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Accurate blood glucose determination is essential to the clinical diagnosis and
management of diabetes. This work establishes an inner filter effect (IFE) strategy
between upconversion nanoparticles (UCNPs) and quinone-imine complex for
glucose monitoring in human serum simply and efficiently. In this system, the
enzyme glucose oxidase (GOx) catalyzes the reaction of glucose into hydrogen
peroxide (H2O2) and gluconic acid when compulsion by oxygen. In the presence
of horseradish peroxidase (HRP), the produced H2O2 can catalytically oxidize
phenol and 4-amino antipyrine (4-AAP) to generate quinone-imine products. The
purple-colored quinone-imine complex effectively absorbed the fluorescence of
NaYF4:Yb

3+, Er3+ UCNPs, leading to the strong fluorescence quenching of UCNPs
through IFE. Thus, a new approach was established for glucose monitoring by
determining the fluorescence intensity. Under the optimal condition, this
approach shows better linearity to glucose from 2–240 μmol/L with a low
detection limit at 1.0 μmol/L. Owing to the excellent fluorescence property
and background-free interference of the UCNPs, the biosensor was applied for
glucose measurements in human serum and got a satisfactory result.
Furthermore, this sensitive and selective biosensor revealed great potential for
the quantitative analysis of blood glucose or different kinds of H2O2-involved
biomolecules for the application of clinical diagnosis.
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1 Introduction

As one of the important biomolecules, glucose is a major source of energy and a
significant metabolic intermediate. A healthy person needs to regulate glucose levels in body
fluids (Norhammar et al., 2002). When disorder of the carbohydrate metabolism happens,
some diseases such as diabetes mellitus and hypoglycemia can occur, which may further
increase the risk of heart diseases, kidney diseases, blindness, etc. (Alberti and Zimmet, 2004;
Alfadhli, 2018) Currently, the accurate concentrations of blood glucose have been primarily
used by clinicians as one of the indicators to make the diagnosis of diabetes and
hypoglycemia. In particular, as diabetes is a worldwide public health problem, to the
ability to examine the blood glucose level is of great importance. Various approaches to
blood glucose testing have been reported including electrochemical methods (Comba et al.,
2018; Gopal et al., 2022; Thapa and Heo, 2023; Wang et al., 2023), optical methods (Ramon-
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Marquez et al., 2017; Kumar and Chauhan, 2022; Zhenglan et al.,
2022), and surface plasmon resonance (SPR) spectroscopy (Man
et al., 2022; Zhang et al., 2022; Zheng et al., 2022). Although widely
applied in commercial glucose tests, electrochemical sensors have
easily interfered with biological molecules such as ascorbate (Mani
et al., 2015). The potential electrochemical active interferences may
result in erroneous sensor responses. Meanwhile, the procedure of
SPR is time-consuming because of the tedious probe treatment.
Moreover, the experimental cost of SPR is expensive (Zhang et al.,
2022). Compared to other techniques, optical methods—particularly
fluorescence techniques—have absorbed a lot of interest because of
their cost-efficient sensing, the simplicity of the instruments, high
sensitivity, and selectivity (Zhang et al., 2023a; Zhu et al., 2023).
Most fluorescent sensors for glucose measuring employ
conventional organic dyes as well as some organic polymers, and
luminescent nanomaterials such as semiconductor quantum dots.
However, most of the fluorophores or organic molecules used in
previous work have broad emission widths and poor photostability.
Their fluorescent signals are easily affected by the decay of
chromophores and the working environment (Dong et al., 2013;
Khan and Pickup, 2013; Su et al., 2015). To circumvent these issues,
kinds of luminescent nanomaterials such as organic-dye doped
nanoparticles (Bagheri et al., 2014), semiconductor quantum dots
(Chen et al., 2014; Zhai et al., 2016; Samuei et al., 2017), fluorescent
carbon nanodots (Ma et al., 2017; Zou et al., 2018), and metal
nanoclusters (Wang et al., 2014; Cheng et al., 2018) have been
devised as the analytical probe because of their preferable
photoluminescence properties. Unfortunately, these fluorescence
nanostructures have inherent disadvantages, namely shorter
wavelength excitation, auto-fluorescence from the background,
and possible damage to biological samples (Hardman, 2006;
Roberts et al., 2013). Therefore, it is of utmost importance to use
excellent materials that can make up for these deficiencies.

