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Introduction: Photodynamic therapy (PDT) and photothermal therapy (PTT) are
widely used in the treatment of tumors. However, their application in the
treatment of clinical tumors is limited by the complexity and irreversible
hypoxia environment generated by tumor tissues. To overcome this limitation,
a nanoparticle composed of indocyanine green (ICG) and Fe-MOF-5 was
developed.

Methods: We prepared F-I@FM5 and measured its morphology, particle size, and
stability. Its enzyme like ability and optical effect was verified. Then we used MTT,
staining and flow cytometry to evaluated the anti-tumor effect on EMT-6 cells in
vitro. Finally, the anti-tumor effect in vivo has been studied on EMT-6 tumor
bearing mice.

Results: For the composite nanoparticle, we confirmed that Fe-MOF-5 has the
best nanozyme activity. In addition, it has excellent photothermal conversion
efficiency and generates reactive oxygen species (ROS) under near-infrared light
irradiation (808 nm). The composite nanoparticle showed good tumor inhibition
effect in vitro and in vivo, which was superior to the free ICG or Fe-MOF-5 alone.
Besides, there was no obvious cytotoxicity in major organs within the effective
therapeutic concentration.

Discussion: Fe-MOF-5 has the function of simulating catalase, which can
promote the decomposition of excessive H2O2 in the tumor microenvironment
and produce oxygen to improve the hypoxic environment. The improvement of
tumor hypoxia can enhance the efficacy of PDT and PTT. This research not only
provides an efficient and stable anti-tumor nano platform, but also has broad
application prospects in the field of tumor therapy, and provides a new idea for the
application of MOF as an important carrier material in the field of photodynamic
therapy.
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GRAPHICAL ABSTRACT

1 Introduction

Photodynamic therapy (PDT) and photothermal therapy (PTT)
would prove to be the effective modality for tumor therapy (Li et al.,
2018a; Goel et al., 2018; Zhang et al., 2018; Zhao et al., 2018), which have
attracted considerable attention owing to its accurate target positioning
and low systemic toxicity. In PDT, photosensitizer, illumination, and
oxygen are indispensable (Wong et al., 2005). At first, after the
photosensitizers gather around the diseased tissue, we will irradiate the
diseased tissue with an appropriate light source. The photosensitizer
absorbs energy and then transitions from the ground state to the
excited state. The excited state photosensitizer transfers energy to the
oxygen molecules around the cell, and then a series of photochemical
reactions occur, producing a large number of highly oxidizing reactive
oxygen species (ROS) (Pogue et al., 2003). The oxidation of these ROS can
damage biomolecules and structures in tumor cells, thereby killing tumor
cells and achieving the effect of tumor treatment. PTT is a treatment
method that gathers materials with high photothermal conversion
efficiency near tumor tissue and converts light energy into heat energy
under the irradiation of external light to kill cancer cells (Jaque et al., 2014;
Chen et al., 2019). However, the O2 content of tumor tissue largely
determines the therapeutic efficacy of PDT and PTT (Donohoe et al.,
2019; Yang et al., 2021). It is well known that hypoxia is a major feature of
solid tumors (Barker et al., 2015; Courtnay et al., 2015; Meng et al., 2018),
that is because the malignant proliferation of tumor cells is always faster
than the formation of vascular network.When the vascular network in the
tissue cannotmeet the needs of tumor cell growth andmetabolism, a local
hypoxic microenvironment is formed. Clearly, increasing
O2 concentration of tumor tissues may improve the phototherapy
efficacy (Cheng et al., 2015; Tang et al., 2016; Gao et al., 2018).

In recent years, with the continuous development of
nanotechnology, nanomaterials have been widely used in tumor

treatment. Because of their special physical and chemical
properties, nanomaterials can modify various functional groups or
targeting groups, promote biocompatibility and carry multiple heavy
components (Rosenblum et al., 2018; Xie et al., 2019a; Ali et al., 2021).
In addition, the small size of nanomaterials coupled with their
enhanced penetration and retention effect (EPR) (Li et al., 2018b;
Luo et al., 2021), enable them to reach and enrich tumor tissues
conveniently. As a member of nanomaterials, the design and synthesis
of metal-organic frameworks (MOFs) have become the most
attractive research direction in recent decades due to their special
structure and potential applications in many fields (Liu et al., 2021).
MOFs are kind of porous crystalline material, which are the network
structure crystal formed by composition of metal ions or clusters with
organic ligands. They have regulatable porous structure and highly
ordered structure. Due to the intrinsic properties of MOFs, they are
widely used in catalysis (Huang et al., 2017), drug delivery (Ding et al.,
2022), optics, and sensing (Olorunyomi et al., 2021).

