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The rapid healing and repair of skin wounds has been receiving much clinical
attention. Covering the wound with wound dressing to promote wound healing is
currently the main treatment for skin wound repair. However, the performance of
wound dressing prepared by a single material is limited and cannot meet the
requirements of complex conditions for wound healing. MXene is a new two-
dimensional material with electrical conductivity, antibacterial and photothermal
properties and other physical and biological properties, which has a wide range of
applications in the field of biomedicine. Based on the pathophysiological process
of wound healing and the properties of ideal wound dressing, this review will
introduce the preparation and modification methods of MXene, systematically
summarize and review the application status and mechanism of MXene in skin
wound healing, and provide guidance for subsequent researchers to further apply
MXene in the design of skin wound dressing.
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1 Introduction

With the rapid development of society, the incidence of skin injury caused by trauma,
disease and other factors in life is increasing (LeBlanc et al., 2019). Skin is an important
protective organ of the human body. Maintaining its integrity can provide a physical barrier
for the body to prevent the invasion of foreign harmful substances, reduce the loss of water
and electrolyte, and maintain the stability of the internal environment (Dąbrowska et al.,
2018; Swaney and Kalan, 2021). Therefore, it is very important to promote rapid healing of
skin wound. Wound dressing can cover the surface of the wound to protect the wound,
reduce the impact of external factors and stimulation on the wound, and protect the smooth
healing of the wound (Obagi et al., 2019). However, skin wound healing is a continuous and
dynamic process, during which neutrophils, fibroblasts, epithelial cells, growth factors,
cytokines and other cells and factors interact to regulate (Velnar et al., 2009; Golebiewska
and Poole, 2015). At the same time, in the process of wound healing, it is also necessary to
maintain a sterile, breathable, moist stable and appropriate microenvironment to ensure the
smooth evolution of each stage of the whole healing process (Pereira and Bártolo, 2016;
Wang et al., 2018). The wound dressing formed by a single or a combination of two matrix
materials cannot meet many requirements for skin healing. In order to solve this problem, in
addition to re-designing matrix materials with more comprehensive and excellent
performance, it has become a feasible and effective method to use growth factors or
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nanomaterials to modify matrix materials to improve the overall
performance of wound dressings.

MXene is a new kind of metallic nitrogen and carbon
compound, which has a two-dimensional lamellar structure
similar to graphene and black phosphorus (Naguib et al., 2012).
The abundant functional groups on its surface give it more abundant
physical and chemical properties and biological properties. MXene
has good biocompatibility, electrical conductivity and mechanical
properties, but also can produce photothermal effect under NIR
conditions, which makes it widely used in biological fields such as
biosensing, tumor therapy, tracer imaging and so on (Naguib et al.,
2012; Carey and Barsoum, 2021; Chen et al., 2021; Fadahunsi et al.,
2022). In addition, researchers also found that MXene has good
antibacterial activity and certain scavenging ability of active oxygen
species (Jastrzębska et al., 2017; Wang et al., 2023). These biological
characteristics are highly consistent with the properties required by
wound dressings, making MXene become a hot material for
modification of skin wound dressings in recent years (Li et al.,
2022a; Liu et al., 2022a; Yang et al., 2022a). However, there has been
no systematic review on the mechanism and application of MXene
in skin wound repair. In this paper, we will introduce the
preparation and modification methods of the emerging material
MXene based on the pathophysiological changes of skin wound
healing and the properties of the ideal wound dressing, and
systematically review the role and application of MXene in the
process of skin wound healing (Scheme 1). To provide reference for
further application of MXene in skin wound dressing design by
subsequent researchers.

2 Characteristics and properties of
wounds healing

2.1 Normal skin structure and function

Skin is the largest organ of the human body. The skin is
composed of epidermis, dermis and subcutaneous tissue from the
outside to inside. According to the differentiation stage and
characteristics of keratinocytes, the epidermis can be divided into
four layers, from deep to shallow, which are basal layer, spinous

layer, granular layer and stratum corneum. The basal layer is located
at the bottom of the epidermis and consists of a cylindrical layer of
epidermal stem cells, also known as basal cells. These basal cells have
the ability to proliferate and differentiate, and can maintain the
stability of their numbers (Prost-Squarcioni, 2006; Li et al., 2010).
Spinous cells have strong protein synthesis function and can
synthesize a large amount of keratin and lamellar granules.
Keratinoid also distributed in the upper cells of the spinous layer,
which together with the intercellular desmosomes can closely
connect the spinous cells and prevent the entry of external water,
thus providing protection and isolation (Wertz, 2018).

