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Rising global greenhouse gas emissions and the impacts of resultant climate
change necessitate development and deployment of carbon capture and
conversion technologies. Amongst the myriad of bio-based conversion
approaches under evaluation, a formate bio-economy has recently been
proposed, wherein CO2-derived formate serves as a substrate for concurrent
carbon and energy delivery to microbial systems. To date, this approach has been
explored in chemolithotrophic and heterotrophic organisms via native or
engineered formatotrophy. However, utilization of this concept in
phototrophic organisms has yet to be reported. Herein, we have taken the first
steps to establish formate utilization in Picochlorum renovo, a recently
characterized eukaryotic microalga with facile genetic tools and promising
applied biotechnology traits. Plastidial heterologous expression of a formate
dehydrogenase (FDH) enabled P. renovo growth on formate as a carbon and
energy source. Further, FDH expression enhanced cultivation capacity on ambient
CO2, underscoring the potential for bypass of conventional CO2 capture and
concentration limitations. This work establishes a photoformatotrophic cultivation
regime that leverages light energy-driven formate utilization. The resultant
photosynthetic formate platform has widespread implications for applied
phototrophic cultivation systems and the bio-economy at large.
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Highlights

• Formate is a potential next-generation renewable carbon source for phototroph cultivation.
• Heterologous expression of formate dehydrogenase decreases formate toxicity in P. renovo.
• Heterologous expression of formate dehydrogenase enables formate utilization as a
carbon source in P. renovo.

• Formate supplementation enhances growth under ambient CO2 cultivation in formate
dehydrogenase expressing strains.
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1 Introduction

Development of novel CO2 sequestration and valorization
strategies are urgently needed to reduce greenhouse gas
emissions and ameliorate the negative environmental and
social impacts of climate change (Foote, 1856; IPCC Pachauri
and Meyers, 2014). Indeed, such approaches also present an
opportunity to address rapidly increasing global energy and
food security demands. To this end, bio-based technologies to
convert CO2 to fuels, chemicals, materials, and food are actively
being evaluated (Grim et al., 2020). Harnessing the power of
microbial metabolism to capture and convert CO2 represents a
high-potential route to enable such bio-based approaches
(Barteau et al., 2018). However, microbial cultivation using
CO2 as a carbon substrate faces a series of challenges,
ranging from point source distribution limitations to gas-
liquid mass transfer hurdles, and high cellular energy
requirements for efficient biological reduction and CO2

assimilation (Bar-Even, 2018; Cotton et al., 2020; Grim et al.,
2020).

To bypass the hurdles associated with CO2 bioconversion,
the concept of a formate bio-economy has recently been
proposed, wherein CO2-derived formate is converted to the
aforementioned commodities by leveraging formatotrophic
microbial metabolism (Yishai et al., 2016). In one envisioned
embodiment, a formate bio-economy would entail the use of
renewable electricity to capture and electrochemically reduce
either atmospheric (via direct air capture) or point source CO2

emissions to formate. This formate could then be upgraded via a
variety of formatotrophic microbes to produce sustainable
bioproducts (Yishai et al., 2016). This approach presents an
opportunity to utilize renewable electricity, while sequestering
and converting CO2 to formate, thereby directly reducing
greenhouse gas emissions.

To date, formate bioconversion has primarily been evaluated
in chemolithotrophic and heterotrophic organisms such as
Cupriavidus necator, Escherichia coli, or Saccharomyces
cerevisiae, via either native formatotrophy or engineered
formatotrophic pathways (Wang et al., 2017; Yishai et al.,
2018; Gleizer et al., 2019; Gonzalez De La Cruz et al., 2019;
Claassens et al., 2020; Kim et al., 2020). For example, microbial
formatotrophy has been achieved through FDH-mediated
Calvin-Benson-Bassham (CBB) cycle-driven CO2 fixation that
is native in C. necator, or engineered into E. coli (Li et al., 2012;
Gleizer et al., 2019). Alternatively, higher metabolic efficiency
can be achieved via direct formate assimilation pathways (e.g.,
the reductive glycine pathway) (Gonzalez De La Cruz et al., 2019;
Claassens et al., 2020). However, these biological systems require
additional reducing power and ATP needed to fix the carbon
contained in formate, beyond what can be obtained from formate
oxidation itself, ultimately leading to incomplete and/or low-
yield carbon fixation and resultant CO2 evolution (Yishai et al.,
2016). Alternatively, additional sources of reductant can be
supplied during cultivation on formate (e.g., hydrogen) to
enable improved carbon utilization.

