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Exopolysaccharides formation against harmful biotic and abiotic environmental
influences is common among bacteria. By using renewable resources as a
substrate, exopolysaccharides represent a sustainable alternative to fossil-
based polymers as rheological modifiers in food, cosmetics, and
pharmaceutical applications. The family of Acetobacteraceae, traditionally
associated with fermented food products, has demonstrated their ability to
produce a wide range of structural and functional different polymers with
interesting physicochemical properties. Several strains are well known for their
production of homopolysaccharides of high industrial importance, such as levan
and bacterial cellulose. Moreover, some Acetobacteraceae are able to form
acetan-like heteropolysaccharides with a high structural resemblance to
xanthan. This mini review summarizes the current knowledge and recent
trends in both homo- and heteropolysaccharide production by
Acetobacteraceae.
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1 Introduction

The biosynthesis of carbohydrate polymers is a common characteristic of both
prokaryotic and eukaryotic organisms. Extracellularly secreted glycosides are classified as
exopolysaccharides (EPS). Major functions include the protection against environmental
influences such as desiccation, osmotic stress, phagocytosis, or antibiotics. Furthermore,
intercellular interactions like cell recognition and surface adhesion are also promoted
(Suresh Kumar et al., 2007; Corbett et al., 2010; Moradali and Rehm, 2020). EPS are
known for their high diversity in terms of physicochemical and rheological properties
(Hundschell and Wagemans, 2019).

EPS are either classified as homopolysaccharides or heteropolysaccharides based on their
general chemical complexity. Although homopolysaccharides consist per definition of only
one kind of monomer, the linkage pattern usually varies a lot resulting in branched (e.g.
glycogen) and unbranched (e.g. cellulose) polymer structures. Heteropolysaccharides, on the
other hand tend to have highly complex structures as they are composed of at least two
different sugar moieties. Additionally, polymers can be further decorated with organic and
inorganic moieties such as acetyl, pyruvyl, glyceryl, succinyl, and sulphate constituents
(Sutherland, 1990; Freitas et al., 2011; Nwodo et al., 2012). Along with the conformation of
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glycosidic linkages, a vast amount of potential structures emerge,
giving rise to a wide range of physicochemical properties (Freitas
et al., 2011).

Those variable material properties in combination with a high
natural water-binding capacity are one of the main reasons for the
broad commercial potential of EPS, representing an alternative to
replace petrochemical polymers in current applications
(Kamaruddin et al., 2021). However, only a rather limited
number of microbial EPS can be regarded as industrially
established, e.g. hyaluronan, xanthan, pullulan, dextran and
gellan gum (Sutherland, 1998; Heinze et al., 2006; Osmałek et al.,
2014; Singhsa et al., 2018; Schilling et al., 2020; Meliawati et al.,
2022). Low titers and yields, as well as expensive downstream
processing, result in high production costs and consequently
impede the industrial establishment of new strains and polymers.
Thus, EPS are up to now mainly used in high-value niche products
in cosmetics, food, and pharmacy (More et al., 2021). This applies in
particular to the Gram-negative Acetobacteraceae which are mainly
known for the production of fermented food products like vinegar,
kefir, or acetic acid production but have also demonstrated their
ability to produce structurally different EPS with interesting
physicochemical properties (La China et al., 2018).

This mini review aims to summarize the knowledge of
homopolysaccharides and heteropolysaccharides production in
Acetobacteraceae with regard to the current state of strain
development, bioprocess optimization, and knowledge of
rheological properties to evaluate the status quo and provide a
further outlook on this particular group of promising
biopolymers. Since the phylogenetic classification of
Acetobacteraceae is not finalized and currently consists of
47 genera in April 2022, the classification of the original
publication is used in this article (Parr et al., 2014).