As we know, high concentration of hydrogen peroxide (H2O2) is
one of the most notably features of the tumor microenvironment
(TME) (Feng et al., 2018; Castaldo et al., 2019; Lin et al., 2019), which
is obviously different from healthy tissues. Considering that the
decomposition of H2O2 may improve the hypoxia of TME, so as
to improve the efficiency of PDT and PTT. Therefore, the use of
nanoenzyme-coated photosensitizers to promote the therapeutic
effect may be a promising strategy. Zhang prepared a series of
well-defined MOF (MOF-5, FeII-MOF-5, FeIII-MOF-5) hollow
nanocages by a facile solvothermal method (Zhang et al., 2014),
without any additional supporting template. Fe-MOF has great
stability and a hollow structure, which can contain photosensitizers
(Zhao et al., 2020), drugs (Guo et al., 2021) or other components (Li
et al., 2020; Shi et al., 2021). In addition, Fe-MOF has peroxidase-like
activity due to the presence of Fe (Brozek and Dincă, 2013).
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Herein, an F127-ICG@Fe-MOF-5 NPs (F-I@FM5), which
possesses nanozyme activity and PDT/PTT ability, was applied to
tumor combination therapy with significantly strength of mutual
enhancement. We also evaluated the efficacy of the combination
therapy in vivo and in vitro. Consistent with our assumptions, F-I@
FM5 shows the characteristics of high curative effect on tumor and
low toxicity, providing a safe and effective solution for the field of
tumor treatment.

2 Results and discussion

2.1 Characterization of nanoparticles

The preparation method of Fe-MOF-5 (FM5) referred to the
previous literature (Zhang et al., 2014), and then we use FM5 as the
main scaffold of nanoparticles. After fully reacting with ICG and F-

127, we get I@FM5 and F-I@FM5. To evaluate the success of the
synthesis of nanoparticles and their characterization, we measured
the morphology, particle size, absorbance, and other aspects.

First, we observed the morphology of nanoparticles by
transmission electron microscope (TEM). Figure 1A shows the
TEM image of I@FM5, which had an irregular polyhedron
structure, and their sizes were about 150–170 nm. It is consistent
with the morphology of common Fe-based MOFs (Wang et al.,
2022a; Yao et al., 2022). After modified F-127, the morphology of
F-I@FM5 was also tested in the same way. Compared with that
before modification, the nanoparticles did not show obvious
deformation and damage (Figure 1B). Previous studies have
shown that most MOFs have the characteristics of accelerated
degradation in the acidic environment (Ma et al., 2022), which
will be beneficial to the release of the drug contained, so that we
placed F-I@FM5 in the solution of pH 6.5 for 24 h, some frameworks
were destroyed under TEM (Figure 1C), which meant that ICG

FIGURE 1
Preparation and characterization of F-I@FM5. (A) TEM images of I@FM5 (Scale bar equal to 100 nm). (B) TEM images of F-I@FM5 (scale bar 100 nm,
scale bar in the inset 50 nm). (C) TEM images of F-I@FM5 treated with an acid solution (scale bar 200 nm). (D) EDS mapping of Fe, Zn, O and C,
respectively. (E) Dynamic light scattering analysis of FM5 (478 nm) and F-I@FM5 (156.52 nm). (F) Zeta potentials of FM5 and F-I@FM5. (G) Absorption
spectra of ICG, FM5, and F-I@FM5. Characterized peaks of ICG at 780 nm were observed in F-I@FM5, implying the successful construction of F-I@
FM5. (H) Size stability of F-I@FM5 in PBS. (I) XRD patterns of FM5 and F-I@FM5, respectively.
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could be better released in the acidic environment of TEM. To
further qualitatively analyze the elements of nanoparticles, the
energy-dispersive X-ray spectroscope (EDS) mapping was
determined, and the results presented in Figure 1D. We found
the good distribution of C, Fe, O, Zn elements in the structure of
nanoparticles, which is consistent with themolecular composition of
the raw materials we used. Meanwhile, these elements are evenly
distributed, which means that the materials fully react in the
synthesis process of F-I@FM5.

The hydrodynamic diameter of I@FM5 was 478 nm tested by
the dynamic light scattering (DLS) technique (Figure 1E), while the
F-I@FM5 obtained after F-127 modification was 156.52 nm. It is not
consistent with the particle size shown in the TEM. That is because
FM5 are easy to gather in an aqueous solution to form precipitation
due to hydrophobic interaction, so the average particle size detected
is the diameter of several nanoparticles after aggregation. As a
surface active substance, F-127 can increase the hydrophilicity of
nanoparticles and help them to disperse uniformly in solution (Xie

et al., 2019b). When F-127 is used to modify the I@FM5, the
diameter the of single nanoparticle can be measured. According
to previous research, nanomaterials with size of 60–400 nm show
better permeability and retention (EPR) effect in tumor tissue (Fan
et al., 2021; Du et al., 2022). It means that the nanoparticles we
designed can be retained and accumulated in tumor tissue.
Moreover, The small size demonstrated that the prepared
particles were suitable for systemic drug administration route
(Sun et al., 2022). In addition, compared with FM5, the zeta
potential of F-I@FM5 is higher (Figure 1F), which shows that
after F-127 modification, our nano-system becomes more difficult
to aggregate, which is consistent with the previous reason for the
smaller hydrodynamic diameter of F-I@FM5. Next, we measured
the absorption spectra of ICG, FM5 and F-I@FM5. The
characteristic peak of ICG at 780 nm was also determined in
F-I@FM5, further proving that ICG has been successfully
encapsulated in FM5 (Figure 1G). We then measured the
concentration of ICG in the supernate obtained by the reaction

