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The ELSAH (electronic smart patch system for wireless monitoring of molecular
biomarkers for healthcare and wellbeing) project has received funding from EU’s
Horizon 2020 research and innovation program (grant agreement no. 825549). Its
aim is to develop a wearable smart patch-based microneedle sensor system that can
simultaneouslymeasure several biomarkers in users’dermal interstitial fluid. This system
couldhave several usecasesbasedoncontinuousglucose and lactatemonitoring: early
detection of (pre-) diabetes mellitus, increasing physical performance through optimal
carbohydrate intake, achieving ahealthier lifestyle throughbehavioral changesbasedon
the interpretation of glucose data, performance diagnostics (lactate threshold test),
control of optimal training intensities corresponding with certain lactate levels, or
warning of diseases/health threats, such as the metabolic syndrome or sepsis
associated with increased lactate levels. The ELSAH patch system has a high
potential of increasing health and wellbeing in users.
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Introduction

Fueled by the growing functionality and affordability of miniaturized electronics, the
widespread proliferation of smartphones and increasing consumer desire to monitor health
data, wearables for health and wellbeing are on the rise (Heikenfeld et al., 2018). Currently
available commercial products such as the Fitbit fitness tracker or the Apple Watch usually
monitor several physiological variables and activities including heart rate, heart rate variability, or
number of daily steps, which can also help predict maximum oxygen consumption or energy
expenditure (Majumder et al., 2017).

An in-depth analysis of the user’s health, performance or stress level requires continuous
quantification of molecular biomarkers which, of course, implies direct contact with the user’s
biofluids (Heikenfeld et al., 2018). Blood is generally considered the gold reference biofluid to
quantify molecular biomarkers. However, blood sampling is an invasive technique that isn’t
compatible with the needs of wearable users. To that end, several wearables are currently being
developed that use biofluids such as sweat (Sempionatto et al., 2017), saliva (Kim et al., 2014) or
ocular fluid (Yao et al., 2011) to measure biomarkers, but these systems often face specific
challenges linked to the respective non-invasive sample type. Among others, these challenges
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include poor correlations of biomarker concentrations to reference
levels in blood, contamination or large fluctuations in pH that hamper
reliable quantification of the target biomarkers (Mitsubayashi et al.,
1994; Heikenfeld, 2016; Heikenfeld et al., 2018).

One way of dealing with this dilemma is to aim for minimally
invasive sampling instead. The dermal interstitial fluid (ISF) has proven
to be pH stable and highly comparable with the biomarker composition
of blood (Tran et al., 2018). Furthermore, ISF can be sampled and
analyzed usingminimally invasive microneedles that have been rated as
pain-free and are not susceptible to contamination (Sazonov, 2014;
Ventrelli et al., 2015). Consequently, minimally invasive analysis of the
ISF using microneedle-based sensors is the most promising approach
for integrating continuous monitoring of biomarkers into wearables for
healthcare and wellbeing.

In the ELSAH project, a flexible and integrated smart patch-based
wearable sensor system (“ELSAH patch”) is developed to quantitatively
monitor several molecular biomarkers via electrochemical detection
using aminimally invasivemicroneedle-based approach (Figure 1). The
ELSAH patch will be fully self-sustained by integrating the microneedle
biosensor, a microchip, a battery and antenna constructs into the patch,
thereby enabling independent measurements and secure wireless data
transmission to the user’s mobile phone.

In this article, based on the specifications of the ELSAH system,
we will present possible applications of the ELSAH patch that we
believe can increase health and fitness in users.

ELSAH prototype and measurement
technique

The final ELSAH patch will measure the two biomarkers glucose
and lactate, which belong to the most reliable metabolic biomarkers
to promote a healthy lifestyle (Goodwin et al., 2007; Klonoff et al.,
2017). To comply with end user requirements for health and

wellbeing monitoring systems (Holzer et al., 2020), the final
ELSAH patch aims to feature the following properties:

1) Simultaneous electrochemical quantification of glucose and
lactate concentrations in the ISF within a range of 0.3–30 mM;

2) Total monitoring period of 24 h at a measurement interval of
5 min;

3) Total patch area of 4 × 4 cm2 with a maximum patch thickness
of 4 mm;

4) Choice of components and integration process resulting in
manufacturing costs of a post-project commercial version of
no more than EUR 3 per patch.

