COOH, ferric slats were
vigorously stirred in pre-prepared polymer poly (acrylic acid)
(PAA) solution. N-(3-Dimethylaminopropyl)-N-
ethylcarbodiimide and N-hydroxysuccinimide activated the
Fe3O4-COOH, which then reacted with AuNC-NH2 to generate
AuNC@Fe3O4. The AuNC@Fe3O4 was centrifugated, washed with
ethanol and water, and then dispersed in ddH2O with different
concentrations for further experiments.

2.3 AuNC@Fe3O4 characterization

The size of AuNC or AuNC@Fe3O4 nanoparticles was analyzed
using a transmission electron microscope (TEM). Dynamic light
scattering (DLS) was applied to detect hydrodynamic particle
diameter and intensity of AuNC@Fe3O4 nanoparticles on a
Malvern Zetasizer NANO ZS. Energy-dispersive X-ray (EDX)
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was utilized to analysis the element of AuNC@Fe3O4 nanoparticles
on a FEI TECNAI G20 high-resolution TEM.

2.4 AuNC@Fe3O4 photothermal
performance in vitro

To investigate the photothermal effect of the magneto-gold
nanoparticles, First, 200 μl of AuNC@Fe3O4 solution with
distinct concentrations (0, 50, 100, 200, 300, 400, and 500 μg/ml)
was exposed to 808 nm laser at 1.0 W for 720 s; Second, 200 μl of
AuNC@Fe3O4 solution with concentration of 50 μg/ml was exposed
to 808 nm laser at different powers (1.0, 1.2, and 1.4 W) for 720 s.
The thermal image and temperature change were recorded at
different times by an infrared (IR) thermal camera (Fotric 220).
As a control, ddH2O was irradiated under the same conditions.

To investigate the photothermal stability of the magneto-gold
nanoparticles, AuNC@Fe3O4 aqueous solution (500 μg/ml) was
irradiated under 808 nm laser at 1.0W for 420 s, then the
irradiation was turned off. After that, the temperature was further
measured for another 360 s. The experiment was then repeated four
more times. The thermal image and temperature change were recorded
at different times by the IR thermal camera (Fotric 220). As a control,
ddH2O was irradiated under the same operation.

To evaluate the photothermal conversion efficiency of AuNC@
Fe3O4, the data from the cooling periods were calculated, according
to previous report (Ren et al., 2015). Briefly, when the system
reached energy balance, the equation was:

∑
i
miCp,i

dT

dt
� QAuNC@Fe3O4 + Qs − Qloss (1)

where Cp and m were the heat capacity and mass of AuNC@Fe3O4

solution, respectively. T was the temperature of AuNC@Fe3O4

solution. QAuNC@Fe3O4 represented energy absorbed by AuNC@
Fe3O4 nanoparticles. Qs represented the energy absorbed by
ddH2O. Qloss was the heat lost to the surroundings.

The equation for QAuNC@Fe3O4 was:

QAuNC@Fe3O4 � I 1 − 10−Aλ( )η (2)
where I represented the laser power density, Aλ denoted the
absorbance of AuNC@Fe3O4 solution under 808 nm in a 96-well
plate, and η represented its photothermal conversion efficiency.

The equation for Qloss was

Qloss � hAΔT (3)
where A was the surface area of the container, h denoted the heat
transfer coefficient; ΔT represented the temperature changes,
expressed as T-Tsurr (where T and Tsurr represent the solution
and surrounding air temperature, respectively).

When heating ddH2O, the heat input and output reached energy
balance at the maximum steady-state temperature, therefore the
equation for Qs was:

Qs � Qloss � hAΔTmax ,H2O (4)
where ΔTmax ,H2O was the temperature changes of ddH2O.