2 Homopolysaccharide production in
Acetobacteraceae

2.1 Levan

Acetobacteraceae are known for their production of high-
value homopolysaccharides such as levan. Levan synthesis is
widespread within the family of Acetobacteraceae and was
reported for numerous organisms including the genera
Neoasaia, Kozakia, and Gluconobacter (Kornmann et al.,
2003; Hermann et al., 2015; Hövels et al., 2020; Anguluri
et al., 2022). Its formation is catalyzed by an extracellular
enzyme named levansucrase (LS, EC 2.4.1.10). By cleaving
sucrose, LSs are capable of polymerizing the emerging
D-fructose monomers to β-(2,6) linked polyfructans (Öner
et al., 2016; Xu et al., 2019). Meanwhile, D-glucose as a
sacrificial substrate is metabolized and used for bacterial
growth resulting in a theoretical maximum levan yield of
0.5 gLev/gSuc. Based on the evaluation of phylogenetic clades
in Acetobacteraceae, two types of LS with different ecological
relationship could be distinguished, differing in yield and
molecular weight (Jakob et al., 2019). Levan is currently
highly requested as a stabilizer, emulsifier, and flavor
enhancing agent in food applications (Öner et al., 2016).

Up to now, investigations on levan production by
Acetobacteraceae focused mainly on the characterization of wild-
type strains which might be explained by the large number of levan-
producing strains in this particular family as well as high titers
already obtained under non-optimized cultivation conditions
(Table 1). Comparatively low titers of 6.3 g L-1 and 7.3 g L-1 were
reported for cultivations in shake flask experiments for
Gluconobacter cerinus DSM 9533 and Neoasaia chiangmaiensis
NBRC 101099, respectively. Slightly higher titers of 7.8 g L-1 were
obtained under identical conditions for Kozakia baliensis
DSM 14400 (Jakob et al., 2012). However, for all strains carbon
yields remained at a low level of approximately 0.1 gLev/gSuc.
Anguluri et al. (2022) reported a final titer of 35.0 g L-1 for the
same Neoasaia chiangmaiensis strain after increasing the final
sucrose concentration up to 250 g L-1. Despite increased product
titers, in both studies carbon yields of only 0.10 and 0.14 gLev/gSuc were
achieved, respectively. For Gluconacetobacter diazotrophicus PA1 5 a
decent titer of 24.8 g L-1 was obtained showing similar carbon yields
(0.16 gLev/gSuc). Significantly higher yields of 0.33 and 0.38 gLev/gSuc
were observed for the species Acetobacter xylinum NCIM
2526 and Gluconobacter frateurii TMW 2.767, respectively (Jakob
et al., 2012; Semjonovs et al., 2016). Recently,
Tanticharoenia sakaeratensis TBRC 22 was identified as a
promising alternative production strain with a final levan titer of
24.7 g L-1 using 200 g L-1 sucrose as the initial substrate
concentration (Aramsangtienchai et al., 2020). By plasmid-based
overexpression of the native LS gene sacB in Gluconobacter
japonicus LMG 2417, LS activity could be successfully increased
2.5-fold compared to the wild-type strain, resulting in higher space-
time yields and titers (Hövels et al., 2020). In general, in-depth
investigations on bioprocess optimization approaches for levan
production in Acetobacteraceae seem to be rare and mainly
limited to the identification of the best media compositions so far
as extensively reviewed by Öner et al. (2016).