Various systems are available for determining glucose levels in
diabetes care applications (continuous glucose monitoring (CGM)
systems) (Rodbard, 2016). Most of them rely on probing the
subcutaneous tissue ISF with the use of relatively large needles
(5–13 mm in length) (Rodbard, 2016). These needles form
electrodes that are functionalized by enzymes (usually glucose
oxidase) which catalyze the electrochemical oxidation of glucose,
thereby determining glucose concentration (Rodbard, 2016). Owing
to the relatively large needles required for this system, it is not always
in line with user needs, e.g., due to fear of needles (trypanophobia)
and the possibility of subsequent bleeding/bruising (Yeoh et al.,
2022). Furthermore, these systems are very expensive and are
usually applied for long periods of time (1–2 weeks).

The microneedles used in the ELSAH system (with a
microneedle length of approximately 0.5 mm) are pain-free to
apply and wear (Ventrelli et al., 2015). Moreover, their
production is compatible with mass manufacturing and is
therefore inexpensive, they can be regularly exchanged and aren’t
susceptible to contamination (Sazonov, 2014). The metallized
polymeric microneedles in ELSAH are functionalized by a surface
modification protocol involving direct electron transfer enzymes

FIGURE 1
ELSAH consists of a smart patch-based microneedle sensor system that measures biomarkers in the user’s interstitial fluid and is connected to a
mobile phone. Source and copyright holder: AIT/Purtscher and LEITAT (https://www.elsah.researchproject.at).
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(cellobiose dehydrogenase-based), which enable the oxygen
insensitive electrochemical detection of glucose and lactate
(Jayakumar et al., 2022). For the quantification of glucose, a
research group from the Imperial College London has already
demonstrated in human test persons that a clinically acceptable
correlation with the glucose level in blood can be obtained using
microneedle-based sensing in ISF for an operating period of 24 h
(Sharma et al., 2018). Furthermore, the study participants generally
reported good tolerability of the microneedles with no long-term
skin reactions, thus demonstrating good user comfort (Sharma et al.,
2018). The ELSAH microneedles are shown in Figure 2.

Possible use cases

Glucose is an important energy substrate for the brain, red
blood cells, skeletal muscle and other cells and tissues.
Hypoglycemia can lead to reduced brain and muscle function
and, in the worst case, to hypoglycemic coma and death, while
hyperglycemia can induce dehydration and life-threatening
hyperglycemic coma (Wintergerst et al., 2006). It is also well-
established that chronic increased blood glucose levels can cause
cardiovascular complications in the long term (Stratton et al.,
2000). Furthermore, hyperglycemia can alter lactate metabolism
in the long term (Brinkmann and Brixius, 2015).

Lactate is released when pyruvate produced from glucose via
anaerobic glycolysis is converted into lactate. Thus, it is indicative of
the body’s metabolic state (Goodwin et al., 2007). Basal lactate levels can
be increased in the context of several diseases/infections (e.g., diabetes
mellitus, metabolic syndrome, cancer, sepsis) (Levraut et al., 1998;
Wouters, 2002; Gustavsson et al., 2012; Brinkmann and Brixius, 2015;
Mariappan et al., 2015; Oedorf et al., 2017; Spencer and Stanton, 2019).

Use case 1: early detection of (pre-)diabetes
mellitus

The metabolic state (“healthy,” “pre-diabetes” or “type 2 diabetes
mellitus”) can be determined using glucose metrics. An early warning