Phototrophic organisms present an intriguing, high-potential
route to leverage the power of light energy coupled to formatotrophy
to enhance growth and enable high carbon utilization efficiency.
However, to date, photosynthesis-coupled formatotrophy has yet to
be established (Bar-Even, 2018). Herein, we have taken the first steps
towards enabling the direct feed of formate as a sole or co-fed carbon
and energy source to a phototrophic organism via the integration of
a formate dehydrogenase (FDH) into the chloroplast genome of the
industrially-relevant microalga, Picochlorum renovo (Dahlin et al.,
2019; Dahlin and Guarnieri, 2021; Dahlin and Guarnieri, 2022)
(Figure 1). The resultant strain is capable of utilizing formate as a
carbon and energy source and displays enhanced growth on ambient
(0.04%) CO2 when supplemented with formate.

FIGURE 1
Overview of FDH-mediated photoformatotrophy in P. renovo. FDH is transgenically expressed in the P. renovo chloroplast, enabling conversion of
formate to a reducing equivalent and CO2, which can then be assimilated via native metabolism.
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2 Results

2.1 Formate toxicity screening

To evaluate formate toxicity and potential for formate
utilization in P. renovo, we evaluated growth in the presence of
2% CO2 with sodium formate supplementation at various
concentrations over 60 h (Figure 2). Conventionally, P. renovo
is cultured at a pH of 7-8 and displays poor growth at pH values < 6
(Dahlin et al., 2019). However, studies in other organisms have
shown that low pH (<7) leads to increased formate transport,
either through active transport or enhanced passive diffusion of
protonated formic acid (Chu et al., 1987; Casal et al., 2008;
Wiechert and Beitz, 2017a; Wiechert and Beitz, 2017b;
Helmstetter et al., 2019). As such, growth was evaluated at
pH 6 via Bis-tris buffering. At this pH, concentrations of 5 mM
and 10 mM formate reduced P. renovo growth, while a
concentration of 25 mM completely inhibited growth (Figure 2).
As previously reported, this toxicity is likely due to formic acid
transport into the cell and resultant acidification of the cytoplasm
upon dissociation to formate and hydrogen ions (Li et al., 2012).

2.2 Heterologous formate dehydrogenase
expression

To reduce formate toxicity and enable formate utilization, we
sought to establish a mechanism by which formate-derived carbon
could be assimilated into P. renovo CBB metabolism via expression
of a FDH (Figure 1). NADP(H) is widely considered the primary
nicotinamide cofactor in the chloroplast. However, under active
photosynthesis, NADP(H) pools may have limited bioavailability for
ancillary reactions and/or may primarily be in a reduced state that
would limit FDH activity (Cutolo et al., 2020). To determine if there
was a preferred cofactor for the oxidation of formate to CO2 in the
chloroplast, one FDH mutant that utilizes NAD+ and one FDH
mutant with preference for NADP+ were evaluated (Calzadiaz-
Ramirez et al., 2020). These two FDHs were codon optimized to
the P. renovo chloroplast genome and assembled into our previously
established chloroplast integration vector for constitutive expression
utilizing phosphite dehydrogenase (ptxD) as a selectable marker
(Dahlin and Guarnieri, 2022). Transformant algae were obtained via
biolistics, and homoplasmy of the chloroplast genomes was
confirmed via PCR and Sanger sequencing utilizing primers
flanking the insertion site, as described previously (Dahlin et al.,
2019; Dahlin and Guarnieri, 2022) (Figure 3).

2.3 Formate utilization under high CO2
cultivation

We next evaluated the potential for formate utilization in FDH-
expressing strains at non-growth-limiting (2%) CO2 concentrations
(Figure 4). Growth in media supplemented with 25 mM formate was
observed for the NAD+-utilizing FDH variant, with 48% ± 1% of
formate consumed from the culture media after 85 h of cultivation.
Conversely, no growth and no formate utilization were observed for
the strain expressing the NADP+-utilizing FDH variant. The wild-
type culture did not grow on formate and no formate utilization was
observed (Figure 4). Following down selection to the NAD+-utilizing
FDH variant, cultivation capacity on 10 mM sodium formate was
assessed to determine if reducing formate levels could decrease
residual inhibitory effects of formate and lead to increased
growth and percentage of formate utilized. Indeed, a higher

FIGURE 2
Formate toxicity screening in P. renovo. Growth curves of P.
renovowith varying sodium formate concentrations, at pH = 6.0 in the
presence of 2% CO2. Data represents the average and standard
deviation of 3 biological replicates.