Levan formation is controlled by LS as the only enzyme in the
biosynthesis process (Schmid, 2018). Depending on the available
fructosyl acceptor molecule, the enzyme catalyzes hydrolysis,
transfructosylation (in the presence of small oligosaccharides)
and polymerization (in the presence of a increasing fructan
chain) (Li et al., 2015). In consequence, defined process
conditions are essential to push the reaction equilibrium towards
levan formation while avoiding product degradation. Several studies
in Gram-positive and Gram-negative bacteria demonstrated the
importance of the right temperature settings during cultivation
and the influence of metal ions, which need to be carefully
determined for each LS respectively (Park et al., 2003;
Rairakhwada et al., 2010; Tian et al., 2011; Belghith et al., 2012).
Moreover, the optimal length of the fermentation process has to be
carefully evaluated since the equilibrium naturally tends towards
hydrolysis with the depletion of sucrose as the substrate during the
cultivation (Chambert et al., 1974; Hernandez et al., 1995). In a
recent study of Anguluri et al. (2022), the authors could show that a
longer process time of 96 h resulted in a significant product decrease
for Kozakia baliensis DSM 14400 in comparison to 48 h of
cultivation. In contrast, 96 h of fermentation increased yields for
Neoasaia chiangmaiensis NBRC 101099 by 32 %, thus underlining
the need for further strain-specific bioprocess optimization
approaches.
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TABLE 1 Overview of homopolysaccharides producing Acetobacteraceae.

EPS Strain Titer
[g·L-1]

Yield
[gEPS/gSub]

Cultivation conditions in the selected study [g·L-1] Reference

Levan Gluconobacter cerinus
DSM 9533

6.3 0.08 20 sodium gluconate, 3 yeast extract, 2 peptone, 3 glycerol, 10
mannitol, 80 sucrose, pH 6.0

Jakob et al., 2012

50 mL cultivation volume in shake flasks, 30°C, 24 h, 180 U min-1

Levan Neoasaia chiangmaiensis
NBRC 101099

7.3 0.09 20 sodium gluconate, 3 yeast extract, 2 peptone, 3 glycerol, 10
mannitol, 80 sucrose, pH 6.0

Jakob et al., 2012

50 mL cultivation volume in shake flasks, 30°C, 24 h, 180 U min-1

35.0 0.14 250 sucrose, 0.5 yeast extract, 0.5 polypeptone, 0.73 Na2HPO4, 0.115
citric acid, 0.05 MgSO4 (%, w/v)

Anguluri et al., 2022

40 mL cultivation volume in shake flasks, 30°C, 140–200 rpm

Levan Kozakia baliensis
DSM 14400

7.8 0.10 20 sodium gluconate, 3 yeast extract, 2 peptone, 3 glycerol, 10
mannitol, 80 sucrose, pH 6.0

Jakob et al. (2012)

50 mL cultivation volume in shake flasks, 30°C, 24 h, 180 U min-1

Levan Gluconobacter cerinus
DSM 9533

56.7 0.23 250 sucrose, 0.5 yeast extract, 0.5 polypeptone, 0.73 Na2HPO4,
0.115 citric acid, 0.05 MgSO4 (%, w/v)

Anguluri et al. (2022)

40 mL cultivation volume in shake flasks, 30°C, 140–200 rpm

Levan Gluconobacter frateurii TMW
2.676

30.0 0.38 20 sodium gluconate, 3 yeast extract, 2 peptone, 3 glycerol, 10
mannitol, 80 sucrose, pH 6.0

Jakob et al. (2012)

50 mL cultivation volume in shake flasks, 30°C, 24 h, 180 U min-1

Levan Tanticharoenia sakaeratensis
TBRC22

24.7 0.25 5 peptone, 5 NaCl, 1.5 meat extract, 1.5 yeast extract, 200 sucrose Aramsangtienchai et al.
(2020)

5% bacterial culture, 37°C, 60 h, 180 rpm

Levan Gluconacetobacter
diazotrophicus PA1 5

24.8 0.17 LGIMmedia with 150 sucrose, supplemented either with 3 (NH4)2SO4

or 1.5 tryptone/yeast extract
Stephan et al. (1991),

Molinari and Boiardi
(2013)1.5 L working volume fermentation, 30°C, 15–20 L h-1, pH 6.0

Levan Acetobacter xylinum
NCIM 2526

13.2 0.33 40 sucrose, 20 bacteriological peptone, 1.0 (NH4)2SO4, 1.0 KH2PO4,
1.0 MgSO4·7H2O