FIGURE 2
Physical and chemical properties F-I@FM5. (A) Time-dependent changes of dissolved O2 concentrations in different groups. Insert map is Bubble
generation in solutions. (B) Temperature changes of F-I@FM5 with different concentrations under NIR. Inset map is the infrared images of different
groups after 5 min of illumination. (C) Absorption spectra of ABDA at different times in F-I@FM5 + H2O2 group. (D) Changes of ABDA content in different
groups.
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solution, and calculated that the loading efficiency (LE) of ICG was
32.8% and encapsulation efficiency (EE) of ICG was 49%. We also
studied the release behavior of ICG in neutral and acidic solutions,
the results showed that F-I@FM5was able to release more ICG in the
acidic environment (Supplementary Figure S1), which indicated that
when the nanoparticles reached the tumor, ICG could be released in
the tumor to induce PDT and PTT treatment in the acidic
environment around the tumor. X-ray powder diffraction (XRD)
patterns were used to characterize the crystal structure of FM5 and
F-I@FM5. We found that the XRD peaks of FM5 recorded at 2θ =
36.34° could be well consistent with the literature we refer to, and
after the decoration of F-127, the peaks of F-I@FM5 matches well
with FM5. It indicated the successful synthesis of F-I@FM5
(Figure 1H).

As we know, stability of nanoparticles is a crucial requirement
for the treatment in the body (Ding et al., 2015). The hydrodynamic
size changes of F-I@FM5 in phosphate buffered saline (PBS) were
measured in 48 h to demonstrate its stability. As shown in Figure 1I,
no significant change of size could be observed, suggesting that F-I@
FM5 possessed a suitable stability profile for further investigation.

2.2 Nanozyme activity assay

As reported in previous studies, the hypoxic tumor
microenvironment is one of the important reasons for the
unsatisfactory efficacy of PDT in the treatment of solid tumors,
because oxygen is the main factor in the process of PDT (Wu et al.,
2021a; Zhang et al., 2022). As we know, there is a large amount of
H2O2 accumulated in the TME (Wu et al., 2021b). In order to
improve hypoxia, the catalytic ability to decompose H2O2 is
indispensable. Xi Xiang had designed a Fe-MOF based bio-/
enzyme-mimics nanoparticle for the treatment of cancer, which
showed great catalytic ability due to the existence of Fe (Xiang et al.,
2021). There was a large amount of Fe in components of FM5, so we
thought it might have similar enzyme activity. The catalytic ability of
FM5 was determined by adding FM5 and H2O2 to oxygen-free water
and measuring the content change of oxygen. As shown in
Figure 2A, compared with H2O2 or FM5 alone, the oxygen
content in the H2O2+FM5 group was significantly increased.
Meanwhile, a large number of oxygen bubbles were observed in
the H2O2+FM5 group. The results showed that because of the
existence of Fe in FM5, it had the same enzyme-like ability as
other MOF-based nanozymes (Wang et al., 2020a), which could
promote the decomposition of H2O2 to improve the hypoxic
environment of tumors.

2.3 In vitro photothermal property

We know that ICG can strongly absorb light energy to convert it
into heat energy (Li et al., 2019). In order to evaluate whether ICG
can maintain the characteristics of laser-induced temperature rise
after being loaded into FM5, we conducted photothermal
conversion experiments in different groups. In the previous
absorbance spectrum, ICG showed good absorbance near 780 nm
wavelength, so we chose 808 nm near-infrared light (NIR) for
irradiation. F-I@FM5 at different concentrations (0, 12.5, 25, 50,

100 μg/mL of ICG) were irradiated with 808 nm laser (1 W/cm2).
The temperature of F-I@FM5 dispersion (100 μg/mL) rise from 27°C
to 63.4°C after being irradiated with 808 nm laser for 5 min
(Figure 2B). In contrast, for the FM5 and PBS, no apparent
temperature change could be observed at the same condition,
indicating the F-I@FM5 with good photothermal conversion
property. In terms of tumor therapy, to the best of our
knowledge, PTT exerts anti-tumor effects mainly through direct
thermal ablation (over 42°C) (Hou et al., 2018). After 5 min of
irradiation, F-I@FM5 (50 μg/mL) could rise from 27°C to 55.7°C,
which represented that the temperature change achieved by F-I@
FM5 was enough to kill tumor cells.

