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With the rapid development of multi-omics technologies and accumulation of
large-scale bio-datasets, many studies have conducted a more comprehensive
understanding of human diseases and drug sensitivity frommultiple biomolecules,
such as DNA, RNA, proteins and metabolites. Using single omics data is difficult to
systematically and comprehensively analyze the complex disease pathology and
drug pharmacology. The molecularly targeted therapy-based approaches face
some challenges, such as insufficient target gene labeling ability, and no clear
targets for non-specific chemotherapeutic drugs. Consequently, the integrated
analysis of multi-omics data has become a new direction for scientists to explore
the mechanism of disease and drug. However, the available drug sensitivity
prediction models based on multi-omics data still have problems such as
overfitting, lack of interpretability, difficulties in integrating heterogeneous data,
and the prediction accuracy needs to be improved. In this paper, we proposed a
novel drug sensitivity prediction (NDSP) model based on deep learning and
similarity network fusion approaches, which extracts drug targets using an
improved sparse principal component analysis (SPCA) method for each omics
data, and construct sample similarity networks based on the sparse feature
matrices. Furthermore, the fused similarity networks are put into a deep neural
network for training, which greatly reduces the data dimensionality and weakens
the risk of overfitting problem. We use three omics of data, RNA sequence, copy
number aberration and methylation, and select 35 drugs from Genomics of Drug
Sensitivity in Cancer (GDSC) for experiments, including Food and Drug
Administration (FDA)-approved targeted drugs, FDA-unapproved targeted
drugs and non-specific therapies. Compared with some current deep learning
methods, our proposed method can extract highly interpretable biological
features to achieve highly accurate sensitivity prediction of targeted and non-
specific cancer drugs, which is beneficial for the development of precision
oncology beyond targeted therapy.
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1 Introduction

In the last few years, due to the continuous development of high-
throughput bio-data and bioinformatics technologies, people have
paid more and more attention to analyze tumor biomarkers and
drug targets. The use of genomic data to guide the treatment of
cancer patients represents the central principle, which matches
patients to specific tumor types and treatments based on the
molecularly targeted drugs (Zhang and Yue, 2015) (Kumar-Sinha
and Chinnaiyan, 2018) (Chen et al., 2019). Researchers have
identified many molecular lesions as triggers that drive cancer,
and suggested that each cancer has its own genetic imprint and
tumor marker. The corresponding therapeutic drug is designed for a
well-studied target that promotes tumor growth (the target can be a
protein molecule on the surface or inside the tumor cell, or a gene
fragment). However, the drug response and sensitivity to cancer
treatment (chemotherapy or targeted drugs) is a complex
pharmacology that usually depends on many factors, especially
the patient’s genomic profile (Lee et al., 2018). In clinical
practice, molecularly targeted drugs are recommended for
patients only if the target gene is mutated. However, according to
available studies, only about 9% of patients can be identified by
known target genes in precision therapy (Min et al., 2018).
Additionally, only about 11% of patients can enter clinical trials.
Most importantly, only 5% of patients achieve optimal treatment
outcomes in precision oncology (Cheng et al., 2018) (Marquart et al.,
2018) (Zehir et al., 2017). In consequence, there are limitations in
selecting drugs for molecularly targeted therapies based on the
genomic status of the patient. Large-scale pharmaco-genomes
based on cell lines or patient-derived xenografts (PDX) models in
recent years have been working to uncover relationships between
multi-omics biosignatures and drugs, aiming to obtain drugs that
match tumors. The results of PDX and existing large-scale
pharmacogenetic screens of cell lines show that nearly all cancer
patients are sensitive to one or more targeted drugs or non-specific
chemotherapeutic drugs. As a result, how to accurately match cancer
patients with their sensitive drugs is currently a critical research
challenge.