FIGURE 3
Formate dehydrogenase plastid integration in P. renovo. (A) Genetic construct for expression of FDH in the chloroplast genome. (B) PCR
amplification of the formate dehydrogenase insert, verifying homoplasmy of the chloroplast genome. WT, wild-type P. renovo; NADP-FDH, transformant
P. renovo expressing the NADP+-FDH variant; NAD-FDH, transformant P. renovo expressing the NAD+-FDH variant.
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culture density was reached when cultivated under 10 mM formate
compared to 25 mM formate, potentially due to decreased inhibitory
effects when cultivated at lower formate concentrations (Figure 4).
Taking evaporative losses into account, formate consumption of the
NAD+ FDH strain at 85 h was 77% ± 2%. Notably, formate
utilization was coincident with growth, with most of the formate
consumption occurring during the active growth phase of P. renovo
(hours 24–72) (Figure 4). Additionally, formate utilization rates
were higher when cultivated under 25 mM formate as compared to
10 mM formate, with observed rates of 0.144 ± 0.004 and 0.083 ±
0.006 mmol/h, respectively.

2.4 Formate utilization under ambient CO2
cultivation

P. renovo grows significantly slower when cultivated on air,
compared to 2% CO2. To determine the differential impacts on
formate toxicity at ambient CO2, additional toxicity analyses were
conducted at 1-, 2.5- and 5-mM formate at a pH of 6.0 (Figure 5).
Under these conditions, 5 mM sodium formate completely inhibited
growth.

Following ambient CO2 toxicity screening, we next analyzed
growth at ambient concentrations of CO2 to determine if
exogenously supplemented formate (using 13C sodium formate)
could lead to a growth enhancement and incorporation of carbon
derived from formate into the biomass under CO2-limited
conditions. As shown in Figure 6, cells expressing FDH displayed
enhanced growth when supplemented with 5- or 10-mM formate,
growing to a higher final culture density than those without formate

supplementation. Formate concentrations dropped from the initial
starting concentrations, with complete utilization for the 5 mM
culture and 78% ± 1% for 10 mM, as measured via HPLC. Under
these same conditions, no formate utilization was observed in wild-
type cultures (Figure 6). The initial growth rates of wild-type and
NAD+-FDH-expressing strains were equivalent. However, following
~100 h of cultivation, the unsupplemented wild-type culture enters
stationary phase whereas the supplemented NAD+-FDH-expressing
strain continues to grow to > 4.3X optical density relative to wild-
type. Increasing the formate concentration from 5 mM to 10 mM led
to an increase in final optical density of 2.0–2.3. Similar to the results
observed at 2% CO2, formate utilization rates were higher when
cultivated under 10 mM formate compared to 5 mM, with rates of
0.022 ± 0.001 and 0.014 ± 0.001 mmols/h, respectively. To highlight
changes in media pH due to consumption of ammonium chloride
(lowering pH) and sodium formate (increasing pH), we analyzed
pH at hour 380. Notably, wild-type cultures without added formate
decreased in pH, while the FDH expressing strain with 5 mM
formate maintained the initial starting pH. Finally, 13C analysis
confirmed incorporation of the carbon contained in the formate into
cellular biomass, with 6.0% and 8.6% 13C for 5 and 10 mM,
respectively, compared to the natural abundance of ~1.1%.

Given that low pH cultivation is suboptimal for P. renovo
growth, we also assayed cultivation capacity of wild-type and the
NAD+ FDH expressing strain on 0- and 5- mM formate at a pH of
7 (Supplementary Figures S1, S2). In regard to formate toxicity,
supplementation with 5 mM formate led to equivalent growth as
0 mM, i.e., 5 mM was not toxic in the wild-type strain. In the
absence of formate supplementation, increased growth in the
wild-type culture was observed, reaching a peak OD of 1.6,