Srikanth et al. (2015)

28°C, 60 h

BC Gluconacetobacter sp. RKY5 5.52 0.37 15.0 glycerol, 8.0 yeast extract, 3.0 KH2PO4, 3.0 acetic acid Kim et al. (2007)

1 L working volume in a rotary biofilm conductor, 30°C, 96 h,
15–35 rpm

BC Gluconacetobacter
intermedius SNT-1

12.6 0.63 20 glucose, 5 yeast extract, 5 polypeptone, 2.75 Na2HPO4, 1.15 citric
acid monohydrate, pH 6.0

Tyagi and Suresh (2016)

Static conditions, 30°C, 120 h

BC Gluconacetobacter xylinus
PTCC 1734

1.8 0.03 Hestrin-Schramm, Yamanaka or Zhou media with either date syrup,
glucose, mannitol, sucrose, or (food-grade) sucrose

Mohammadkazemi et al.,
(2015)

28°C, 168 h, 150 rpm

1.9 0.01 20 carbon source (glycerol, sucrose, mannitol, fructose), 5 peptone, 5
yeast extract, 2.7 Na2HPO4, 1.15 citric acid

Jalili Tabaii and Emtiazi,
(2015)

30 mL working volume, static cultivation, 28°C, 480 h, pH 6.0

BC Gluconacetobacter xylinus
ATCC 23770

10.8 n.a. Cotton-based waste textiles, 2.5 D-mannitol, 0.5 yeast extract, 0.3
peptone, pH 5.0 (%, w/v)

Hong et al., 2012

8.3 0.66 12 wheat straw hydrolysate, 0.3 peptone, 0.5 yeast extract
(%, w/v)

Chen et al., (2013)

Static cultivation, 30 °C, 168 h

(Continued on following page)
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2.2 Bacterial cellulose

In addition,Acetobacteraceae are associated with the biosynthesis of
β-(1,4) linked polyglucans which are referred to as bacterial cellulose
(BC). Due to the absence of hemicellulose and lignin as present in its
eukaryotic plant counterpart, BC is known to be of extremely high
purity. Moreover, due to the lack of required energy-intensive
downstream processing which is essential for plant-derived cellulose,
BC typically demonstrates a low amount of inorganic impurities
(Klemm et al., 2011). In applications, BC is valued for its high
crystallinity and superior mechanical strength (Nakayama et al.,
2004; Castro et al., 2011; Ul-Islam et al., 2012). All of these
properties are highly desired in current product development and
makes BC an excellent biocompatible material for pharmaceutical
products. High potential is reported for wound dressing materials,
drug delivery systems and packing materials (Czaja et al., 2006; Abeer
et al., 2014; El-Gendi et al., 2023). In order to address this trend, current
research focus on in situ (optimization during fermentation) and ex situ
(optimization of existing microfibers) BC properties modifications
(Stumpf et al., 2018; Cazón and Vázquez, 2021). Addition of 30%
(v/v) aloe vera gel for instant resulted in significantly increased
mechanical strength and water absorption capacity (Saibuatong and
Phisalaphong, 2010).

Traditionally, BC is generated in the air-liquid interface in static
fermentation processes. By accumulation on the surface, a gelatinous
layer around bacterial cells is formed (Cannon and Anderson, 1991;
Jonas and Farah, 1998). In consequence, maximum yields positively
correlate to the surface area (Masaoka et al., 1993). However, this
leads to several practical problems during production, e.g.
insufficient oxygen supply and long lasting fermentations, or a
barely separable mixture of biomass and polymer (Shoda and
Sugano, 2005; Hsieh et al., 2016). Especially when it comes to
industrial scale-up, these issues limit the economic feasibility.
Production in large scale are therefore conducted in modified
horizontal lift, gas lift, rotary discs and membrane bioreactors
(Shi et al., 2014). Titers of 6.2 g L-1 BC were achieved by using a
rotary biofilm conductor with eight discs (Kim et al., 2007).
However, it has to be mentioned that the optimal static process
conditions are often not met completely in those set-ups.