According to the previous summary, there are usually two
computational and analytical approaches for predicting drug
response. The first one is using regression approaches to
predict the value of the evaluation criteria of cell lines to drug
response, and the second one is classifying the sensitivity of each
drug on the basis of cell lines (Ahmadi Moughari and Eslahchi,
2021). Choi et al. presented a computational model based on the
elastic network regressions and deep neural networks (Choi et al.,
2020). They predicted the probability of drug sensitivity of a
specific cell line to a drug based on the similarity of the drug to a
reference group. Wang et al. proposed a matrix factorization with
similarity regularization model (SRMF) to predict drug response
values, which is based on the gene expression similarity of cell
lines and pharmacochemical similarity (Wang et al., 2017). In
addition, there are many other regression computational
methods. When recommending appropriate and effective
therapies for cancer patients, it is important to determine the
drugs to which they are sensitive. However, even knowing the
drug response value itself may not provide additional
information in clinical treatment. Therefore, classifying cell

lines as sensitive or resistant to each drug is a more
straightforward and effective method than regressing their
response values. Furthermore, the regression problem could
have been transformed into a classification problem by setting
a threshold value.

Most studies have shown that gene expression data is the most
powerful data type for classifying and predicting drug response
(Ding et al., 2016) (Iorio et al., 2016) (Graim et al., 2018) (Koras
et al., 2020). In 2014, there were scholars who used baseline gene
expression levels and in vitro drug sensitivity of cell lines to predict
clinical drug response (Geeleher et al., 2014). MJ et al. used gene
expression microarrays to assess the prognosis of patients with
primary breast cancer (Van De Vijver et al., 2002).

Non-etheless, with the development of next-generation
sequencing and mass spectrometry technologies, which
accelerates the development of omics research toward
quantification and high throughput, there is an increasing need
for the ability to fuse biological features to study whole treatment
processes. Proteomic, transcriptomic, methylomic, histone post-
translational modifications, and microbiomic features all
influence the host response to various diseases and cancers. The
integration of multi-omics approaches has led to a deeper
understanding of disease etiology, where data from a single
genomics cannot capture the complexity of all factors associated
with understanding a phenomenon (e.g., disease) (Zitnik et al.,
2019). Models that integrate multi-omics data to identify
patients’ drug sensitivity in advance have become the central
object of cancer research (Olivier et al., 2019) (Chaudhary et al.,
2018).

Researchers have already proposed some multi-omics machine
learning and deep learning methods for drug sensitivity prediction.
However, the biomolecular data are often high-dimensional, e.g.,
methylation data may be 400,000 to 500,000 dimensions while the
sample size is only about 1,000. These methods may suffer from
overfitting problems and have difficulties in fusing multi-omics data.
In addition, the interpretability of deep neural networks is relatively
low, and biomedical methods lacking interpretability make it
difficult for the reliable diagnoses of doctors. Moreover, the
accuracy of these existing models also has some room for
improvement.

In response to these challenges, we proposed a novel multi-
omics drug sensitivity prediction model (NDSP) based on deep
learning and similarity network fusion approaches. The model
extracts biomarkers using an improved sparse principal
component analysis (SPCA) method for each omics data, and
constructs sample similarity networks based on the sparse
biomarker matrices, which greatly reduces the dimensionality of
multi-mics data and weakens the risk of overfitting in the training
process of deep learning. Finally, the fused similarity networks are
put into a deep neural network for training and the model can
make full use of the high integrability and interpretability of the
similarity networks. Compared with some current deep learning
methods, our proposed model has the ability to handle high
dimensional data and highly interpretable feature selection
capabilities. More importantly, the model has higher prediction
accuracy than existing models for both targeted and non-specific
therapeutics drugs, which is beneficial for the development of
precision oncology.
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2 Related work

2.1 Single gene expression data models

A number of researchers have proposed cancer drug sensitivity
prediction models based on single genomics data. For example, Ali
oskooei et al. proposed a network-based tree integration (netBite)
machine learning approach to identify the biomarkers of drug
sensitivity using gene expression data. The authors applied the
netBite model to a set of GDSC data for 50 anticancer drugs,
where Linifanib was able to achieve an accuracy of about 0.7,
and demonstrated that netBite outperformed Random Forest in
predicting IC50 drug sensitivity, but only for drugs targeting
membrane receptor pathways (MRps): iGfR, RtK and eGfR
signaling pathways (Oskooei et al., 2019). Gilleher et al.
integrated several computational and statistical tools such as
linear ridge regression, logistic ridge regression, elastic network
and lasso regression to analyze the data of 138 drugs from nearly
700 cell lines to predict drug sensitivity in vivo. The experiments
proved that ridge regression models trained on GDSC gene
expression data could be translated to clinical trial data of
Erlotinib, Docetaxel, Bortezomib, and Cisplatin. The paper also
indicated that the inclusion of non-breast cancer samples in
model training process improves the predictive accuracy of the
final model compared with the models trained on breast cancer
cell lines only (Geeleher et al., 2014). This gene expression delivery
pathway based on ridge regression also roughly predicted the drug
response of The Cancer Genome Atlas (TCGA) (Geeleher et al.,
2017) (Weinstein et al., 2013).