FIGURE 4
Growth and formate utilization analyses for Wild-type and FDH expressing P. renovo supplemented with 25 (A,B) and 10 (C,D) mM formate. (A,C)
Growth curves of wild-type, and FDH-expressing P. renovowith 25- and 10-mM sodium formate addition at non-growth-limiting (2%) CO2 conditions at
pH = 6.0. (B,D)HPLC analysis of culture supernatant for formate utilization. Data represents the average and standard deviation of 3 biological replicates.
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compared to 0.4 for pH 6.0. However, the NAD+ FDH expressing
strain had lower formate utilization at pH 7.0, with 63% ± 5%
utilized after 525 h of cultivation. This represents a rate of 0.007 ±
0.001 mmol/h, lower than that observed above for cultivation at
the lower pH of 6.0. Decreased formate utilization capacity at
pH 7.0 was further corroborated by 13C analysis, wherein only 4%
of the biomass was labeled, compared to 6% for the equivalent
culture at a pH of 6.0.

3 Discussion

CO2 delivery has been predicted to account for nearly 20% of
algal biomass production costs and also presents carbon utilization
efficiency (CUE) hurdles due to poor gas-liquid mass transfer and
rapid off gassing in open systems (Davis et al., 2016). Improved
carbon delivery and CUE could be achieved via the direct feeding of
water-soluble formate to phototrophic systems, which would
concurrently deliver necessary carbon and reducing equivalents
for growth. Additionally, the relatively low concentration of
atmospheric CO2 can be a key limiting factor in terrestrial
phototroph productivity. Therefore, photoformatotrophy could
also be deployed in terrestrial crops to enhance productivity in
support of a bioeconomy and increasing global food production
demands (Blankenship et al., 2011; Hann et al., 2022).

To fully bring to bear the potential of photoformatotrophy, a series
of key conversion hurdles will require targeted bypass. Enhancement of
formate utilization may be achieved by targeting a number of
interacting variables, including formate/formic acid transport rate
across the cell membrane, which may occur via passive or active
transport mechanisms. Additionally, the activity of the expressed
FDH may be limiting and presents a high-potential target for
protein engineering and screening. Finally, the pool of intracellular
oxidizing equivalents in the form of NAD(P)+ can be targeted.

With regard to formate transport, genomic analysis of P. renovo
identified a putative formate/nitrite transporter with 39% homology to
the fdhC formate transporter in Methanobacterium formicium. This
fdhC homolog also encodes a conserved formate/nitrite transporter

FIGURE 5
Formate toxicity screening in P. renovo at ambient CO2. Growth
curves of P. renovo with varying sodium formate concentrations, at
pH = 6.0. Data represents the average and standard deviation of
3 biological replicates.

FIGURE 6
Growth, formate utilization, pH analyses, and 13C carbon content for wild-type and FDH expressing P. renovo supplemented with varying sodium
formate amounts at ambient CO2 levels. (A) Growth curves of wild-type, and NAD+ FDH-expressing P. renovo with varying sodium formate additions at
growth-limiting ambient (0.04%) CO2 conditions at pH = 6.0 (B)HPLC analysis of culture supernatant for formate utilization. (C) pH values after 380 h of
cultivation for 0- and 5-mM formate cultures. (D) Endpoint 13C analysis of biomass, reporting the percent of 13C when grown on labeled sodium
formate. Data represents the average and standard deviation of 3 biological replicates.
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domain with 6 associated transmembrane domains, which could be
responsible for formate transport in this alga, in conjunctionwith passive
diffusion (White and Ferry, 1992; Wood et al., 2003; Hallgren et al., in
press). Genetic engineering and culture optimization for increased
formate transport is an area of future work that could be achieved
through heterologous expression of various characterized formate
transporters, or through manipulation of culture pH to concurrently
optimize formate transport and cellular growth (White and Ferry, 1992;
Wang et al., 2009; Wiechert et al., 2017). It is also important to note that
with the cultivation strategy proposed herein, formate needs to be
transported across both the cell and chloroplast membranes,
potentially necessitating transporters for both membrane localizations.