2.4 In vitro ROS generation

PDT is a treatment mode for local treatment of diseases based on
the interaction of light, photosensitizer and oxygen (Correia et al.,
2021). The production of reactive oxygen species (ROS) plays a
major role in PDT and the production of 1O2 is closely related to the
oxygen concentration (Liu et al., 2019). According to the previous
nanozyme activity experiments, FM5 can promote the
decomposition of H2O2 to produce oxygen. In addition, ICG has
been proven to be an excellent material for PDT (Yang et al., 2022).
Therefore, we can infer that under 808 nm laser, F-I@FM5 can show
good active ROS generation ability. In order to evaluate the effect of
F-I@FM5 on ROS generation, 9,10-Anthracenediyl-bis (methylene)
di malonic Acid (ABDA), a probe with irreversibly reduced
absorption in the presence of singlet oxygen (He et al., 2020),
was used to detect the generation of ROS. As shown in
Figure 2C, under 808 nm laser after 5 min, the control group and
H2O2 group did not influence on ABDA degradation, and the
absorbance of ABDA had a little decline in F-I@
FM5 group. After adding H2O2 in F-I@FM5, the absorption of
ABDA in solution displayed a continuous decrease to 39% of the
initial absorbance upon laser irradiation, indicating that the O2

generated from the H2O2 decomposition could increase the 1O2

generation (Figure 2D). It demonstrated that F-I@FM5 was not
inferior to other methods to increase the ROS, such as the
transportation of oxygen (Wang et al., 2017) or catalase (Xu
et al., 2020) and photosensitizer to tumor sites. This is because
F-I@FM5 can improve tumor hypoxia by converting H2O2 enriched
in the TME into O2, thus promoting 1O2 generation and improving
the photodynamic therapy effect. Therefore, F-I@FM5 had the
potential to kill tumor cells.

2.5 Cell uptake experiment

Before conducting cell experiments, we studied the uptake
behavior of cells to nanoparticles. Because ICG is a near-infrared
fluorescent dye, the Olympus inverted fluorescence microscope and
flow cytometer we used cannot detect it. We used fluorescein
isothiocyanate isomer (FITC) instead of ICG to load into FM5,
and F-F@FM5 was obtained after modification with F-127. When
the nanoparticles enter the cell, the cell will emit FITC-specific green
fluorescence. The distribution and intensity of FITC fluorescence
can be analyzed by flow cytometry and fluorescence inversion
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microscope to reflect the uptake of nanoparticles by the cell. At FITC
concentration of 50 μg/mL, the nuclei were stained with
Hoechst33342 after the nanoparticles and EMT-6 cells were
incubated for 24 h. It can be seen from Figure 3A that all cells
emit strong green fluorescence, which indicates that the
nanomaterials have been endocytosed by the cells. In addition,
the results of flow cytometry were consistent with those of
fluorescence staining. As shown in Figure 3B, we had used
fluorescence intensity of FITC to mediately quantify the uptake
of the particles. We could find that after 6 h of co-incubation, the
uptake of F-I@FM5 was significantly higher than the control groups.
With the increase of incubation time, FITC fluorescence become
strongly. Compared with 6 h, it was observed that the cell uptake
increased nearly twofold when after 24 h incubation. These findings
confirmed F-I@FM5 can successfully pass through the cell
membrane and accumulate in cells.

2.6 Intracellular ROS generation

As we know, the generation of active oxygen is very dependent
on the presence of oxygen (Cheung and Vousden, 2022). In the
previous study, Wang designed a Co@Fe3O4 nanozymes, which can
induce apoptosis of human renal tumor cells (A-498) by catalyzing
the decomposition of H2O2 to generate a ROS burst (Wang et al.,
2019). Based on the photothermal efficiency and enzyme activity of
F-I@FM5, we expect that it can also improve the hypoxia of TME,
thus generating large number of ROS. To evaluate the ROS
generation in EMT-6 cells, Dye 2,7-dichlorouoresce diacetate
(DCFH-DA) was used as an indicator to detect the ROS
production ability of living cells. This is because DCFH-DA can
be converted into DCFH in living cells, and DCFH can be oxidized

by ROS to 2,7-Dichlorofluorescein (DCF), which produces obvious
green fluorescence in cells (Jin et al., 2019). First, we observed the
fluorescence production of DCF in EMT-6 cells by flow cytometry.
As shown in Figure 3C, compared with other groups, the count of
cells with DCF fluorescence in the F-I@FM5+NIR group increased
significantly in flow cytometry. Consistently, In addition, the image
obtained by fluorescence microscope is consistent with the result of
flow cytometry (Figure 3D), the green fluorescence intensity of the
F-I@FM5+NIR group incubated under light was stronger than that
of another group, which proved that the F-I@FM5+NIR group could
produce more ROS, which was consistent with the results of in vitro
ROS detection and cell uptake experiments. It can be seen from the
above results that treatment with F-I@FM5 leads to the ROS burst,
which was expected to enhance ability of anti-tumor of F-I@FM5.