2.2 Multi-omics data models

Due to the large biological system, the single genomics data
cannot capture all complex factors related to understanding a
biological phenomenon (e.g., disease) (Zitnik et al., 2019).
Learning methods that integrate multi-omics data are beginning
to be widely used in biology and medicine, such as identification of
driver genes (Dimitrakopoulos et al., 2018) (Mo et al., 2013), patient
stratification (S Khakabimamaghani et al., 2019), cancer subtype
discovery (Liang et al., 2014), patients survival prediction
(Chaudhary et al., 2018), and drug sensitivity prediction. More
and more multi-omics drug-sensitive datasets are made publicly
available, especially in pan-cancer models (Iorio et al., 2016). The
application of multi-omics data allows machine learning models to
better characterize biological processes from different perspectives
(Wang et al., 2014) (Argelaguet et al., 2018).

Ding et al. proposed a data-driven precision medicine approach
to learn new biological features from omics data to address the
dimensionality challenge. The copy number variation, mutation,
and gene expression data were concatenated. The variance-based
mixed-fit feature selection was performed using the original omics
features as the input to the elastic network approach to predict the
binarized IC50 values (Ding et al., 2018). Chiu et al. also proposed an
autoencoder-based integrated genomic profiling deep learning
model for drug response prediction (Chiu et al., 2019). The
model contained three deep neural networks. The first layer was
a mutation encoder pre-trained using a large pan-cancer dataset

(The Cancer Genome Atlas; TCGA) to abstract the core
representation of high-dimensional mutation data. The second
layer was a trained expression encoder, and the third layer was a
drug response prediction network that integrated the first two sub-
networks. Hossein et al. presented a multi-omics drug response
prediction model named MOLI based on deep neural network
(Sharifi-Noghabi et al., 2019), which integrated three omics data
of somatic mutations, copy number aberrations and gene expression
data for multi-omics analysis. To address the key challenge of how to
integrate diverse data types, the model proposed the first end-to-end
post-integration approach. This approach used each histological
data type to make separate type-specific neural networks, and every
encoding sub-network learned features on behalf of its omics data
type. Moreover, the extracted features were connected into the
feature representation, which was optimized by a joint cost
function made up of a binary cross-entropy loss and a triplet
loss, while updating all the data for three omics.

2.3 Patient similarity network

Although machine learning methods can handle large-scale
data, they are usually considered as black boxes that do not
explain well the favorability of specific features for prediction.
Interpretability is particularly needed in clinical treatment.
Patient similarity networks, a framework that excels in
integrating heterogeneous data, handling sparse data, and
generating interpretable models, has been applied to several
biological fields with good results (Li et al., 2015) (Wang et al.,
2014). Pai et al. proposed the interpretable patient classification
model (netDx), which was a supervised machine learning approach
similar to a recommender system using integrated patient similarity
networks (Pai et al., 2019). Patients in unknown states can be
grouped according to their similarity to determine its risk of the
certain disease. The model integrates six types of data across four
cancer types, and the experiment results show that netDx performs
significantly better than most other machine learning methods on
most cancer types. Compared with traditional machine learning-
based patient classifiers, the results of netDx are more interpretable
and allow visualization of decision boundaries in the context of
patient similarity space.