As a better choice, upconversion nanoparticles (UCNPs) can
transform low-energy near-infrared (NIR) emissions to high-energy
visible emissions with large stokes shifts (Dong et al., 2012a). In
comparison with visible light excitation, the specific NIR excitation
of UCNPs allows weaker autofluorescence interference and lower
phototoxicity (Wang et al., 2013; Yang et al., 2013). Apart from the
superior photon upconversion properties, rare-earth doped UCNPs
display stability against photobleaching, sharp emission bandwidth,
and a long lifetime, which render them specifically useful for the
construction of fluorescence biosensors (Wang et al., 2011; Zhang
et al., 2015; Pu et al., 2018). The mechanism of the inner filter effect
(IFE) is an effective strategy by transforming the absorption
response to a fluorescence signal, which opens up new frontiers
in converting conventional colorimetric protocol into fluorescent
sensing (Zhang et al., 2009; Kong et al., 2016; Chen et al., 2017; Sun
et al., 2018). For example, Ruiting Zhang uses carbon quantum dots
nano-fluorescence probe for rapid and sensitive detection of methyl
parathion in rice based on the inner filter effect (Zhang et al., 2023b).
It is reported that the energy conversion model of IFE considerably
enhanced the detecting sensitivity and reduced the detection limit of
the analyte relative to the absorbance alone (Chen et al., 2018). It
supplies some feasibility for developing a typical IFE-based
fluorescence biosensor with good repeatability and less disturbance.

Herein, we constructed a facile, label-free sensing platform for
hydrogen peroxide (H2O2) and glucose tests basing the quench of
NaYF4:Yb

3+, Er3+ UCNPs fluorescence by IFE. This implementation
plan is displayed in Scheme 1. Firstly, the enzyme glucose oxidase
(GOx) catalyst the conversion of glucose and oxygen into gluconic
acid and H2O2. The produced H2O2 then reacts with 4-amino
antipyrine (4-AAP) and phenol to generate a quinone-imine
complex when horseradish peroxidase (HRP) exists.
Consequently, the purple-colored quinone-imine product
effectively absorbs the fluorescence of UCNPs, which causes a

SCHEME 1
Schematic illustration of the glucose detection mechanism using the UCNPs.
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distinct quench of the UCNPs’ fluorescence. The quenching
efficiency is proportionate to the increased amount of glucose.
Thus, this biosensor ensures the convenient measurement of
glucose.

2 Experimental

2.1 Materials and apparatus

Erbium oxide (Er2O3, 99.99%), ytterbium oxide (Yb2O3,
99.99%), and yttrium oxide (Y2O3, 99.99%) bought in Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). Their nitrate solution
was achieved dissolution in hot nitric acid and then dissolved in
deionized water to respectively obtain 0.1 M, 0.1 M, and 0.1 M
eventual concentrations. Sodium citrate, cetyltrimethylammonium
bromide (CTAB), sodium fluoride (NaF), glucose, HRP, 4-AAP, and
the rest sugars purchased in Sigma (Shanghai, China). GOx was
acquired from Sigma-Aldrich (Shanghai, China). Phenol, H2O2, and
nitric acid (HNO3) were purchased in Alfa Aesar (Shanghai, China).
Other reagents mentioned in the article were from Aladdin
(Shanghai, China). The detection buffer was pH 7.0 PBS of

100 mM. All chemicals were analytically pure and used Millipore
Milli-Q ultrapure water during all experiments. Human serum
samples were provided by the Hospital of Hunan Normal
University, China.

The UCNPs’ fluorescence signal has recorded by an F-4500
fluorescence spectrophotometer (Hitachi Ltd., Japan), which used
the external 980 nm laser as excitation light. Transmission electron
microscopy (TEM, JEOL-1230, Japan) was applied for the size and
character morphology describing of UCNPs. The UV-vis
absorption spectra were collected on a UV-2450
spectrophotometer (Shimadzu Co., Japan). The Fourier
transform infrared (FT-IR) spectra were conducted on a Nicolet
Nexus 670 FT-IR spectrometer (Nicolet Instrument Co., USA).
The crystalline phases of UCNPs were measured by a Rigaku 2,500
(Japan) X-ray diffractometer (XRD).