When the system reached its maximum balanced temperature, the
energy input (the heat absorbed by AuNC@Fe3O4 and ddH2O) was
equal to the heat lost into the surrounding, and the equation could be:

QAuNC@Fe3O4 + Qs � Qloss � hAΔTmax ,mix (5)
where ΔTmax ,mix was the changed temperature of the AuNC@Fe3O4

solution.
According to Eqs 2, 4, 5, η was:

η � hAΔTmax ,mix − hAΔTmax ,H2O

I 1 − 10−Aλ( ) � hA ΔTmax ,mix − ΔTmax ,H2O( )
I 1 − 10−Aλ( )

(6)
To calculate the unknown hA, θ was introduced, and could be

expressed as following:

θ � ΔT
ΔTmax

(7)

Adding Eq. 7 into Eq. 1, the new equation could be:

dθ

dt
� hA

∑i miCp,i

QAuNC@Fe3O4 + Qs

hAΔTmax
− θ( ) (8)

During the cooling period, the QAuNC@Fe3O4 + Qs = 0 in Eq.
8 was:

dt � −∑i miCp,i

hA

dθ

θ
(9)

which could be changed as following:

t � −∑i miCp,i

hA
ln θ (10)

where
∑i

miCp,i

hA was calculated by time versus -ln(θ) plot. Since the mass
of AuNC@Fe3O4 (1 × 10−7 kg) was relatively small when compared to
that of ddH2O (m=2× 10−4 kg), itsm andCpwere neglected. The value
of hA was then calculated using mH2O of 2 × 10−3 kg; Cp,H2O of 4.2 ×
103 J/(Kg·°C). Furthermore, the η of AuNC@Fe3O4 was determined by
substituting the value of hA and other parameters into Eq. 6. The values
of other parameters were as follows: I = 2.3W/cm2, Aλ = 0.105,
ΔTmax ,mix = 25.3, and ΔTmax ,H2O = 0.1.

2.5 POD-like activity assay

To evaluate the catalytic properties of AuNC@Fe3O4, AuNC@
Fe3O4 (final concentration: 0, 5, 10, 20, 50, and 100 μg/ml), TMB
(final concentration: 0.4 mM), and H2O2 (final concentration:
50 μM) was added into a final volume of 500 μl of phosphate-
buffered saline (PBS) solution. The absorbance of the buffer was
measured using an ultraviolet-visible (UV-vis) spectrophotometer at
500–800 nm. The POD-like activity assay of AuNC@Fe3O4 at
varying pH levels (pH = 2, 3, 4, 5, 6, 7, 8, and 9) was performed
in the presence of H2O2 and TMB in PBS solution, and the
absorbance at 652 nm was detected by a microplate reader.

2.6 POD-like catalytic kinetic determination

When TMB was used as a substrate, the AuNC@Fe3O4 (final
concentration: 50 μg/mL), TMB (final concentration: 0.0, 0.2, 0.4,
0.6, and 0.8 mM), and H2O2 (final concentration: 50 μM) was added
into a final volume of 100 μl of PBS solution. The absorbance at
652 nm was detected by a microplate reader.
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When H2O2 was used as a substrate, the AuNC@Fe3O4 (final
concentration: 50 μg/ml), H2O2 (final concentration: 0, 10, 20,
30, 40, 50, 60, 70, and 80 μM) and TMB (final concentration:
0.4 mM) was added into a final volume of 100 μl of PBS
solution. The absorbance at 652 nm was detected by a
microplate reader.

Based on Michaelis-Menten Eq. 11 and saturation curve, the
Vmax and Michaelis-Menten constant could be calculated,

1
V
� Km

Vmax

1
s[ ] +

1
Vmax

(11)

and the V was calculated using Eq. 12:

V � A

b × Ɛ652 nm × t( ) (12)

where A was the absorbance of the reaction system at 652 nm. t =
600 s, which was the reaction time. b = 0.3125 cm, which was the
light path in the reaction solution, and Ɛ652 nm = 39,000 M−1 cm−1

(Dashtestani et al., 2019).

2.7 Cell viability assay

The HepG2 and the HUVEC cells were cultured to assess the
cytotoxicity of AuNC@Fe3O4 through CCK-8 assay. 4000 of cells
were cultured at 96-well plate well overnight at 37°C in a humidified
incubator with 5% CO2. Subsequently, 100 μl of fresh medium with
distinct concentrations of AuNC@Fe3O4 (0, 10, 20, 30, 40, and
50 μg/ml) was changed and cultured for 24 h. The CCK-8 solution
(final volume: 10 μl) was added into 100 μl of medium, and
incubated for 2 h. Then, the absorbance of medium was detected
at 450 nm.