2.4 Limitations of the existing models

The existing deep learning approaches based onmulti-omics data
still have four major challenges. First, learning new information
features from omics data is a key step for model-based drug
sensitivity prediction. However, biomolecular datasets tend to be
high-dimensional, i.e., with a large number of features and a small
number of samples. There is a significant risk of overfitting using deep
learning models. Second, deep learning models are a black box, and
researchers need to spend a lot of effort to explain what role specific
features play in prediction. The black-box approaches are difficult to
succeed in the clinical setting because physicians must have an
understanding of the underlying relevant features of the disease in
order to make a confident and reliable diagnosis. Third, how to
integrate different data types is a key challenge in multi-omics
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analysis, and the main ways are early integration and late integration.
In the previously mentioned models that fuse the feature
representations learned from each omics before classification, a
large number of unaligned gene points are inevitably discarded
actively to facilitate feature fusion, leading to data loss problems.
Fourth, the results of existing multi-omics drug response prediction
methods are unsatisfactory, and there is space for improvement.

3 Materials and methods

3.1 Datasets

In this study, we utilize the available oncology therapeutic
genomic data from the Genomics of Drug Sensitivity in Cancer
(GDSC) database. This dataset is widely analyzed by statistical and
machine learning approaches for drug sensitivity prediction. For
example, cell line similarity and drug similarity based models (Sheng
et al., 2015), quantitative structure-activity relationship (QSAR)
analysis using kernelized Bayesian matrix decomposition
(Ammad-Ud-Din et al., 2014), lasso and elastic network models
for predicting drug sensitivity and target identification (Barretina
et al., 2012) (Park et al., 2015).

We select mutation data, cell line annotation and drug IC50 data
from GDSC, including targets, signaling pathways, point mutation
and copy number variation information and IC50 values of some
genes, and several phenotypes for 518 oncology drugs in 988 cell
lines. For drug sensitivity study, we select 35 drugs from the GDSC
database as experimental subjects, including 14 FDA-approved
targeted therapeutics, 16 drugs with clear targets but not yet
approved by FDA, and 5 non-specific cancer therapeutics
without targets, as shown in Figure 1.

3.1.1 RNA-sequence data
The RNA-Sequence data is downloaded from the European

Bioinformatics Institute (EMBL-EBI): https://www.ebi.ac.uk/
arrayexpress/experiments/E-MTAB-3610/. The genomic
signature of each cell line contains RNA-Sequence values for
44,421 probes, which is known as whole transcriptome shotgun
sequencing (WTSS). It contains transcriptional analysis of

1,000 human cancer cell lines to explore questions such as the
state of genomic signature on drug response and whether
genomic alterations synergistically explain more of the
variation in drug response. RNA Sequencing has been
considered an effective method for gene discovery, helping to
view different transcripts of genes, post-transcriptional
modifications, gene fusions, mutations/SNPs, changes in gene
expression over time, and differences in gene expression in
different groups.

3.1.2 Copy number aberration (CNA) data
The CNA data is downloaded from Cell Model Passports:

https://cellmodelpassports.sanger.ac.uk/downloads. Copy number
aberration exists in DNA fragments of natural populations and is
a common form of structural genomic variation. Abnormal DNA
copy number variation is an important molecular mechanism for
many human diseases such as cancer and hereditary diseases.
Deletion fragments may contain oncogenes for tumors, while
amplified fragments may harbor oncogenes. The genomic
signature of each cell line in the collated data contains somatic
copy number variation for 21,878 gene loci.

3.1.3 Methylation data
The methylation data is downloaded from Gene Expression

Omnibus (GEO): https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE68379. It reports how cancer-driven alterations
detected in 11,215 tumors and 29 different tissues (integrating
multiple omics) correlate with responses to 265 compounds in
1,001 cancer cell lines. Cell lines are very similar to tumors in these
areas of alteration, and there are many examples of altered genes
and pathways conferring drug sensitivity and resistance.
Methylation is an important modification of proteins and
nucleic acids that regulates the expression and shutdown of
genes and is closely associated with many diseases such as
cancer, aging, and Alzheimer’s disease, and is one of the key
studies in epigenetics. Here we use DNA methylation, which
turns off the activity of certain genes, and altered DNA
methylation status is prevalent in tumors. The genomic
signature of each cell line in our experiments contains the
methylation status values of 365,860 CpG loci.