In order to reduce manufacturing costs, optimization
approaches focus nowadays more on the establishment of low-
cost media and the investigation of alternative raw materials in
order to replace glucose, fructose or glycerol as established substrates
(Jalili Tabaii and Emtiazi, 2015; Mohammadkazemi et al., 2015;

Molina-Ramírez et al., 2017; Revin et al., 2018; Saleh et al., 2021; El-
Gendi et al., 2022). Tyagi and Suresh achieved remarkable titers of
12.6 g L-1 for BC with Gluconaceteobacter intermedius SNT1 on
sugarcane molasses (Tyagi and Suresh, 2016). Numerous further
publications indicate the high potential of this approach, including
the redirection of waste streams and by-products of chemical
processes (Hong et al., 2012; Chen et al., 2013; Vazquez et al.,
2013; Barshan et al., 2019). In addition, BC can also be produced in
submerge cultivation systems through agitated or aerated
bioreactors with respectable titers between 15 and 20 g L-1 BC
(Kouda et al., 1998). However, the occurrence of unintended
cellulose-deficient mutants and therefore a decline in product
titers have been reported in several studies (Vandamme et al.,
1998; Jung et al., 2005; Matsutani et al., 2015). Moreover, higher
oxygen supply during cultivation was demonstrated to alter BC
morphology towards granule and pellet formation, thus affecting
material properties (Singhsa et al., 2018). Recent trends also focus on
the impact of additives and co-cultivations in order to optimize both
BC titers and rheological properties. Positive effects were
demonstrated for pullulan, whose supplementation resulted in
improved mechanical polymer properties and 4.4-fold increased
BC yield (Hu et al., 2022).

Contrarily to the previously discussed levan-type polyfructans,
BC biosynthesis and polymerization is more complex as it is
organized in a cellulase synthase operon consisting of at least
four different genes (Römling and Galperin, 2015). Several
studies aimed to increase and optimize BC production on a
molecular level. In order to enable metabolization of sucrose as a
cheaper carbon source, a recombinant sucrose synthase was
successfully expressed in Acetobacter xylinum BRP 2001. By this,
final titers on glucose as carbon source could be doubled to 8 g L-1

(Nakai et al., 1999). Furthermore, 28-fold increased BC formation
was demonstrated for Acetobacter xylinus ITZ3 after the successful
genomic integration of the β-galactosidase lacZ, thus adding lactose
to the group of potential substrates (Battad-Bernardo et al., 2004).
Heterologous expression studies might present one way to overcome
the prominent issue of long lasting cultivation by
Komagataeibacter spp. Imai et al. (2014) demonstrated BC
production via the much faster growing Escherichia coli by
heterologous expression of the cellulase synthase complex
subunits cesAB as well as the cyclic-di-GMP diguanylate cylase
dgc of Gluconacetobacter xylinus (Imai et al., 2014). Recently, for
the first time, a CRISPR-Cas tool was successfully applied in
Komagataeibacter spp. The study of Huang et al. (2020), used a

TABLE 1 (Continued) Overview of homopolysaccharides producing Acetobacteraceae.

EPS Strain Titer
[g�L-1]

Yield
[gEPS/gSub]

Cultivation conditions in the selected study [g�L-1] Reference

BC Gluconacetobacter xylinus
NRRL B-42

10.0 0.5 2.0 glycerol/cane molasses, 0.5 peptone, 0.5 yeast extract, 0.27
disodium phosphate, 0.115 citric acid (%, w/v), pH 6.0

Vazquez et al. (2013)