2.8 Live/dead cell staining assay

HepG2 cells were cultured overnight in a 12-well plate with
500 μl of culture medium. The cells were then treated with PBS or
AuNC@Fe3O4 (50 μg/ml) for 12 h. Then, the cells were cultured
for an additional 12 h after either being irradiated by an 808 nm
laser for 5 min at 1.4 W or not. The culture medium was then
removed, and cells were washed once with PBS and incubated
with 500 μl stain solution for 15 min. Finally, the cells were
washed thrice with PBS and photographed by an inverted
fluorescence microscope.

2.9 Apoptosis analysis

To investigate the ability of AuNC@Fe3O4 for inducing cell
apoptosis, HepG2 cells were quantitatively detected by a flow
cytometer. The cells were initially seeded into a 6-well plate and
treated under different conditions for 24 h. They were collected with
0.25% trypsin and washed thrice with ice-cold PBS. Subsequently,
these cells were resuspended in 195 μl of binding buffer. Ten
microliters of PI and 5 μl of Annexin V-FITC were added, and
the mixture was incubated for 20 min at room temperature, and cells
were detected by flow cytometer.

2.10 Intracellular ROS detection

The intracellular POD-like catalytic ability of AuNC@Fe3O4 was
detected using DCFH-DA. Except for an additional 4 h of culture,
the method used for the laser-irradiated groups was similar to the
treatment described above. Furthermore, 1 ml of PBS with DCFH-
DA (5 μM) was added, and the mixture was incubated for another
30 min at 37°C in a humidified incubator with 5% CO2. The wells
were then washed thrice with PBS to remove the excess dye and
photographed by an inverted fluorescence microscope.

2.11 Lysosomal impairment assay

After treatment, lysosomes and cell nuclei were stained with
Lyso-Tracker Red and Hoechst 33342, respectively, according to the
manufacturer’s instructions. Subsequently, an inverted fluorescence
microscope was used to capture images of cells.

2.12 Statistical analysis

Statistical analysis was achieved by GraphPad Prism version 8
(GraphPad Software, United States). Results were represented as
mean ± standard deviation. The student t-test was used to compare
the means of multiple groups. The statistical significances were as
follows: * 0.01 < p < 0.05, ** 0.001 < p < 0.01, and ***p < 0.001.

3 Results and discussion

3.1 Synthesis and characterization of AuNC@
Fe3O4

The structure and characteristics of AuNC and AuNC@Fe3O4

were determined by TEM. The results demonstrated that the
diameter of AuNC and AuNC@Fe3O4 were 25–40 and
50–100 nm, respectively, with high uniformity and no
agglomeration (Figures 1A, B). DLS was used to confirm the size
of AuNC@Fe3O4, and the average hydrodynamic size distribution of
these nanoparticles was approximately 55 nm (Figure 1C). The
increase in the hydrodynamic size might be owing to the
attachment of Fe3O4 to the surface of the AuNC. Elemental
mapping analysis revealed the presence of the atoms Au, Fe and
O, proving that AuNC@Fe3O4 was successfully formed (Figure 1D;
Table 1). The “-CO-NH-”, that came from the reaction of Fe3O4-
COOH and AuNC-NH2 and the carbon-coated brace used during
sample preparation or analysis might have contributed to the
existence of C element that was also present (Phongtongpasuk
et al., 2016).