FIGURE 1
Descriptive classification of drugs in experiments.
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3.2 SPCA with feature importance

Hui Zou et al. first proposed the concept of sparse principal
component analysis (SPCA) in 2006 (Zou et al., 2006). Suppose
X ∈ Rm×n is a data matrix withm features and n samples. The SPCA
via L0 -penalty can be adopted to analyze the matrix:

maximize
u‖ ‖2 ≤ 1

uTXXTu, s.t. u‖ ‖0 ≤ s, (1)

where u is am × 1 vector to represent the first principal component
(PC) loading and s represents the number of genes retained by the
model, ‖u‖2 represent L2 norms (Euclidean norm) and ‖u‖0 denotes
the L0 norm, which is equal to the number of non-zero elements of
u. Researchers usually use the singular value decomposition
framework (SVD) to solve this problem (Lin et al., 2016).
Therefore, Formula (1) can also be written as:

maximize
u‖ ‖2 ≤ 1, v‖ ‖2 ≤ 1

uTXv, s.t.‖ u ‖0 ≤ s, (2)

where v is n × 1 vector to represent the first principal component.
The following alternate iterative projection strategy (Journée

et al., 2010) is used to solve the problem in Formula (2) until
convergence:

u � û

û‖ ‖,where û � P z, s( ), and z � Xv

v � v̂

v̂‖ ‖, where v̂ � XTu

(3)

where P(z, s) is called s-sparse projection operator. It is a
p-dimensional column vector and its i-th (i � 1, 2, . . . , p)
element is defined as follows:

P z, s( )[ ]i � zi, if i ∈ supp z, s( ),
0, otherwise,

{ (4)

where supp(z, s) denotes the set of indexes of the largest s absolute
elements of z.

Our proposed model uses SPCA for dimensionality reduction
and feature selection. SPCA is an unsupervised model, and a feature
importance parameter t is calculated based on a classical machine
learning model—Random Forest (RF). The unsupervised SPCA
method and the supervised classification RF model are combined
to evaluate whether the genes in the selected PCs can better predict
the sensitivity of the drugs. The workflow of the SPCA with the
parameter t is shown in Figure 2.

Suppose there are M features X1, X2, ..., XM, K categories, and
D decision trees in the random forest. If the node where the feature
Xj appears in decision tree, the Gini index score GIj for the feature
Xj is expressed as follows:

GIj � 1 −∑ K| |
k�1 p

2
jk, (5)

where pjk denotes the proportion of the category k for the featureXj.
Suppose node(Xj) is the set that the feature Xj appears in the

nodes, the importance tjd of the feature Xj in the decision tree d:

tjd � ∑
node Xj( )∈d GIj. (6)

The importance tj of the feature Xj in the random forest:

tj � ∑D

d�1tjd. (7)

Finally, all the obtained importance scores are normalized to
calculate the feature importance:

FIGURE 2
Workflow of SPCA with feature (for example, gene) importance.
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tj � tj∑M
m�1tm

, (8)

where M denotes the number of features.
The improvement process of the SPCA with feature importance

is described as below. Firstly, the SPCA analyzes the data matrixX to
get theM largest elements of the absolute value of z, and to make all
other positions 0 for spare principal component operation. At this
point, the features in the selected principal components are put into
the RF classifier for evaluation. The obtained feature importance t
updates the data matrix X. This loop is repeated until convergence.

3.3 Similarity network fusion

After completing the SPCA with feature importance, we obtain
the independent feature matrix for each omics data, the RNA-
Sequence matrix S ∈ Ra×n, methylation feature matrix M ∈ Rb×n,
CNA feature matrix C ∈ Rc×n, and a, b, c denote the numbers of
features retained in each of the three omics. Next, a sample similarity
network needs to be constructed for each omics data.

Two main similarity calculation algorithms are used. The
Pearson correlation coefficient is suitable for linear continuous
variables and the Kendall correlation coefficient is suitable for
discrete variables.

For the RNA-Sequence and Methylation data, we use the
Pearson correlation coefficient:

rxy � ∑a
i�1 xi − �x( ) yi − �y( )����������������������∑a

i�1 xi − �x( )2∑a
i�1 yi − �y( )2√ , (9)

where n indicates the number of the samples, xi, yi denotes the
expression information of the i-th gene locus of sample x, y, �x, �y
denotes the mean gene expression value of sample x, y.