system for (pre-) diabetes mellitus could be established using the ELSAH
patch. Common diagnostic methods include the fasting plasma glucose
(FPG) test and the 75 g oral glucose tolerance test (OGTT) (Khan et al.,
2019). According to the American Diabetes Association (ADA),
FPG ≥100mg/dL (5.5 mmol/L) or plasma glucose values 2 h post-75 g
glucose ingestion ≥140mg/dL (7.8 mmol/L) indicate pre-diabetes, while
FPG ≥126mg/dL (7.0 mmol/L) or plasma glucose values 2 h post-75 g
glucose ingestion ≥200mg/dL (11.1 mmol/L) indicate type 2 diabetes
mellitus (ElSayed et al., 2023). The patch could be used to either measure
fasting glucose values or glucose values during an OGTT in the ISF, with
the ELSAH software providing the corresponding interpretation. In case
of any indications of an abnormal glucose metabolism, the system could
recommend the user to consult a medical doctor for further clarification.
The ELSAH software could also evaluate several CGM-derived glycemic
metrics such as “time in range” or glycemic variability over a 24-h period
to provide amore detailed interpretation of the user’s glucosemetabolism.
Glucose variability has been discussed as a new option for determining
glycemic control which is strongly correlated with vascular complications
(Hirsch and Brownlee, 2005; Nalysnyk et al., 2010). However, CGM
metrics are not yet well defined in subjects without diabetes, and
additional studies are necessary to improve the accuracy of analyses
that detect transitions from a healthy to a (pre-) diabetes state (Gottfried
et al., 2022). The advantage of the ELSAH system diabetes test compared
to others is that it is painless and bloodless. Furthermore, it is cheaper than
having a blood sample taken by amedical doctor, which needs to then be
analyzed in a laboratory. It is estimated that around 240 million people
worldwide are currently living with undiagnosed diabetes (Ogurtsova
et al., 2022). By using the ELSAH system for early detection of the disease,
many patients could receive quick medical attention to slow down
progression of the disease and prevent secondary complications.

Use case 2: optimization of physical
performance

Continuous glucose monitoring provides valuable
information about athlete’s nutritional state before, during and
post-exercise, and can thus influence decisions on how to
improve physical performance (Holzer et al., 2022). There is

FIGURE 2
ELSAH polymeric microneedles (0.5 mm) compared to a human finger and a conventional CGM needle (≈5 mm) when inserted in the skin. Source
and copyright holder: Tyndall National Institute and AIT (https://www.elsah.researchproject.at).
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evidence, for example, that the best times in long endurance runs
are most likely achieved with only few high glucose fluctuations,
and when a sufficient supply of carbohydrates is guaranteed
(Oishi et al., 2018; Ishihara et al., 2020). The number of
studies involving healthy subjects is very small; to be able to
make more detailed recommendations, further studies in this
field are urgently needed. The ELSAH software could define
upper and lower limits, for example, and warn the athlete if
he/she falls below or exceeds these limits. The athlete could,
accordingly, increase or limit his/her carbohydrate consumption.
The accuracy of personalized recommendations increases as
more performance data are being synchronized with CGM
data. The software could be further developed and
synchronize data with a self-learning system. To our
knowledge, such systems do not yet exist. The ELSAH patch
allows for 24-h recording, and athletes can therefore use it as
needed to monitor their glucose levels. This reduces costs
compared to the use of conventional CGM systems.

Use case 3: achieving a healthier lifestyle
through behavioral changes based on the
interpretation of glucose data

It has been shown that continuous glucose monitoring can
help increase awareness of foods with high glycemic loads,
thereby improving nutritional choices (Dehghani Zahedani
et al., 2021). Continuous glucose monitoring could
furthermore motivate people to increase their physical
activity which is an effective way to decrease glucose values/
postprandial glucose excursions (Liao et al., 2020; Bellini et al.,
2021). The ELSAH system could potentially collect and display
data on the individual’s “time in range.” The ADA’s glucose
target range recommendation is 70–140 mg/dL (3.9–7.8 mmol/
L) for patients with diabetes mellitus. A recent study based on
CGM data of 4.805 individuals without diabetes mellitus
indicates that a higher amount of time spent within an
optimized glucose target range (70–100 mg/dL, 3.9–5.6 mmol/
L) is associated with a more favorable cardiometabolic risk
profile, while no such link was found for the time spent within
the ADA’s target range (Berry et al., 2022). Long-term
observational studies must be carried out to determine the
actual risk of diseases and all-cause mortality in individuals
without diabetes mellitus dependent on the different times they
spend in different glucose ranges to answer the question
whether stricter targets should be recommended for healthy
subjects. ELSAH patches can be used as a cost-effective
alternative to “classic” CGM systems for the collection of
glucose data and can be used in a lifestyle intervention that
motivates people to eat healthier or to more regularly be more
physically active.