2.7 In vitro anti-tumor effect

In order to determine the cytotoxicity of F-I@FM5, MTT
method was used to measure the effect of F-I@FM5 at different
concentrations on tumor cells without NIR. As shown in Figure 4A,
it can be observed that when the ICG concentration less than 70 μg/
mL, F-I@FM5 have no obvious effect on cell activity. However, when
the concentration of ICG exceeds 70%, the cell vitality decreases
significantly. In order to avoid the damage to normal cells caused by
F-I@FM5, we need to select a concentration less than 70 μg/mL for
follow-up study.

Subsequently, the tumor suppressive ability of F-I@FM5 was
evaluated under laser irradiation conditions (808 nm, 1 W/cm2,
10 min). As shown in Figure 4B, the relative cell viability of ICG
+NIR group was significantly lower than that of PBS, FM5+NIR and
F-I@FM5 groups, which showed that when ICG reached a certain

FIGURE 3
Cell uptake and ROS generation of F-I@FM5 in vitro. (A)Observation of intracellular FITC after the nanoparticles and EMT-6 cells were incubated for
24 h. (B) Flow data of intracellular FITC fluorescence at different periods. (C) Flow data of intracellular DCF fluorescence. (D)Observation of intracellular
DCF in different groups (Scale bar equal to 100 nm).
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concentration, PDT/PTT triggered by ICG could cause certain
damage of tumor cells. It was worth noting that compared with
the ICG + NIR group, the relative cell viability of the FM5+ICG
group decreased more significantly. This result confirmed the
efficacy of the nanoparticles, F-I@FM5 could improve the
hypoxia of the tumor microenvironment and further promote the
effect of PDT/PTT. At the same time, it showed that the effect of the
ICG would not be lost after being encapsulated in the hollow
mesopore of FM5.

Then we analyzed the therapeutic effect of F-I@FM5 at the cell
level by flow cytometry and AM/PI cell staining. Annexin V-FITC/
PI staining flow cytometry was used to further detect apoptosis. As
shown in Figure 4C, apoptotic cells and necrotic cells of F-I@FM5
+In NIR group accounted for 68.4%, while Control, FM5+NIR and
F-I@FM5 group were 14.4, 21.5% and 14.2%, respectively. It was
represents that under 808 nm laser irradiation, F-I@FM5 can

destroyed majority of tumor cells. In order to obtain intuitive
information of living and dead cells, Calcein AM/PI staining
experiments were performed on EMT-6 cells. Living cells and
dead cells emit green and red fluorescence, respectively. As
shown in Figure 4D, an intuitive image of cells could be
observed using a fluorescent inverted microscope. It was worth
noting that compared with other groups, more red fluorescence was
detected in the F-I@FM5+NIR treatment group, indicating that the
number of dead cells increased. The relative cell viability obtained by
counting the dead and alive cells in the fluorescent pictures was
consistent with the MTT assay (Figure 4E). This phenomenon
indicated that under the nanozyme activity of F-I@FM5, the
efficiency of PDT and PTT against tumor cells was enhanced,
which was consistent with the results obtained by MTT method.
This fluorescence staining experiment further verified the synergistic
therapeutic effect of F-I@FM5.

FIGURE 4
Anti-tumor activities of F-I@FM5 in vitro. (A) Relative cell viability with increasing ICG concentration of F-I@FM5. (B) Anti-tumor activities of F-I@
FM5 in vitro. Relative cell viability in different groups (*** p < 0.001, n = 5). (C) Flow cytometry data of EMT-6 cells co-stained with Annexin V-FITC/PI of
various treatments. (D) Images of EMT-6 cells co-stained with Calcein-AM and PI of various treatments (Scale bar equal to 100 nm). (E) Relative cell
viability obtained by the fluorescent pictures.
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In conclusion, these results reflect that the physical and
chemical properties of F-I@FM5 are well reflected in tumor
cells. It enhances the tumor suppressive ability of PDT and PTT,
which has certain advantages in cancer treatment compared with
PDT or PTT alone. This is consistent with the current research
direction and consensus (Wu and Yang, 2017). Through

multifunctional nano carriers, the stability of MOF can
enhance the accumulation of drugs at the tumor site and slow
down its metabolism. Meanwhile, it can also produce synergistic
effects with drugs or photosensitizers through the multiple
properties of MOF and its derivatives, so as to better treat
tumors.