Notably, under the conditions tested here, as P. renovo utilizes
sodium formate an OH− anion is generated, which can increase culture
pH. Conversely, consumption of ammonium salts (such as the
ammonium chloride utilized herein) will decrease culture pH via
formation of a H+ ion (Calvey et al., 2023). This can lead to
alterations in pH that respectively decrease formate transport or
inhibit growth. These phenomena explain the observed
pH differences in Figure 6 and large growth differential between
wild-type cultures without formate compared to NAD+ FDH
expressing cultures supplemented with formate, despite the relatively
low (~6–8%) 13C labeling. The increase in growth with formate
supplementation is thus likely due to a combination of increased
carbon availability from formate coupled to a more favorable growth
pH induced by formate oxidation. Future work will eliminate these
pH fluctuations by the addition of ammonium hydroxide (as a cellular
nitrogen source) and formic acid in pH-stat fed bioreactors, which
results in no net change to culture pH as formic acid and ammonium
hydroxide are utilized (Calvey et al., 2023). Additionally, given the
incongruence between optimal growth and formate utilization pH,
future work will need to target enhancement of transport at neutral
pH (e.g., via transporter engineering) or adaptation of P. renovo for
improved growth at acidic pH (e.g., via adaptive laboratory evolution).

Alternatively, inherent FDH kinetics and cofactor specificity
may limit FDH activity, and thus hinder formate utilization. As
such, screening of alternative FDH variants offers a promising
route to identify FDH with increased formate utilization kinetics.
At a high level, known FDH enzymes are separated into two
classes, metal-independent, and metal-dependent. While the
metal-independent class is generally less cumbersome for
heterologous expression, due to single subunit functionality
(such as the Pseudomonas variant utilized herein), metal-
dependent FDHs are generally more complex and have more
favorable kinetics (Il Oh and Bowien, 1998; Moon et al., 2020;
Young et al., 2020). Localization of the FDH offers a further
opportunity for optimization; for example, addition of a
RuBisCO binding motif to the FDH may localize the FDH to
RuBisCO, such that CO2 produced from formate oxidation is
readily available for fixation by the enzyme (Itakura et al., 2019;
Meyer et al., 2020). In the results presented herein, the NADP+

utilizing FDH variant did not grow in the presence of formate,
suggesting minimal to no functionality. This was unexpected, as
NADP+ is generally considered to be the most abundant
dinucleotide cofactor in the chloroplast (Cutolo et al., 2020).
The lack of NADP+ FDH functionality in P. renovo could be
due to a higher proportion of NADPH, limiting the availability
of non-reduced NADP+ equivalents needed for FDH functionality,

or the relatively poor enzyme kinetics of the NADP+-utilizing FDH
variant (Calzadiaz-Ramirez et al., 2020).

Finally, NAD+ levels may limit formate utilization by failing to
provide sufficient oxidizing equivalents needed for FDH activity. NAD+

levels in phototrophic systemsmay be increased through either limiting
light intensity or decreasing light absorption by the photosynthetic
antenna. However, such approaches could limit photo-productivity.
Alternatively, metabolic pathways that require large amounts of
reducing equivalents could be upregulated, or novel pathways
introduced, such as starch, lipid, or terpenoid biosynthesis, which
would in turn produce useful biochemical intermediates while
regenerating needed oxidizing equivalents for formate utilization.

In summary, we have taken the first steps towards engineering a
phototroph for formatotrophy, establishing proof-of-concept for
photoformatotrophy. This strategy offers the potential for a series of
benefits to enhance the productivity of phototrophs via the delivery of
reduced carbon in the form of formate that can be readily produced
from CO2 via electrolysis. First, in comparison to gaseous substrates
such as CO2, formate is notably easier to both store and transport
(Cotton et al., 2020). Second, formate is completely miscible in water
thereby increasing mass transfer while decreasing potential for CO2 off
gassing which ultimately manifests as low system CUE. Third, formate
also enables the ultimate conversion of electrical energy to cellular
energy (i.e., reducing equivalents), in turn enabling higher cell density
cultivation. Fourth, formate is broadly toxic tomany organisms, as such,
contamination can be greatly reduced, which can lead to drastic declines
in biomass yields during cultivation of both aquatic and terrestrial
phototrophs (Grunwald et al., 2015; Claassens et al., 2020; Cotton et al.,
2020). While a number of these benefits apply to aquatic species,
application of formate feeding to higher plants represents an additional
exciting area of future work. Finally, this work lays the foundation for
incorporation of more efficient, direct formate utilizing pathways, such
as the reductive glycine and formolase pathways, and integration with
microbial electrosynthesis approaches wherein formate serves as an
electron and carbon mediator molecule, to ultimately enable a
photosynthetically-driven formate bio-economy (Bar-Even et al.,
2013; Bar-Even, 2016; Bar-Even, 2018; Claassens et al., 2019; Cotton
et al., 2020; Naduthodi et al., 2021).