2.2 Synthesis of UCNPs

The NaYF4:Yb
3+, Er3+ UCNPs were prepared based on a

solvothermal synthesis technique (Chen et al., 2012; Ye et al.,
2014). In short, the mixing of 0.2 mL of 0.1 M Er(NO3)3, 1.0 mL

FIGURE 1
(A) TEM images, (B) XRD pattern, and (C) FT-IR spectra of NaYF4:Yb

3+, Er3+ UCNPs. (D) The normalized fluorescence spectrum of the UCNPs solution
under 980 nm laser excitation. [UCNPs]: 0.1 mg/mL.
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of 0.1 M Yb(NO3)3, and 8.8 mL of 0.1 M Y(NO3)3 was stirred
together with 7.5 mL of 0.1 M sodium citrate to prepare a white
metal-citrate compound. After that, add 25 mL ethanol and 0.2 g
CTAB to the mixture, keeping 15 min stirring. Then dropwise add
12 mL of 1 M NaF to the sample, while continuing mixing with
1 hour of vigorous stirring. Subsequently, add 2 mL HNO3 into the
solution and transferred the whole mixture into a Teflon-lined
autoclave, keeping heating at 180°C for 4 h. And then, remove
the final sample solution, cool down, and centrifugate. Finally,
the obtained precipitates were sequentially cleaned with deionized
water and ethanol 3 times. Vacuum-dried before use.

During the experiment, the NaYF4:Yb
3+, Er3+ UCNPs were

uniformly dispersed in PBS buffer solution to obtain a 0.1 mg/
mL solution, which was then used in the fluorescence analysis.

2.3 Detection of H2O2

Firstly, different concentrations of H2O2 were mixed with the
complex containing 50 μL UCNPs (0.1 mg/mL), 5 μL HRP (25 μg/
mL), 15 μL 4-APP (25 mM), and 40 μL phenol (25 mM). Then dilute
it well with a total of 500 μL after a 4 min reaction at room
temperature (RT). Followed by detecting the fluorescence
emission spectra of the resultant products. All experiments were
measured at RT (25 ± 1.0°C).

2.4 Glucose determination

Initially, various amounts of glucose were added into a 20 μL of
pH7.0 PBS buffer of 100 mM containing 10 μL GOx (1 mg/mL).
After interaction at 37°C for 40 min, the solution was mixed with
15 μL HRP (25 μg/mL), 15 μL 4-APP (25 mM), 40 μL phenol
(25 mM), and 50 μL UCNPs (0.1 mg/mL) for 4 min. And then,
diluted the mixture to a total of 500 μL, and recorded the
fluorescence emission spectra of the final product.

2.5 Glucose determination in human serum
samples

Before the measurement, the original human serum samples
have diluted with pH7.4 PBS buffer of 100 mM to 100 times.
Briefly, the definite glucose levels in human serum samples were
tested by the proposed sensor first. After that spiking accurate
amount of glucose to the serum samples for further analysis.

3 Results and discussion

3.1 Characterization of the UCNPs

Firstly, TEM, XRD, FT-IR, and fluorescence spectrums
were used to represent the morphology character and the
optical properties of UCNPs (Figure 1). As seen in
Figure 1A, the TEM images of the UCNPs exhibit good
dispersivity in water with about 34 nm mean diameter.
Figure 1B shows the classic XRD patterns of the UCNPs.
The prepared UCNPs’ whole diffraction peaks are consistent
with the normative cubic UCNPs crystal (JCPDS no.77-
2042), demonstrating the successful obtain of the
synthesized NaYF4:Yb

3+, Er3+ nanocrystals. Moreover,
Figure 1C of the FT-IR spectra presented the UCNPs’
functional groups on the surface. The 2,915 cm-1 and
2,847 cm-1 absorptions belong to the asymmetric and
symmetric stretching vibration of C-H (-CH3 and -CH2-),
and the 1,494 cm-1 peak ascribed to the typical amine groups
(-NH2) peak, exhibiting that the UCNPs surface has
functionalized with CTAB. Owing to the surface of
nanoparticles being covered with CTAB, the

FIGURE 2
Spectral overlap: emission spectrum of NaYF4:Yb

3+, Er3+ UCNPs
(curve a) and absorption spectrum of the quinone-imine system
(curve b).