FIGURE 5
Anti-tumor activities of F-I@FM5 in EMT-6 tumor-bearing mice. (A) Photograph of harvested tumor frommice after 14 d of different treatments. (B)
Tumor growth curves of mice during the 14 days treatment. (C) Animal weight changes of different groups during the treatment period. Error bars
represent mean ± SD (*p < 0.05, **p < 0.01, ***p < 0.001. n = 5 per group). (D) Histological observation of major organs for safety determination by
comparing the F-I@FM5+NIR group to the normal group. (E) Histological observation of the tumor tissues with H&E staining from different
treatment groups of mice.
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2.8 In vivo anti-tumor effect

As shown in Figures 5A, B, fast tumor growth was observed in
the control untreated group.We found that the tumor growth rate in
the ICG +NIR groups was similar to that in the control group, which
was different from the tumor inhibition effect in vitro. This is due to
the fast metabolic efficiency of free ICG in the body. Generally, after
being injected into the body, ICG would be cleared by the liver
within 150–180 s (Sucher et al., 2020), and there were few drugs
finally reaching the tumor, so it had no obvious inhibition effect on
tumor cells. The tumor rate of F-I@FM5 without NIR was slightly
smaller than that of the control group, but there was no statistical
difference, which indicated that within the effective concentration of
treatment, F-I@FM5 had no obvious toxicity to cells, which was
consistent with the MTT assay. Compared with other groups, we
observed the strongest anti-tumor effect with F-I@FM5+NIR group,
which can prove that due to the synergistic effect of the ICG
mediated PDT/PTT and the hypoxia improved by FM5, the
growth rate of the tumors will decrease. The advantages of F-I@
FM5+NIR therapy further confirmed the benefits of transporting
therapeutic drugs through nano carriers (Zheng et al., 2021). Until
the end of treatment, the average body weight of all groups did not
reveal any noticeable trend of weight loss (Figure 5C). Moreover, the
H&E staining of tissue sections of major organs showed no obvious
tissue damage when compared to the untreated group (Figure 5D),
demonstrating that the nanoplatform had no cytotoxic effect on
other normal tissues in vivo. H&E staining of tumor sections showed
that compared with other groups, the density of tumor cells in the
F-I@FM5+NIR group was decreased (Figure 5E). Therefore, the
designed F-I@FM5 had great potential in PDT/PTT synergistic
therapy, which was consistent with our expectations.

However, compared with other nano multi-function platforms
(Jiang et al., 2018; Wang et al., 2020b), the inhibition of tumor in the
tumor model was not as obvious as that of cell experiments. After
further analysis, we thought the reason was that the F-I@FM5 lacks
tumor-specific targeting. It is common knowledge that the EPR
effect can increase the accumulation of local drug concentration.
Compared with active targeting (Wang et al., 2022b), the delivery
efficiency of EPR is lower, which is not enough to make the drug
completely distributed in the tumor tissue. Moreover, due to the
specificity of the tumor microenvironment, the tumor has a certain
resistance to temperature changes and ROS, leading to the failure to
eliminate all tumor cells.

In the further research, some targeted groups should be attached
to the surface of nanomaterials, which enable nanoparticles to reach
tumors through active targeting, thereby improving the therapeutic
efficiency of tumors. In addition, PDT/PTT combined with anti-
tumor drugs was also a promising direction. At the same time, with
the increase of nano components, there would inevitably be more
metabolic disorders and toxic. It was necessary to strengthen the
monitoring of biological distribution in the process of tumor
treatment, so as to provide more effective strategies for tumor
treatment and avoid toxicity to other tissues. At present, the
research on nano materials to improve the tumor
microenvironment is still in the initial stage. With the
continuous deepening of research, it is believed that the multi-
functional nano therapy system can achieve great success in tumor
therapy.

3 Conclusion

In summary, this study successfully developed F-I@FM5, as a new
nano conformal material, promoted the production of local oxygen in
tumors and improved the therapeutic efficiency of tumors by cooperating
with PDTandPTT. The simulated catalase activity of FM5was utilized to
react with the endogenous hydrogenperoxide of TME to generate oxygen
to combat hypoxia. In addition, the ICGwas used to convert O2 into ROS
to kill tumor cells. This new nanocomposite could effectively improve
tumor hypoxia, improve the efficiency of PDT and PTT, and showed a
better photodynamic effect. The nanoparticles proposed in this paper
provide an effective strategy for enhancing anticancer therapy.

4 Material and methods

4.1 Material

Iron acetylacetonate (Fe(C5H7O2)3), zinc nitrate (Zn(NO3)2),
p-phthalic acid (C8H6O4), polyvinyl pyrrolidone (PVP), ethanol
(C2H6O) and N, N-Dimethylformamide (DMF) were obtained from
Shanghai Aladdin Biochemical Technology Co., Ltd. 9,10-
Anthracenediyl-bis (methylene) di malonic Acid (ABDA),
Indocyanine green (ICG) was purchased from Shanghai Macklin
Biochemical Co., Ltd. Phosphate-buffered saline (PBS), Dulbecco’s
modified eagle medium (DMEM), Fetal bovine serum (FBS), sodium
pyruvate, essential amino acids, and non-essential amino acids were
from ExCell Bio (China). Calcein-AM/PI Live Cell/Dead Cell
Double Staining Kit was purchased from Beijing solarbio science
& technology co.,ltd. All other reagents were from Beyotime
Biotechnology (China) and used as received unless otherwise noted.