The CNA data are integer discrete representing the variance
multiples, so we use the Kendall rank correlation coefficient:

τ � C − E

( n
2
) , (10)

where C denotes the number of pairs of elements in x, y that have
consistency; E denotes the number of pairs of elements in x, y that
have inconsistency. ( n

2
) � 1

2 n n − 1( ) is the binomial coefficient of
the number of ways to select two items.

After the similarity calculation, three independent sample
similarity matrices are obtained, S′∈ Rn×n, M′ ∈ Rn×n , C′ ∈ Rn×n.
The data of each omics are turned into n × n size matrices, so that
hundreds of thousands of dimensions of omics data reduce to
thousands of dimensions of sample similarity matrix, which not
only solves the problem of high dimensionality, but also makes the
integration operation of multi-omics heterogeneous data much
easier. We directly stitch the matrices of several omics data
horizontally, as shown in Figure 3, and then use the deep
learning model to perform classification operations, instead of
turning multi-omics data into one matrix by superposition. This
can avoid the information loss during fusion of the multiple
omics data.

3.4 Deep learning approach

We construct a simple 7-layer deep neural network model and
put the n × 3n fused similar networks into it for training (Figure 4).

This neural network contains three one-dimensional
convolutional layers, each convolutional layer is followed by a max
pooling layer, and a batch normalization layer added after the last
convolutional layer. In addition, the first two fully connected layers
use “relu” as the activation function while the third fully connected

FIGURE 3
Integration of three similarity networks.
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layer uses “softmax”. The cross-entropy loss function is used, which is
a commonly measurement in dealing with classification problems.

4 Experiment results

The deep learning autoencoder model (Chiu et al., 2019), in which
the mutation encoder and gene expression encoder were linked the
prediction network. The multi-omics post-integration with deep neural
networks model (MOLI) (Sharifi-Noghabi et al., 2019) takes somatic
mutation, copy number aberration and gene expression data as input,
and integrates them for drug response prediction. We conduct
experiments on these two deep learning models and the interpretable
patient classificationmodel using an integrated patient similarity network
(netDx-RF, netDx-EN, netDx-AdaBoost, netDx-SVR, netDx-KNN) (Pai
et al., 2019) to compare the results with our proposed model NDSP.

The 35 drugs we selected include 30 targeted drugs and 5 non-
targeted chemotherapy drugs, with the targeted drugs divided into
14 FDA-approved drugs in clinical use and 16 FDA-unapproved
drugs. The results are evaluated using the sensitivity, specificity,
precision, accuracy and F1-score of the model as indicators. Finally,
we use the metascape platform to perform enrichment analysis of
targets retained by our proposed method NDSP during feature
selection and analyze the association and biological significance
of these targets with that drug and disease.

In the data preprocessing step, we collected and classified themulti-
omics samples (cell lines) into sensitive and non-sensitive classes based
on the binarized IC50 values of each specific drug. The unsupervised
SPCA in our proposed model NDSP is first used for dimensionality
reduction and feature selection. At this time, the PCs based on the SPCA
may not relate with the specific drug. Therefore, the supervised model
Random Forest (RF) is combined to evaluate whether the genes in the
selected PCs could better predict the sensitivity of the specific drug. The
feature importance parameter t is calculated based on the classification
results of the RF. By updating the feature importance t and repeating the
loops of SPCA and RF, the genes in the selected PCs can strongly
correlate with the sensitivity of the specific drug.

4.1 Results of targeted therapy drugs

The mean values of each metric for our proposed method NDSP
and the seven baseline models in the 30 targeted drug trials are
shown in Table 1.

As can be seen from Table 1, the average sensitivity and
specificity of NDSP can reach 91% and 91%, respectively, and
basically exceed the baseline models in each index. Although the
specificity is a little lower than the netDx model using the RF
classifier, but the sensitivity is 23% higher than the netDx model.
Overall, the best performance among the seven baseline models is
still the MOLI model, but its average sensitivity, specificity,
precision, accuracy and F1 scores can only reach 0.76, 0.86, 0.82,
0.82, and 0.8, respectively.