4 Methods

4.1 Strain and cultivation conditions

Formate toxicity screeningwas carried out utilizing amodification of
our previously describedmedia (Dahlin et al., 2019).Mediawas prepared
with 250mL of seawater (Gulf of Maine, Bigelow Labs), and 750 mL of
deionizedwater.Macro nutrient concentrationwas 5 mMN(asNH4Cl),
and 0.313mMP (as NaH2PO4). Trace metals were 1.06 × 10−4 M Si (as
Na2SiO39H2O), 1.17 × 10−5 M Fe (as FeCl3 6H2O), 1.17 × 10−5 M EDTA
(as Na2EDTA 2H2O), 3.93 × 10−8 M Cu (as CuSO4 5H2O), 2.60 ×
10−8 M (asNa2MoO4 2H2O), 7.65 × 10

−8 MZn (as ZnSO4 7H2O), 4.20 ×
10−8 M Co (as CoCl2 6H2O) and 9.10 × 10−7 M Mn (as MnCl2 4H2O).
Vitamins were added as follows, thiamine HCl (2.96 × 10−7 M), biotin
(2.05 × 10−9 M) and cyanocobalamin (3.69 × 10−10 M). Tracemetal, silica
and vitamin stock solutions were purchased from Bigelow Labs. Media
was buffered with 10 mM Bis-Tris, and media pH was adjusted to
6.0 using concentrated HCl.
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Sodium formate (HCO2Na) was added to the above media to
obtain the desired formate concentration for experiments at 2%
CO2,

13C sodium formate (Sigma 279412) was utilized for
experiments done at ambient CO2. To assay for formate toxicity,
45 mL of culture (in a 250 mL Erlenmeyer flask) was inoculated
from mid log phase cells to an optical density (750 nm) of 0.025.
Cultures were mixed via shaking (170 rpm) at 33°C, 2% CO2, and
125 uE cool white LED lighting. For experiments relating to formate
utilization, the above conditions and media were used, with varying
CO2 concentrations in a Percival Scientific growth chamber.

4.2 Construct assembly and transformation

FDH variants utilized were mutated from the Pseudomonas
sp. 101 FDH, specifically NAD+ utilizing variant (A198G) and
NADP+ utilizing variant (A198G/D221Q/C255A/H379K/S380V),
as described in Calzadiaz-Ramirez et al. (2020). FDH
transformation vectors were prepared by Twist Bioscience,
cloning a ribosomal binding site (AGGAGGTTATAAAAA) and
codon optimized (Geneious Prime, Supplementary Table S1) FDH
downstream of the ptxD selectable marker in our previously
described chloroplast transformation vector (Dahlin and
Guarnieri, 2022). P. renovo transformation was carried out as
described previously, with the exception that Critter Technology
binding and precipitation buffers were used according to the
manufacturers recommendations to bind DNA (plasmid prepared
by Twist Bioscience) onto the gold microcarriers for biolistic
transformation (Dahlin et al., 2019; Dahlin and Guarnieri, 2022).

4.3 Formate quantitative analysis

Formate quantification was carried out by high performance
liquid chromatography using an Agilent 1,100 series system. Six µL
of filtered cell-free supernatant was used for injection into the Bio-
Rad HPX-87H (300 × 7.8 mm) ion exchange column. Elution of the
organic acid was carried out with 0.01 N sulfuric acid at a flow rate of
0.6 mL per min. The column temperature was maintained at 55°C.
The retention peak time was recorded using Chemstation software
followed by quantification using a standard curve generated for
formate.

4.4 13C analysis

13C analysis was performed on freeze dried algal biomass
collected at the endpoint of cultivation (hour 525 in Figure 6).
Briefly, aliquoted samples were combusted with a Flash
2000 elemental analyzer (Thermo), with isotope abundance
measured via an attached continuous-flow stable isotope ratio
mass spectrometer (Delta V; Thermo), as described previously
(Henard et al., 2021). Sample values were corrected for offset and
scale using a 3-point scale correction and a suite of isotope and
organic content standards. Calculations and data correction were
performed using a suite of R scripts using R statistical software
(v4.2.0) and the RStudio 2022.07.0 interface with Tidyverse and
IsoVerse packages (Kopf et al., 2021; Wickham et al., 2023).
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