4.2 Preparation of F-I@FM5

Adding iron acetylacetonate (Fe(C5H7O2)3), zinc nitrate
(Zn(NO3)2), p-phthalic acid (C8H6O4) and polyvinyl pyrrolidone
(PVP) in a certain proportion into the mixed solvent of ethanol
(C2H6O) and N, N-Dimethylformamide (DMF), and heat the
mixture in an oil bath (110°C, 6 h) under stirring conditions.
After the solution was cooled, The FM5 was obtained via
centrifugation. The product was washed with ethanol several
times, and then vacuum dried for further use.

1 mL of ICG solution (2 mg/mL in ethanol) was mixed with
1 mL of FM5 suspension (2 mg/mL in ethanol). After ultrasonic
vibration for 5 min, placing the mixture in the refrigerator at 4°C for
24 h, then we get the ICG@FM5. Then, 1 mL of F-127 solution
(30 mg/mL in ethanol) was mixed with 1 mL of ICG@
FM5 suspension. After ultrasonic vibration for 5 min, slowly
drop the mixed solution into 5 mL pure water under stirring and
reacting for 10 min. After centrifugation, F-I@FM5 was obtained.
Suspending the F-I@FM5 with pure water for further use.

4.3 Characterization of F-I@FM5

The nanostructure and size of F-I@FM5 were observed by
Transmission electron microscope (JEM-2100F). The particle size and

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Liang et al. 10.3389/fbioe.2023.1156079

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1156079


size distribution of F-I@FM5 were measured byWinner 802 nanometer
particle size meter (Jn-winner). Zeta potential measurements were
performed at 25°C on a Malvern Zeta Size-Nano Z instrument. UV-
vis absorbance spectra of FM5, ICG, and F-I@FM5 were observed with
theUV-3200S Spectrophotometer (MAPADA). X-ray diffraction (XRD)
patterns of the samples were analyzed by BRUKER D8 VENTURE
X-ray single crystal diffractometer. The LE and EE of ICG in F-I@
FM5weremeasured as follows. Following preparation, the nanoparticles
were centrifuged at 7,000 rpm for 10 min, and free ICG in the supernate
was measured by Ultraviolet Spectrophotometer at 780 nm. The LE and
EE were calculated as LE (%) = [(weight of loaded drug)/(total weight of
nanoparticles)]×100; EE (%) = [(weight of loaded drug)/(weight of
initially added drug)]×100. In the ICG release experiment, we
dispersed F-I@FM5 (10 μg/mL ICG) in aqueous solutions of
pH 7.0 and pH 5.0, and centrifuged the solution at different time
points (1, 2, 4, 8, 16, 32, 64 h). Then determined the absorbance of the
supernatant. Finally, the released ICG content and the proportion were
obtained through the concentration-absorbance curve of ICG.

4.4 Nanozyme activity assay

After using Na₂SO₃ to prepare anaerobic water, a probe of the
MP516 dissolved oxygen meter (Shanghai San-Xin Instrumentation)
was inserted under the surface of anaerobic water, and tightness of the
systemwas examined first, after which the FM5 (50 μg/mL) andH2O2

(5 mM) were added with a syringe. The changes in the dissolved
oxygen level were recorded at the indicated time to confirm the
nanozyme activity. In addition, FM5 and H2O2 were added to pure
water to observe the generation of O2 bubbles.

4.5 In vitro photothermal property

In order to evaluate the photothermal property of F-I@
FM5 NPs, different concentrations of NPs were added to PBS.
Then irradiated the solutions with 808 nm near-infrared laser
(1 W/cm2) for 5 min and recorded the temperature change of the
solutions by T3S smart phone infrared camera (Iray) per minute.

4.6 In vitro ROS generation

In order to determine the production of ROS, we use ABDA as
the detection probe, because the absorbance of ABDA will be
reduced after the reaction among ABDA and 1O2. In the
experiment, ABDA in ethanol (50 μg/mL) and H2O2(50 μM) was
added to a solution of F-I@FM5 NPs (ICG, 50 μg/mL). Then the
solution was irradiated with 808 nm laser (1W/cm2). Recording the
absorbance of ABDA at the specified time intervals after irradiation,
and indirectly comparing the generation of ROS among groups by
the change of absorbance.

4.7 Cell uptake experiment

The image of cell uptake was detected by Fluorescent Inverted
microscope. In order to load FITC into FM5, 1 mL of FITC solution

(1 mg/mL in ethanol) wasmixedwith 1 mL of FM5 suspension (1 mg/
mL in ethanol) for 24 h, then we get the FITC@FM5. Then, 1 mL of F-
127 solution (30 mg/mL in ethanol) was mixed with 1 mL of FITC@
FM5 suspension. After ultrasonic vibration for 5 min, slowly drop the
mixed solution into 5 mL pure water under stirring and reacting for
10 min. After centrifugation, F-F@FM5 was obtained. EMT-6 cells
were seeded in 24-well plate at the density of 5 × 104 cells/well and
incubated with the F-F@FM5 (FITC, 50 μg/mL) for 24 h, then we
fixed the cells with 4% paraformaldehyde and stained with
Hoechst33342 for 10 min. Finally, take out the cover glass and
obtain the image of the cells with Fluorescent Inverted microscope.