3.2 Photothermal performance of AuNC@
Fe3O4

The thermal camera was used to investigate the photothermal
conversion capabilities of AuNC@Fe3O4. The temperature changes
of AuNC@Fe3O4 solution with different concentrations under
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808 nm laser irradiation at 1.0 W for 360 s were recorded. As
depicted in Figure 2A, the temperature of the solution increased
in a concentration- and time-dependent pattern. For example, the
temperature of different concentrations of AuNC@Fe3O4 solution
reached steady statue at 8 min. The temperature of AuNC@Fe3O4

solution (500 μg/ml) was changed significantly from 25.9°C to
52.3°C compared with the neglected increase in that of ddH2O
(from 26.0°C to 26.5°C), indicating the good photothermal response
of AuNC@Fe3O4. For further investigation, the AuNC@Fe3O4

solution (50 μg/ml) was irradiation at different powers (1.0, 1.2,
and 1.4 W). The laser power was increased from 1.0 to 1.4 W, which
resulted in a significant increase in the temperature of the AuNC@
Fe3O4 solution. A temperature of 45.3°C was achieved after 10 min
of 808 nm laser irradiation at 1.4 W (Figure 2B). PTT, a promising
cancer treatment strategy, converts light energy into heat to generate
an area of hyperthermia, where tissues can be exposed to high
temperatures (from 42°C to 45°C), which can damage or kill tumor
cells (Tchouagué et al., 2019; Qu et al., 2022). The results of Figures
2A, B suggested a potential application of AuNC@Fe3O4 in anti-
tumor.

Additionally, five cycles of the “On and Off”model were used to
measure the temperature curve of the AuNC@Fe3O4 solution to
assess its photothermal stability. The AuNC@Fe3O4 showed
excellent photothermal stability since the temperature was raised
to 52.9 °C and there was no reduction in the temperature rise
following laser irradiation during the five cycles (Figure 2D).

Moreover, the average of the data from the five cooling periods
was used to get the photothermal conversion efficiency (η) of
AuNC@Fe3O4. The plot of the time value and −ln (θ) was
displayed in Figure 2E, and its slope was 99.526. Using Eqs 6, 10,
the η of AuNC@Fe3O4 was calculated to be 39.58%, which was
similar with or higher than the PPT reagents previously reported,
such as, EA-Fe@BSA NPs (31.2%) (Tian et al., 2020), Fe3O4@
Carbon@Platinum-Chlorin e6 (28.28%) (Xu et al., 2022b), Au
nanorods (22%) (Zeng et al., 2013), Au nanoshells (13%) (Hessel
et al., 2011), PANi@Au (40.4%) and Au nanoparticles (21.7%)
(Zhang et al., 2021a).

Collectively, these findings suggested that AuNC@Fe3O4

exhibited good photothermal conversion and photothermal
stability, which implied a promising application in PTT for tumors.

3.3 POD-like activity of AuNC@Fe3O4

It was reported that Au and Fe3O4 nanoparticles demonstrated
POD-like enzyme activity (Zandieh and Liu, 2021), therefore it was
necessary to investigate whether the AuNC@Fe3O4 possessed
similar characteristics. The peroxidase mimicking activity of
AuNC@Fe3O4 was validated by TMB. TMB could be oxidized to
blue oxTMB by •OH and detected at 652 nm, using UV-vis
spectrophotometer (Zhu et al., 2022). As presented in Figure 3A,

FIGURE 1
Characterization of AuNC@Fe3O4. (A) Transmission electron microscope (TEM) images of AuNC. Scale bar: 100 nm. (B) TEM images of AuNC@
Fe3O4. Scale bar: 50 nm. (C) Dynamic light scattering (DLS) result of AuNC@Fe3O4. (D) Energy-dispersive X-ray (EDX) result of AuNC@Fe3O4.

TABLE 1 The statistics of elements analysis for AuNC@Fe3O4 by energy-
dispersive X-ray (EDX).

Compound Element Weight (%)

AuNC@Fe3O4 Au 23.1

Fe 29.4

O 42.4

C 5.1
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the groups with different concentrations of AuNC@Fe3O4 had
varying absorbance intensities at 652 nm. The group of AuNC@
Fe3O4 with 100 μg/ml showed the strongest signal at 652 nm,

followed by the group with 50 μg/ml. The intensity of absorbance
tested with H2O displayed no peak at 652 nm. These findings, which
indicated that the AuNC@Fe3O4 possessed POD-like enzyme

FIGURE 2
Photothermal performance analysis of AuNC@Fe3O4. (A) Temperature change curves of water and AuNC@Fe3O4 aqueous solution after different
treatments (B) Temperature change curves of AuNC@Fe3O4 after different treatments (C) Photostability of AuNC@Fe3O4 solution under irradiation for
five cycles. (D) Time versus -ln(θ) plot of the AuNC@Fe3O4 solution.