Static cultivation, 5:1 (volume flask: volume media), 28°C, 336 h,
pH 5.0

BC Komagataeibacter
medellinensis

3.3 0.17 1/2/3 carbon source (glucose, sucrose, fructose), 0.5 yeast extract, 0.5
peptone, 0.5 Na2HPO4, 0.267 citric acid (%, w/v)

Molina-Ramírez et al.
(2017)

100 mL working volume, static cultivation, 192 h, pH 6.0
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CRISPRi-based approach to downregulate galU, which controls the
metabolic flux between the BC synthesis and the pentose phosphate
pathway. By minimizing the expression level of galU, BC of higher
crystallinity was obtained, although enhanced material porosity as
an severe adverse effect was documented as well (Huang et al., 2020).

3 Heteropolysaccharide production in
Acetobacteraceae

The formation of heteropolysaccharides within the family of
Acetobacteraceae has been investigated in several publications

FIGURE 1
Overview of acetan-like heteropolysaccharide production in Acetobacteraceae. (A) Schematic comparison of selected acetan-like
heteropolysaccharides produced by Acetobacteraceae including acetan, a yet unnamed heteropolysaccharide by Kozakia baliensis, AM-1, and xanthan
(Jansson et al., 1975; Tayama et al., 1985, 1986; Edwards et al., 1999; Brandt et al., 2018). The xanthan-like core structure is marked for all polymers. Figure
created with BioRender.com. (B) Taxonomy tree of EPS-producing Acetobacteraceae. Levan producing strains are marked in light green, levan and
acetan-like heteropolysaccharides producing strains in dark green, bacterial cellulose producing strains in yellow, bacterial cellulose and acetan-like
heteropolysaccharide producing strains in brown and only acetan-like heteropolysaccharide producing strains in light red. Figure created with iTOL
(Letunic and Bork, 2021).
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(Brandt et al., 2016; Škraban et al., 2018; Rath et al., 2022). Interestingly,
many if not all of the yet elucidated heteropolysaccharides in this family
are structural related to acetan, whose production was first described in
Acetobacter xylinum (Figure 1). Acetan consists of a molar subunit ratio
of 4 : 1: 1 : 1 (glucose, mannose, glucuronic acid, rhamnose). In addition
to the cellulose-like backbone with a trisaccharide branching sidechain
at every other glucose monomer, the first two monomers of the side
chain, identified as mannose and glucuronic acid, are identical in
sequence and linkage pattern to the core structure of xanthan gum
(Jansson et al., 1975; Couso et al., 1987). However, the further side chain
composition and acetyl- and pyruvation pattern differs, giving rise to
variety of structures and different rheological properties (Tayama et al.,
1986; Brandt et al., 2018; Rath et al., 2022). This resemblance is also
displayed by a high degree of homology between the
heteropolysaccharides encoding genomic regions in
Acetobacteraceae and the xanthan biosynthesis cluster of
Xanthomonas campestris (Becker et al., 1998). Genetic
alignments demonstrated a strong homology for aceA of
Acetobacter xylinum and gumD from Xanthomonas campestris,
both of these so-called priming glycosyltransferases in
heteropolysaccharides synthesis initiating the assembly of the
repeating unit at an undecaprenyl-pyrophosphate lipid anchor
(Griffin et al., 1994; Schmid and Sieber, 2015). Moreover, a more
recent study of Brandt et al. (2016) compared and confirmed
homologies in the underlying heteropolysaccharides
biosynthesis clusters of Kozakia baliensis DSM 14400 and
NBRC 16680, Gluconacetobacter diazotrophicus PA1 5,
Komagataeibacter xylinus E25 and Xanthomonas campestris
ATCC 33913. Although all of the examined clusters showed
high structural similarities, variations in numbers and size of
the predicted genes and clusters were revealed, explaining the
strain-dependent differences in the resulting polymer structures.