The uptake of nanoparticles in vitrowas studied by flow cytometry.
EMT-6 cells were seeded in 6-well plate at the density of 2 × 105 cells/
well and incubated with either free ICG or the F-I@FM5 NPs (ICG,
50 μg/mL) for different times. The cells were collected, and cell uptake
was determined from ICG fluorescence per cell using a BD FACS Aria
Ⅲ Flow cytometer and FlowJo software for analysis.

4.8 Intracellular ROS generation

The production of intracellular ROS was detected using fluorescent
dye 2,7-dichlorofluoresce diacetate (DCFH-DA) by Fluorescent
Inverted microscope or flow cytometer. EMT-6 cells were seeded in
24-well plate and allowed to adhere for 24 h. Then ells were treated with
F-I@FM5 for 24 h and loaded with DCFH-DA (10 μmol/L) in dark at
37°C for 15 min. Fluorescence images were observed with OLYMPUS
CKX53 Fluorescent microscope, and ROS generation of per cell using a
Flow cytometer and FlowJo software for analysis.

4.9 Cytotoxicity and apoptosis assay

The EMT-6 cells were seeded in a 96-well plate at a density of
5,000 cells per well, and cultured overnight at 37°C in a 5% CO2

incubator. The next day, cells were incubated with F-I@
FM5 solutions at a series of concentrations (0–100 μg/mL ICG)
for 24 h under the same condition. Cell viability was evaluated by the
MTT assay kit. The optical density (OD) was measured at 490 nm
and recorded by a microplate reader.

To compare the tumor inhibition effect of different groups, the
EMT-6 cells were incubated with parallel concentrations of FM5, ICG
and F-I@ FM5 for 24 h. Subsequently, the groups with NIR were
exposed to the 808 nm laser for 10 min (1 W/cm2), then continue to
incubate cells for 24 h. Cell viability was evaluated by the MTT assay
kit. The optical density (OD) was measured at 490 nm and recorded
by Thermo Scientific Multiskan Sky Microplate Reader.

Phototherapeutic effect was also investigated by Calcein AM)/PI
staining. Then EMT-6 cells were seeded in a 24-well plate with a density
of 5 × 104 cells per well. The EMT-6 cells were incubated with parallel
concentrations of FM5, ICG and F-I@ FM5 for 24 h. Subsequently, the
groups with NIR were exposed to the 808 nm laser for 10 min (1W/
cm2). The other groups were incubated under the same conditions
without irradiation. Control groups in the dark were incubated in fresh
DMEM medium. After removing fresh DMEM medium, Calcein AM
(4mmol/L) and PI solutions (4 mmol/L) in PBS were added to EMT-6
cells and incubated for 20 min. Finally, images of the cells were obtained
by fluorescence microscope.
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Flow cytometry was used to study the tumor inhibition effect of
different therapy in vitro. EMT-6 cells were seeded in 6-well plate at the
density of 2 × 105 cells/well and incubated with parallel concentrations
of FM5, ICG and F-I@ FM5 for 24 h. Subsequently, the groups with
NIR were exposed to the 808 nm laser for 10 min (1W/cm2). The cells
were harvested, and incubated with AnnexinV-FITC/PI Apoptosis
Detection Kit. Then apoptosis status of per cell using a BD
FACSCalibur flow cytometer and FlowJo software for analysis.

4.10 In vivo therapeutic efficacy

EMT-6 cells (2 × 106 cells in 100 μL of PBS) were injected into
the right armpit of BALB/C nudemice (4 weeks old, 15–16 g). When
the tumor size reached 70–100 mm3, EMT-6 tumor-bearing mice
were randomly divided into 5 groups: (a) PBS, (b) ICG + NIR, (c)
FM5+NIR, (d) F-I@FM5, (e) F-I@FM5+NIR. Different solutions
were injected into the tail vein of the tumor-bearing mice. After 24h,
tumors were irradiated by the 808 nm laser (0.5 W/cm2) for 10 min.

The body weight and tumor volume of tumor-bearing mice were
recorded every 2 days within 14 days after irradiation. Tumor
volumes were determined using the formula: V = a × (b2)/2,
where a is the length and b is width of each tumor in mm
respectively. After 14 days, the animals were killed and the
tumors and main organs were collected for analysis. The
histological changes of tumor tissue and main organs were
evaluated by hematoxylin and eosin (H&E) staining.

5 Statistical analysis

All results are expressed as the mean ± SEM or SD as indicated.
Comparisons among groupswere analyzed via independent samples with
the one-factor ANOVA test using SPASS 17.0 software. All statistical data
were obtained using a two-tailed student’s t test and homogeneity of
variance tests (p values < 0.05 were considered significant).
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