As shown in Figure 5, the accuracy of NDSP basically reaches
0.9. The netDx model tests five classifiers: EN, SVR, KNN,
AdaBoost, and RF. We can see that the accuracy of netDx with
RF classifier is the best, but it still has some distance from our
proposed model NDSP. NDSP has the highest overall accuracy and
fewer outlier points, indicating stable performance. In general, the
experiment results of NDSP are the best in regards to the accuracy.

Figure 6 shows the prediction precision of NDSP trained on
30 targeted therapy drugs. It can be seen that the precision of our
model on each targeted drug is above 0.82 and is mainly
concentrated on 0.88 to 0.93.

4.2 Results of non-targeted therapy drugs

To verify whether our proposed model NDSP can work in
precision oncology beyond targeted therapy, we conduct
experiments on 5 non-specific therapeutic drugs. The mean
values of each index for the eight models in the five experiments
with non-targeted drugs are shown in Table 2.

The comparison results in Table 2 are similar to the
experiments on targeted drugs. NDSP could achieve an average
sensitivity and specificity of 0.9 and 0.92 respectively on non-
targeted therapy drugs, and basically exceed the baseline models in
all metrics. The specificity of the netDx model using the RF
classifier is higher than that of the NDSP model, but the
sensitivity is only 0.34, which is 66% lower than that of the
NDSP model. In the non-targeted drug experiments, the seven
baseline models perform much worse than in the targeted drug
experiments, probably because of the low number of experiments.
But the NDSP model still maintains good performance. Overall,
the best performance among the seven baseline models is still the
MOLI model, but its average sensitivity, specificity, precision,
accuracy and F1 scores are only 0.69, 0.80, 0.75, 0.78, and 0.73,
respectively, which are still some distance from NDSP. The

FIGURE 4
Framework of deep learning approach.
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TABLE 1 Index mean of 8 models on targeted therapy drugs.

Sensitivity Specificity p-0 p-1 Precision Accuracy F1score-0 F1score-1 F1score -macro avg

NDSP 0.91 0.91 0.91 0.89 0.90 0.90 0.90 0.90 0.90

MOLI 0.76 0.86 0.82 0.80 0.82 0.82 0.78 0.83 0.80

Autoencoder 0.42 0.59 0.46 0.49 0.48 0.64 0.39 0.53 0.46

netDx-RF 0.68 0.92 0.87 0.80 0.84 0.83 0.74 0.85 0.80

netDx-EN 0.53 0.67 0.64 0.68 0.66 0.69 0.54 0.63 0.58

netDx-AdaBoost 0.62 0.86 0.79 0.74 0.76 0.77 0.69 0.79 0.74

netDx-SVR 0.58 0.71 0.75 0.73 0.74 0.72 0.60 0.68 0.64

netDx-KNN 0.77 0.49 0.59 0.73 0.66 0.67 0.67 0.57 0.62

(p-0 denotes precision of classifying class 0; p-1 denotes the precision of classifying class 1; F1score-0, denotes the F1-score of classifying class 0; F1score-1, denotes the F1-score of classifying

class 1). The bold values mean the best results.

FIGURE 5
Accuracy of all 8 models on 30 targeted therapy drugs (the points outside the boxplot are outliers).

FIGURE 6
Precision of NDSP on targeted therapy drugs.
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TABLE 2 Index mean of 8 models on non-targeted therapy drugs.

Sensitivity Specificity p-0 p-1 Precision Accuracy F1score-0 F1score-1 F1score -macro avg

NDSP 0.90 0.92 0.92 0.89 0.91 0.91 0.91 0.9 0.91

MOLI 0.69 0.80 0.62 0.87 0.75 0.78 0.64 0.83 0.73

Autoencoder 0.23 0.85 0.39 0.73 0.56 0.65 0.19 0.75 0.47

netDx-RF 0.34 0.99 0.88 0.83 0.86 0.84 0.48 0.91 0.69

netDx-EN 0.21 0.91 0.58 0.76 0.67 0.75 0.27 0.83 0.55

netDx-AdaBoost 0.38 0.91 0.66 0.80 0.73 0.78 0.48 0.85 0.66

netDx-SVR 0.30 0.92 0.59 0.78 0.69 0.77 0.37 0.84 0.61

netDx-KNN 0.56 0.64 0.38 0.79 0.59 0.64 0.45 0.70 0.58

The bold values mean the best results.