FIGURE 3
The fluorescence spectra of NaYF4:Yb

3+, Er3+ UCNPs (A) in the
absence and presence of GOx+Glu+HRP+4-AAP (B),
GOx+Glu+HRP+phenol (C), GOx+Glu+phenol+4-AAP (D),
GOx+HRP+phenol+4-AAP (E), Glu+HRP+phenol+4-AAP (F) and
GOx+Glu+HRP+phenol+4-AAP (G), respectively. [UCNPs]: 0.1 mg/
mL, [GOx]: 20 μg/mL, [Glu]: 240 μmol/L, [HRP]: 0.75 μg/mL, [4-AAP]:
0.75 mmol/L, [phenol]: 2.0 mmol/L.
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nanomaterials are stable and have favorable dispersibility in
an aqueous solution. For further study, it found that the
UCNPs fluorescence signal essentially stay the same within
60 min (Supplementary Figure S1A) and was not influenced

by pH (Supplementary Figure S1B). When excited by 980 nm
diode laser, the fluorescent spectra of NaYF4:Yb

3+, Er3+

UCNPs show a strong characteristic green emission band
at 552 nm and a red emission band at 665 nm, belonging to

FIGURE 4
Effects of 4-AAP concentration (A), GOx concentration (B), HRP concentration (C), pH (D), and incubation time (E) on the fluorescence responses of
the sensor for glucose detection. [UCNPs]: 0.1 mg/mL, [GOx]: 20 μg/mL, [Glu]: 240 μmol/L, [HRP]: 0.75 μg/mL, [4-AAP]: 0.75 mmol/L, [phenol]:
2.0 mmol/L.

FIGURE 5
(A)The normalized fluorescence emission spectra of the UCNPs in the presence of different concentrations of H2O2 (from 0 to 220: 0, 1, 2, 4, 8, 12,
16, 20, 30, 40, 50, 60, 100, 140, 180, and 220 μmol/L). (B) Relationship between the fluorescence quenching efficiency and the concentration of H2O2.
[UCNPs]: 0.1 mg/mL, [HRP]: 0.75 μg/mL, [4-AAP]: 0.75 mmol/L, [phenol]: 2.0 mmol/L.
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transitions from the 4S3/2 and
4F9/2 excited states to the 4I15/2

ground state of the Er3+ ions, respectively (Figure 1D) (Yin
et al., 2014).

3.2 Exploration of the fluorescence
quenching principle

The fluorescence quenching principle of UCNPs may relate to
IFE or fluorescence resonance energy transfer (FRET) (Chen et al.,
2017). UV-vis absorption spectroscopy and fluorescence emission
spectra were used for further investigation. Supplementary Figure S2

illustrates that whether UCNPs exist, the absorption bands’ intensity
and position of quinone-imine products do not change (curve f and
curve g). The results stated that there is no complex forming and
FRET between UCNPs and quinone-imine is impossible. According
to the report, the fluorescence intensity of fluorophores can be
effectively adjusted by absorbers by utilizing IFE only when there has
considerable overlap between the absorption band of the absorber
and the excitation and/or emission bands of the fluorophores (Dong
et al., 2012b; Zheng et al., 2013). Figure 2 shows that the typical
fluorescence emission of UCNPs appeared at 552 nm (curve a), and
the maximum absorption band of quinone-imine was located at
502 nm (curve b). The fluorescence spectra of UCNPs significantly
overlap with the absorption spectra of quinone-imine in
500–650 nm, which ensures that an effective IFE could happen
between them. Judging from the above analysis, the fluorescence
decrease of UCNPs by quinone-imine should be attributed to IFE.

3.3 Feasibility study of the analysis

The strategy of glucose detection by UCNPs is based on GOx
and HRP-catalyzed reactions. First of all, The GOx catalyzes glucose
to create H2O2 and gluconic acid while oxygen exists. In the presence
of HRP, the generated H2O2 can catalytically oxidize 4-AAP and
phenol to form quinone-imine products. The purple-colored
quinone-imine significantly absorbs the fluorescence of
nanoparticles, and the signal of UCNPs fluorescence efficiently
decreased. It can see in Figure 3 that the representative
fluorescence peak of UCNPs is centered at 552 nm and 665 nm
(curve a). When UCNPs were mixed with the integrated GOx-
glucose-HRP-phenol-4-AAP system, the fluorescent signal of
UCNPs at 552 nm was visibly quenched, and the emission peak
at 665 nm was kept unchanged (curve g). To study the affection of
related factors, it tests the UCNPs’ fluorescence spectra while
glucose, GOx, HRP, 4-AAP, and phenol exists, respectively. The
emission signal of GOx+Glu+HRP+4-AAP (b),