Use case 4: performance diagnostics

Lactate level in blood is elevated (in most people up to ≈8–10 mM)
following a progressive incremental exercise test to exhaustion, while
the highest lactate levels (≈15–25 mM) are measured in the first few

minutes after an “all-out”maximal exertion of 30–120 s (Withers et al.,
1991; Goodwin et al., 2007). The ELSAH system could be used as a
testing system with instructions for a step endurance test, the
measurement of lactate levels and the calculation of individual
lactate thresholds (lactate thresholds 1 and 2) beyond which lactate
increasesmore rapidly. (Wackerhage et al., 2022). Lactate thresholds are
considered well-established, relatively valid predictors of physical
performance (Goodwin et al., 2007). A later increase in lactate levels
during exercise testing indicates improved endurance performance
(Goodwin et al., 2007). The ELSAH patch is expected to measure
lactate more accurately than sensors that measure lactate in other
biological fluids, such as sweat, saliva or ocular fluid, because lactate
content is more variable in such fluids than in blood or in the ISF
(Bollella et al., 2019). There is considerably interest in the development
of highly sensitive lactate sensors that can measure lactate in real-time
without blood sampling. Hence, lactate performance diagnostics could
be carried out not only by sports medicine professionals, but by every
coach or by the athlete himself/herself.

Use case 5: determining and controlling
training intensities

Exercise intensity is often prescribed by individual’s heart rate
based on heart rate formulas which in many cases might be
inaccurate (Goldberg et al., 1988). Knowledge of real-time lactate
concentrations can be highly relevant for regulating training
intensities during exercise as lactate levels adequately reflect the
athlete’s metabolic state. (Goodwin et al., 2007). Based on individual
performance diagnostics, training can be performed in different
intensity ranges at, below or above the individual lactate thresholds.
It is expected that training aligned with lactate thresholds provides a
more homogenous training stimulus in a group of athletes than
training that is based on heart rate formulas (Mann et al., 2013).
However, more studies are needed to substantiate the theoretical
advantages of threshold-based training programs (Jamnick et al.,
2020).

Use case 6: early warning of several
diseases/health threats

Lactate can also be co-indicative for several diseases. Studies
have shown increased fasting basal lactate levels (at rest), e.g., in
patients with metabolic syndrome (≈+25%) (Jones et al., 2019).
Basal lactate levels are also increased in the tumor environment in
cancer patients (Mariappan et al., 2015; Spencer and Stanton, 2019).
More studies are necessary to show the extent to which lactate might
increase in neighboring areas in the ISF, and whether lactate in the
ISF is a useful marker of tumor progression. Furthermore, lactate
levels are associated with the degree of severity of acute infections
and are drastically increased in septic patients (Levraut et al., 1998;
Gustavsson et al., 2012; Oedorf et al., 2017). Basal lactate >4 mmol/L
has been demonstrated to be an independent predictor of
deterioration (e.g., acute renal failure, non-elective intubation,
vasopressor administration or in-hospital mortality) for intensive
care unit patients (Oedorf et al., 2017). Easily applicable continuous
monitoring of lactate levels can open up entirely new perspectives
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for health-conscious end users. The ELSAH system could provide
warnings when a certain lactate level is exceeded. The ELSAH
system would then recommend to perform a health check by a
medical doctor.

Conclusion

The ELSAH patch system has a high potential of increasing
health and wellbeing among users. Possible use cases have been
presented for further development in the post-project phase. In
vivo validation studies on measurement accuracy and further
studies on possible lag times (blood→ISF), especially in the
case of rapidly changing blood glucose or lactate values
(during/post-exercise or meal intake), are needed (Madden
et al., 2020). The ELSAH system will be fully self-sustained,
allowing for independent measurements and secure wireless
data transmission to the user’s mobile phone. Thereby, it
assumes a pioneering role in the field of microneedle
measuring systems. Microneedle-based technologies have
immense potential for use in transdermal diagnostics, and a
significant number of academic institutes and companies are
developing highly miniaturized, patch-like sensors for
biomarker monitoring (Madden et al., 2020; Tasca et al.,
2019; Teymourian et al., 2021; biolinq, 2023; nutromics,
2023; sava, 2023). These alternatives to ELSAH are devices
that are still being developed, and are manufactured using
conventional Printed Circuit Board (PCB) technologies and
plastic packaging methods. ELSAH aims to integrate the
microneedle-biosensor and microchip into a fully disposable
patch by using printed electronics technologies which will
provide the antenna for wireless communication and the
batteries for energy supply as well. ELSAH patches can be
used by individuals who might need it only once in a while, as,
for example, for the yearly medical check-up, without the need
to invest in expensive electronic equipments, and is therefore
affordable for any end user. One important aspect that will
have to be addressed in the post-project phase is how to make
the ELSAH patch fully environmentally sustainable. To this
end, eco-design methodologies and medical device design
processes must be incorporated into the future development.
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