FIGURE 3
POD-like activity assay of AuNC@Fe3O4. (A) Ultraviolet-visible (UV-vis) absorption spectra of the reaction system with different concentrations. (B)
Michaelis-Menten curve of AuNC@Fe3O4 for H2O2. (C) Lineweaver-Burk plotting of AuNC@Fe3O4 for H2O2. (D)Michaelis-Menten curve of AuNC@Fe3O4

for TMB. (E) Lineweaver-Burk plotting of AuNC@Fe3O4 for TMB. (F) The absorbance of the reaction system at 652 nm under different pH values.
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activity, were further verified by the inset digital photos (Figure 3A).
To further confirm the POD-like enzyme specificity of AuNC@
Fe3O4, the UV-vis absorption spectra of the reaction system with
varying conditions was collected. It was observed from
Supplementary Figure S1 that absorbance peak of the AuNC@
Fe3O4+TMB or AuNC@Fe3O4+H2O2 group was negligible. In the
absence of AuNC@Fe3O4, the TMB + H2O2, TMB or H2O2 group
showed no significant absorbance peak at 652 nm, which was
consistent with the AuNC@Fe3O4 only group. The results
suggested that, except AuNC@Fe3O4, other components in the
reaction system could hardly catalyzed the conversion of H2O2 to
•OH and oxidized TMB, which indicated AuNC@Fe3O4 exhibited a
specific activity of POD-like enzyme.

Kinetic parameters were analyzed to quantitate the POD-like
activity of AuNC@Fe3O4 using the initial rate method (Gao et al.,
2017). First, the absorbance of the system was measured, while
varying the concentrations of H2O2 concentrations from 0 to 80 mM
and maintaining a TMB concentration of 0.4 mM (Supplementary
Figure S2). Second, the velocity of reaction was calculated according
Eq. 12 and the plot was consistent with traditional Michaelis-
Menten curve (Figure 3B), which demonstrates that the catalytic
reaction rate increased with the growth of substrate concentration
and achieved steady state at high concentrations (Huang et al.,
2022). Third, after Lineweaver-Burk fitting, the enzyme kinetic
parameters, such as Michaelis-Menten constants (Km) was
calculated to be 47.65 mM and the maximum reaction velocity
(Vmax) was 3.18 × 10−7 M s−1 (Figure 3C). Forth, the absorbance
of the solution was measured at 652 nm while varying TMB
concentrations and maintaining H2O2 concentration as a
constant (Supplementary Figure S3). Last, the Km and Vmax were
0.25 mM and 9.03 × 10−8 M s−1 respectively, and the results were
presented in Figures 3D, E.

When the H2O2 was used as substrate, the velocity of AuNC@
Fe3O4 was faster than that of Fe3O4 (Vallabani et al., 2017), and Km

value that was lower than that of Fe3O4 (Vallabani et al., 2017).
Similarly, when the TMB was used as substrate, AuNC@Fe3O4 had a
velocity that was faster than that of Au NRT, Au NC, Au NS, and
horseradish peroxidase (Ghosh et al., 2022), and its value of Km was
also lower than those of them. In the catalytic reaction system, the
Km represents the affinity between the enzyme and substrates, and
the lower the Km, the higher enzyme affinity (Jiang et al., 2018).
Therefore, the results suggested that the catalytic ability and the
affinity between AuNC@Fe3O4 nanozyme and substrates (such as
TMB and H2O2) was stronger than that of Fe3O4 and Au
nanoparticles. The following factors may contribute to the
significant increase in POD-like activity of AuNC@Fe3O4

nanoparticles: the electronic structure of the interfaces between
the Fe3O4 and Au, the synergistic effect, and polarization effects
from Au to Fe3O4 (Lee et al., 2010; Sun et al., 2013; Wang et al.,
2016a).