FIGURE 6
(A)The normalized fluorescence emission spectra of the UCNPs in the presence of different concentrations of glucose (from 0 to 240: 0, 2, 6, 16, 20,
30, 40, 60, 80, 100, 120, 140, 160, 180, 200, and 240 μmol/L). (B) Relationship between the fluorescence quenching efficiency and the concentration of
glucose. [UCNPs]: 0.1 mg/mL, [GOx]: 20 μg/mL, [HRP]: 0.75 μg/mL, [4-AAP]: 0.75 mmol/L, [phenol]: 2.0 mmol/L.

FIGURE 7
The upconversion fluorescence response in the presence of
different metal ions, some amino acids, small biological molecules
(2.4 mmol/L each), and saccharides (0.24 mmol/L each). Error bars
represent the standard deviations of three repetitive
experiments.
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GOx+Glu+HRP+phenol (c), GOx+Glu+phenol+4-AAP (d),
GOx+HRP+phenol+4-AAP (e) and Glu+HRP+phenol+4-AAP (f)
has no significant change with UCNPs. Therefore, the results
exhibited that the sensing of glucose is feasible.

3.4 Optimization of the analyzed parameters

The detection parameters such as the concentration of 4-AAP,
Gox, and HRP, media pH, and incubation time were evaluated to
ensure perfect sensitivity. For selecting the most appropriate
experimental conditions, the quenching efficiency of the
fluorescence signal is employed as a standard in this work. The
quenching efficiency of the fluorescence signal is defined as (F-F0)/
F, while F and F0 refer to the 552 nm fluorescence intensity respectively
in the absence and presence of glucose. The concentration of 4-AAP
was optimized initially (Figure 4A). As shown that the fluorescence
quenching efficiency appeared maximal when 0.75 mM 4-AAP was
added to the detection solution. Thus, 0.75 mM of 4-AAP was used for
glucose assay. To avoid the waste of enzymes, we also investigated the
concentration of GOx and HRP. In Figure 4B, the fluorescence
quenching efficiency rapidly increased with the amounts of GOx
and stabilized when kept at 20 ug/mL. So, we select 20 ug/mL of
GOx for further experiment. Meanwhile, increasing fluorescence
quenching efficiency was observed with the gradual addition of
HRP and stabilized at 0.75 ug/mL (Figure 4C). Hence, 0.75 ug/mL
of HRP was chosen as the feasible concentration used throughout this
study. Although pH value does not influence the fluorescent intensity of
UCNPs, the activities of GOx and HRP are highly susceptible to pH.
Therefore, there is essential to detect the reaction pH for the best
enzyme activity. Figure 4D displayed the pH affection from 4.0 to
10.0 on the fluorescence quenching efficiency. In Figure 4D, when the
pH value reaches 8.0–10.0, it is a strong alkaline condition, while both
GOx and HRP will gradually be inactivated under strongly alkaline
conditions. The fluorescence quenching increased to the maximum in
pH 7.0 PBS solution (100 mM), confirming that the most suitable
pH was around 7.0. In addition, the incubation time can also affect the
sensor signal. The UCNPs’ fluorescence quenching gradually increased
with the incubation time and was kept balanced at 40 min (Figure 4E).
Thus, the best incubation time was 40 min to obtain a suitable signal.

3.5 Quantitative analysis of H2O2

Based on the most suitable detection conditions, the possibility of
quantitative monitoring of H2O2 was investigated. Figure 5A displays
that the standard fluorescent signal of UCNPs gradually decreased
with H2O2 ranging from 1–220 μM. Taking the concentration of

H2O2 as the X-axis, and the fluorescence quenching efficiency as the
Y-axis, draw the standard curve in Figure 5B. The corresponding
equation of linear regression for the amount of 1–60 μM was (F-F0)/
F = 0.0071C + 0.021 (R2 = 0.991), and (F-F0)/F = 0.0017C + 0.356
(R2 = 0.993) in the range of 60–220 μM. The detection limit of
0.15 μM (S/N = 3) was achieved, demonstrating that the evolution
of fluorescence change is optimal for H2O2 analysis, as shown in
Supplementary Figure S1 and Supplementary Figure S2.