FIGURE 7
Accuracy of all 8 models on 5 non-targeted therapy drugs (1: FH535, 2: Vinblastine, 3: Z-LLNIe-CHO, 4: Imatinib, 5: Vinorelbine).

FIGURE 8
Precision of NDSP on non-targeted therapy drugs.
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specificity of netDx models using RF, EN, AdaBoost and SVR is
generally good, but the sensitivity is poor in all cases. The
Autoencoder model also has imbalanced sensitivity and specificity.

Figure 7 shows that the NDSP model has the highest prediction
accuracy, reaching above 0.9 with small variation. Among the seven
baseline models, the netDx model using RF is the best. But the
accuracy is only 0.8 to 0.9, which is not as good as the NDSP model.
The other models have accuracy between 0.4 and 0.85 with large
variability.

Figure 8 demonstrates that the prediction precision of our model
on all 5 non-targeted drugs is above 0.88. Overall, the results of
NDSP are optimal for both molecularly targeted and non-specific

drugs, which indicates that NDSP is generalizable and can be useful
for precision therapy beyond targeted therapy.

4.3 Enrichment analysis

To further validate the biological interpretability of our
proposed model NDSP, we perform a biological enrichment
analysis using the results of the multi-omics gene selection of the
new model in Alectinib drug. The first principal component is
obtained from the data of each omics in a SPCA module with the
addition of a classifier. Drug Alectinib is mainly used for the

FIGURE 9
Results of pathway enrichment analysis of the drug Alectinib. (A) pathway results for the first PC of seq omics data; (B) pathway results for the first PC
of CNA omics data; (C) pathway results for the first PC of methylation omics data.

FIGURE 10
Enrichment analysis in DisGeNET.
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treatment of non-small cell lung cancer and blocks the activity of
ALK. The results of the pathway enrichment analysis are shown in
Figure 9.

A more concentrated distribution of gene sites selected by our
model would indicate that the gene set is associated with a specific
function or phenotype and is able to select pathways and gene sites
that are more relevant to lung cancer. For example, in the RNA-seq
omics results, the ERAD pathway corresponding to GO: 1904292 is
highly associated with heritable lung disease regulatory mechanisms.
And analysis in the integrated platform for integrating information
on human disease-associated genes and variants (DisGeNET) shows
that the selected gene sites are associated with non-small cell lung
cancer, as shown in Figure 10. In CNA omics data, HIF-1 survival
signaling corresponding to WP3614 in WikiPathway is associated
with tumor development.

5 Discussion

We proposed a novel drug sensitivity prediction model (NDSP)
that combines biological multi-omics data, SPCA with classical
machine learning classifier, patient similarity networks and deep
learning.We use data from three omics: RNA sequencing data, Copy
Number Aberration data and DNA methylation data. The SPCA
with feature importance method is used for feature selection. Then
we use patient similarity network to measure the similarity of the
three omics feature matrices separately to obtain three matrices of
n × n size, which is very efficient at integrating heterogeneous data
and can generate interpretable models. This greatly reduces the size
of the matrices, making hundreds of thousands of dimensions of
omics data into a few thousand dimensions of sample similarity
matrices to solve the high dimensionality problem of data.
Moreover, it also makes the integration of multi-omics
heterogeneous data easier. Finally, the three similarity networks
are spliced horizontally and put into a deep neural network model
for classification prediction.

We have conducted experiments using both targeted and
non-targeted drugs. The available results show that our
proposed model NDSP outperforms classical machine
learning and deep neural network models in terms of
sensitivity, specificity, accuracy, precision and F1-score. More
importantly, the drugs selected for the experiments include both
targeted and non-specific therapeutic drugs, which implies that
the model has a certain degree of generality, and can be useful in
precision therapy beyond traditional precision oncology and
targeted therapy. The results of the enrichment analysis also
show that the targets selected by NDSP are biologically
interpretable and have some correlation with the
corresponding drugs and diseases. This will guide physicians
in selecting optimal treatment options while minimizing the

negative effects associated with ineffective treatments, thereby
fulfilling the promise of precision therapy.
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