Considering the complex tumor microenvironment, such as
hypoxia and weak acidity (Li et al., 2020; Zhao et al., 2021), it
was unclear whether AuNC@Fe3O4 exhibits POD-like enzyme
activity even at low pH. At low pH values ranging from 2 to 6,
the AuNC@Fe3O4 exhibited higher POD-like enzyme activity, and
the optional pH was 4. When the pH was higher than 7, the POD-
like enzyme activity was reduced dramatically (Figure 3F). The
results hinted that AuNC@Fe3O4 might have significantly varied

POD-like enzyme activity between distinct parts of normal (pH =
7.4) and cancer tissues (pH = 6.5), especially for lysosomes (pH =
4.5–5.5) and endosomes (pH = 5.5–6.8) (Kuppusamy et al., 2002;
Wojtkowiak et al., 2011).

Overall, these findings provided evidence for the high POD-like
catalytic activity of AuNC@Fe3O4 nanozyme and implied potential
catalytic ability in tumor.

3.4 In vitro anti-tumor effect of AuNC@
Fe3O4

It is important to examine the biocompatibility of AuNC@Fe3O4

before performing further clinical applications. Therefore,
HepG2 and HUVEC cells were incubated with AuNC@Fe3O4 at
varying concentrations for 24 h to estimate the cytotoxicity using
CCK-8 assay. Low concentrations of AuNC@Fe3O4 did not affect
the survival rate of HepG2 cells; however, at 40 and 50 μg/ml, the
viability of cells decreased to 77% and 60%, respectively (Figure 4A).
In contrast, the viability of HUVEC cells was not drastically affected
by AuNC@Fe3O4 after 24 h incubation at the varying treatments
(Figure 4B). The findings indicated that AuNC@Fe3O4 was not toxic
to normal cells at the concentration ranging from 0 μg/ml to 50 μg/
ml and demonstrated good biocompatibility. The reason why
AuNC@Fe3O4 showed more sensitive to HepG2 could be
attributed to the fact that the pH of the tumor was lower than
that of normal tissues (Kuppusamy et al., 2002; Wojtkowiak et al.,
2011) and that the AuNC@Fe3O4 had higher POD-like enzyme
activity in a lower pH reaction system, which meant it produced
more •OH, which could be lethal to cells (Cui et al., 2018; Malfanti
et al., 2022).

To explore the anti-tumor effect of AuNC@Fe3O4, the live/dead
cell staining assay was utilized. There were nearly no dead cells in the
PBS and PBS + NIR (near-infrared) groups; However, when the cells
were treated with AuNC@Fe3O4 or AuNC@Fe3O4+NIR, the
number of dead cells increased significantly, with the last group
having the most cell death (Figure 4C). To further verify this result,
the flow apoptosis assays of HepG2 cells with different conditions
was conducted. As depicted in Figures 4D, E; Supplementary Table
S1, the results indicated that approximately 51% apoptotic cells
(Q2+Q3) were observed in the AuNC@Fe3O4+NIR group, which
was greater than other groups.

The results revealed that AuNC@Fe3O4 displayed good
biocompatibility, and the laser irradiation augmented the anti-
tumor ability of AuNC@Fe3O4.

3.5 ROS and lysosomal impairment induced
by AuNC@Fe3O4

To confirm the synergistic effect of PTT and POD-like enzyme
catalytic activity of AuNC@Fe3O4, the production of the ROS in
HepG2 cells was validated using the DCFH-DA probe. As reported,
DCFH-DA crossed the cell membrane and was subsequently
oxidized to DCF with green fluorescence (Afri et al., 2004). It
was evident from Figure 5A that the HepG2 cells incubated with
AuNC@Fe3O4 exhibited a higher green fluorescence signal than PBS
and PBS + NIR, indicating the ability of AuNC@Fe3O4 to effectively
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FIGURE 4
Evaluation for anti-tumor effect of AuNC@Fe3O4 in vitro. (A) Cell viability of HepG2 cells treated with AuNC@Fe3O4 for 24 h. (B) Cell viability of
human umbilical vein endothelial cells (HUVEC) cells treated with AuNC@Fe3O4 for 24 h. (C) Calcein-Am/propidium iodide (PI) staining of HepG2 cells
under different conditions. Scale bar: 100 μm. (D) Apoptosis analysis of HepG2 cells with different treatments. (E) The histogram results of apoptotic
HepG2 cells derived from (D). * 0.01 < p < 0.05, ** 0.001 < p < 0.01, and ***p < 0.001.