3.6 Quantitative analysis of glucose

Under optimum parameters, the analytical performance for glucose
detection was measured. Figure 6A shows that the normalized
fluorescence peak at 552 nm of the UCNPs quenched gradually with
the addition of glucose. Good linearity has been achieved by plotting
(F-F0)/F versus the amount of glucose ranging from 2–120 μmol/L and
120–240 μmol/L with the equations below: (F-F0)/F = 0.0043C +
0.003 and (F-F0)/F = 0.0016C + 0.321, and their correlation coefficient
were 0.997 and 0.987, respectively. The detection limit was 1.0 μM (S/N =
3). More importantly, this sensor exhibited a lower detection limit than
some reported fluorescence methods for glucose (Supplementary Table
S1) (Lu et al., 2021; Fu et al., 2022; Gao et al., 2023; Zha et al., 2023). Such a
low limit of detection stated that the proposed sensing strategy performed
well with low background signal by NIR excitation.

3.7 Selectivity of the proposed biosensor

The investigation of selectivity is of great importance for this
sensing platform. Therefore, the effects of some potentially ordinary
interfering substances including mental ions (K+, Na+, and Zn2+), some
amino acids (lysine, tryptophan, threonine, glutamate, glutamine,
phenylalanine, serine, and histidine), small biological molecules (urea
and lactic acid) and saccharides (mannose and galactose) were tested.
The platform can detect the impact of different kinds of interfering
species on the fluorescence quenching efficiency (Figure 7). It is clear
that most of these chemicals have slight signals and even reach high
concentrations. The specific selectivity could ascribe to the high affinity
between GOx and glucose. The results proved that this biosensor
showed pronounced selection toward glucose analysis.

3.8 Determination of practical samples

For evaluating the practical application of this proposed assay,
we use the biosensor to test the glucose level in human serum
samples. Consideration of the glucose concentration in a healthy

TABLE 1 The application of the method for the determination of serum samples with different amounts of glucose.

Sample Added (μmol/L) Found (μmol/L) Recovery (%) RSD (n = 3,%)

1 0.00 54.58 — 2.9

2 30.00 85.86 101.5 3.7

3 70.00 123.15 98.9 3.0

4 100.00 152.26 98.5 3.5
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human serum environment and the range of linearity of this sensing
system, diluting the human serum samples 100 times before
experiments. Table 1 lists the results carried out by the standard
addition method. We attained 98.5%–101.5% good recoveries with
less than 3.45% relative standard deviation (RSD, n = 3), illustrating
that the sensitive fluorescence biosensor can be applied to glucose
testing in practical serum samples with satisfactory results.

4 Conclusion

In summary, we constructed a facile fluorescent sensing platform
for the analysis of H2O2 and glucose basing the fluorescence quenching
of UCNPs. Compared with previous research for glucose
determination, the application of this proposed biosensor shows its
superiority. Initially, the chromogenic reaction of H2O2-phenol-4-AAP
systems turned into IFE-based fluorescent sensing in a simple turn-off
mode, which enhanced the analyzing properties and the detection
sensitivity. Secondly, negligible background interference and lower
detection limit can be obtained by benefiting from the unique
excitation and emission properties of UCNPs. Lastly, with no special
surface modification of UCNPs nor a complicated probe fabrication
procedure, the label-free sensor undoubtedly provides considerable
flexibility for the assay. Therefore, this biosensor ensures accurate,
convenient, and efficient measurement of glucose in human serum.

The fluorescence approach provided some remarkable
advantages in selectively, simplicity, low price, and high
sensitivity, which make it capable of applying to the detection of
glucose levels in human serum. Meanwhile, this measurement
method can be readily expanded to diagnose other different
H2O2-involved biomolecules like triglyceride, uric acid, and
cholesterol in the field of clinical bioassays. Therefore, we believe
that the method may offer a promising tool for exploiting
convenient, simple, and low-cost sensors for biochemical and
clinical applications, for instance, in-vitro determination of serum
biomarkers for health management and disease diagnosis.
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