Xanthan gum is highly requested in industrial applications as a
viscosifier due to its pseudoplastic behavior, high salt tolerance and
thermostability amongst others properties (Chaturvedi et al., 2021).
Similar beneficial rheological characteristics have also been
described for the structure-related heteropolysaccharides of
Acetobacteraceae, although studies in this field are rather
limited. Already in 1989, the first rheological
characterization of acetan was performed (Morris et al.,
1989). Moreover, rheological behavior investigations of
heteropolysaccharides produced by Kozakia baliensis
confirmed pseudoplastic behavior and high viscosity (Brandt
et al., 2018). Although the first results appear to be promising,
further in-depth rheological studies are absolutely required in
consideration of the rather insufficient data situation.

With regard to strain cultivation, respectable titers for
heteropolysaccharides production in Acetobacteraceae wild-type
strains have been reported. A titer of 5.4 g L-1 acetan was obtained
under controlled cultivation for Gluconoacetobacter entanii (Velasco-
Bedrán and López-Isunza, 2007). Significantly higher titers of 11.3 g L-1

gluconacetan were achieved for Gluconoacetobacter xylinus I-2281,
likewise under controlled fermentation conditions in bioreactors and
using fructose as the main carbon source (Kornmann et al., 2003). In a
recent study based on an systematic optimization by use of
experimental design, the putative gluconacetan titer for
Gluconoacetobacter sp. could be even increased to 25.4 g L-1

although the parallel formation of second ribose-containing

heteropolysaccharides could not be completely precluded (Rath
et al., 2022). By using glycerol as the carbon source, the authors
aimed to minimize the formation and accumulation of undesirable
oxidized compounds such as gluconates, which affect the pH of the
fermentation broth and contaminate the final polymer. The oxidation
of sugar and alcohols within the respiratory chain mechanism in the
outer membrane is a characteristic feature of Acetobacteraceae (Adachi
and Yakushi, 2016). As the formation of numerous (by-) products is
a main issue for Acetobacteraceae, the right choice of carbon
source and cultivation conditions are critical for EPS production and
should be investigated further. Moreover, cultivation of
Gluconacetobacter hansenii LMG 1524 in a media consisting of
glycerol as the main carbon source and ammonium sulphate as the
corresponding nitrogen source resulted in amaximum titer of 1.22 g L-1,
in comparison to other examined carbon and nitrogen sources
variations (Valepyn et al., 2012). This once more underlines the
importance of strain-dependent bioprocess optimization as the
authors were also able to demonstrate that lower temperatures at
25°C and a slightly decreased pH value of 5.0 favored EPS over cell
biomass production. Cultivation in the presence of two initial carbon
sources (glucose and fructose) and 200 mg L-1 of magnesium resulted in
a titer of 3.9 g L-1 for Kozakia baliensis NBRC 16680 in shake flasks
(Brandt et al., 2018). Additional magnesium has previously been shown
to positively affect heteropolysaccharides production in
Pseudomonadaceae (Vargas-García et al., 2001). However, in the
previously mentioned study of Brandt, significantly increased EPS
production in Kozakia baliensis due to the presence of magnesium
could not be confirmed.

4 Conclusion and further perspectives

The increasing demand for healthier and more sustainable
products as driven by the customers, offers a unique chance to
increase the replacement of petrol-based compounds and
chemicals in a broad range of applications. Hugh potential
can be assumed for EPS which possess the required material
properties for usage in food, cosmetic and pharmaceutical
applications. This applies especially to EPS produced by
Acetobacteraceae, whose homopolysaccharides levan and BC
have shown promising material properties. Due to their
structural resemblance to xanthan, acetan-like
heteropolysaccharides are also highly interesting.

However, for industrial scale-up processes and in order to enhance
economic feasible production, future researchmust address the need for
higher titers and carbon yields as well as utilization of second-
generation feed stocks to produce both homopolysaccharides and
heteropolysaccharides. In addition, investigation and improvement
of rheological polymer properties via genetic engineering or fine-
tuned formulations are also highly desired to promote future
application development for acetan-like polymers.
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