FIGURE 5
Analysis for synergistic effect of photothermal therapy (PTT) and catalytic activity of AuNC@Fe3O4. (A) Reactive oxygen species (ROS) detection of
HepG2 cells with varying treatments. (B) Lysosomal impairment detection of HepG2 cells with varying treatments. Scale bar: 50 μm.
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catalyze the conversion of intracellular H2O2 into •OH in cancer
cells. Compared with the AuNC@Fe3O4 group, the signal of the
AuNC@Fe3O4+NIR group was stronger. The similar result was
collected by the detection of the absorbance intensities at 652 nm
of the reaction system with or without NIR irradiation, using UV-vis
spectrophotometer. We found the signal of reaction system with
NIR irradiation was higher than that of group without irradiation
(Supplementary Figure S4). The results confirmed that
photothermal effect enhanced the POD-like enzyme catalytic
activity of AuNC@Fe3O4.

The phenomenon could be attributed to the localized surface
plasmon resonance (LSPR), which was the collective oscillation of
surface free electrons in metal nanoparticles under light irradiation,
leading to local heating (also called photothermal effect) and hot
carriers (such as hot electrons and hot holes). One hand, energy of
hot electrons may transfer to local heating by electron-phonon
interactions, causing a rise in temperature (Brongersma et al.,
2015). Similar with natural enzymes, the catalytic ability of
nanozymes could be enhanced by elevated temperature (Wang
et al., 2021; Zhu et al., 2022). Another hand, hot electrons could
be transferred from AuNPs to empty orbits of H2O2, and activated
the H2O2 to generate •OH under NIR light irradiation (Wang et al.,
2017; Xu et al., 2022a).

It was reported that increased ROS could disrupt normal
structure of the lysosomes (Shyam et al., 2021); however, whether
the AuNC@Fe3O4 could induce lysosomal impairment remained
unknown. The fluorescence images (Figure 5B) demonstrate that the
PBS alone and PBS + NIR groups had negligible effects on the
lysosomal impairment and that there were more HepG2 cells with
lysosomal impairment following incubation with AuNC@Fe3O4. As
expected, the lysosomal signal was the weakest in the AuNC@Fe3O4

under laser irradiation group. The results confirmed the synergistic
effect of PTT and POD-like enzyme catalytic activity of AuNC@
Fe3O4 on lysosomal impairment. Additionally, lysosomal
impairment may contribute to an increase in lysosomal
membrane permeability, a decrease in lysosomal quantity, a
disruption in lysosomal enzyme activities, an increase in ROS
levels, and most importantly, the induction of cell apoptosis
(Abulikemu et al., 2022).

This at least partly, explained why AuNC@Fe3O4 with or
without laser irradiation could cause cell death or apoptosis.

4 Conclusion

In summary, this study aimed to synthesize magneto-gold
nanozyme AuNC@Fe3O4 and evaluate its anti-cancer effects for
HCC in vitro. The AuNC@Fe3O4 showed the typical small size of
about 55 nm. Additionally, it demonstrated a high photothermal
conversion efficiency and POD-like activity. The CCK-8 results
demonstrated that AuNC@Fe3O4 had good biocompatibility and
HCC cell-killing ability. Moreover, AuNC@Fe3O4 could
synergistically stimulate cell death or apoptosis. Finally, it was
observed that magneto-gold nanocomposites could facilitate
808 nm laser irradiation to increase their catalytic ability to
produce ROS. This might promote lysosomal impairment,
causing cell death or apoptosis. These results suggested that the

AuNC@Fe3O4 may offer a promising anti-cancer strategy for HCC
via the synergistic effect of PTT and nano-catalytic therapy. Further
research is required to investigate the therapeutic efficacy of AuNC@
Fe3O4 for HCC in vivo.
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