The cells in the granulosa layer are supplemented by the spinous
cells in the upper part of the spinous layer. When the cells in the
granulosa layer migrate to the stratum corneum, almost all the
cellular structures in the cells are destroyed, and the cells turn into
keratinocytes. The stratum corneum, at the top of the epidermis, is
composed of protein-rich keratinocytes and the extracellular lipids
that surround them. The stratum corneum is an important
functional layer for the skin to resist mechanical damage, prevent
water loss and environmental soluble substances from penetrating
the skin (Jiao et al., 2022). In addition, there is a zona pellucida
composed of 2-3 layers of flattened cells between the granular layer
and the cuticle layer in the palm and plantar, called the pellucida
(Elias, 2012). Based on the basal cells in the basal layer, the cells in
the whole epidermis migrate outward continuously through the
proliferation and differentiation of the basal cells to provide
supplement for the cells in each layer and realize self-renewal
and self-repair to a certain extent.

The dermis is mainly composed of connective tissue that
contains nerves, blood vessels, lymphatics, muscles, and skin
appendages (Woodley, 2017). The dermis can be divided into
papillary layer and reticular layer from shallow to deep. The
papillary layer protrudes outwards to the epidermal layer and
contains rich capillaries and nerve endings, which can provide
adequate nutrition for the epidermal layer (Arda et al., 2014).
The mesh layer contains a large number of collagen fibers and
elastic fibers. The interwoven fiber tissues provide toughness and
elasticity for the skin, ensure that the skin has a certain mechanical
strength and toughness, and play a protective role for the tissues and
organs in the body (Usansky et al., 2021).

SCHEME 1
Schematic diagram of this review.
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2.2 Pathophysiological changes of skin
wound healing

After skin injury occurs, the body completes skin wound repair
through a series of continuous pathophysiological changes. The
whole process can be roughly divided into four stages as shown in
Figure 1: hemostatic stage, inflammatory stage, proliferative stage
and remodeling stage (Wilkinson and Hardman, 2020). After the
occurrence of skin injury, the capillaries and arteriolar arteries in the
injured area are broken, and the exposed vascular endothelial cells
and the foreign substances causing the injury jointly activate the
internal and external coagulation cascade, prompting platelet
activation and accumulation to the injured site (Velnar et al.,
2009). Through the release of endogenous ADP and
thromboxane A2 in the platelets, the platelets undergo
irreversible coagulation and form platelet thrombosis
(Golebiewska and Poole, 2015). Platelet thrombus, together with
fibrin, fibronectin, further constitute insoluble clots that act as
wound packing and hemostasis (Broughton et al., 2006). In
addition, clots composed of platelets and proteins can also
provide attachment scaffolds for immune cells, release a variety
of cytokines and inflammatory factors, promote the migration and
aggregation of inflammatory cells and activate inflammatory
response (Cooke, 2019).

Under the induction of inflammatory factors, neutrophils first
gather to the injured area, phagocytosis and release reactive oxygen
species, antimicrobial peptides, proteolytic enzymes to engulf and
remove necrotic tissues and pathogens (Li et al., 2007). Neutrophils

also continue to release pro-inflammatory factors, further
stimulating the aggregation of neutrophils and macrophages to
the injured area (Paquet and Piérard, 1996; Rodero and
Khosrotehrani, 2010). With the removal of necrotic tissue and
pathogens from the injured area, the number of neutrophils
gradually decreases. Most neutrophils are squeezed out from the
wound area, and the remaining neutrophils are gradually removed
by recruited macrophages through endocytosis (SingerHealing,
2022). As the inflammatory response progresses, macrophages
shift from a pro-inflammatory phenotype to an anti-
inflammatory phenotype at the end of inflammation by releasing
a variety of growth factors that promote angiogenesis, fibroplasia,
and skin re-epithelialization (Hunt et al., 2000).

When the wound repair entered the proliferative stage,
keratinocytes, fibroblasts and endothelial cells began to
proliferate under the action of EGF, FGF, VEGF and other
growth factors (Werner and Grose, 2003; Lichtman et al.,
2016). The keratinocytes at the wound edge become more
polar and migratory and begin to migrate to the injured area
where they proliferate and differentiate to form a new upper
layer, which known as re-epithelialization (Rousselle et al., 2019).
At the same time, fibroblasts synthesize a large amount of type III
collagen, proteoglycan and fibronectin to form extracellular
matrix, which provides skeleton structure for cell migration
and proliferation to the injured area (Bártolo et al., 2022).
Under the action of growth factors such as VEGF, endothelial
cells migrate to the injured area and proliferate to form a new
capillary network (Park et al., 2017). Together with the newly

FIGURE 1
The stages of wound repair and their major cellular components (Wilkinson and Hardman, 2020).
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generated extracellular matrix and keratinocytes in the wound,
constitute granulation tissue.

Wound healing begins to enter the remodeling stage at
2–3 weeks after injury, which is mainly the remodeling of new
tissue and the formation of scar tissue. The new granulation
tissue is mainly composed of type III collagen with low elastic
tension, while the normal skin tissue is mainly composed of type I
collagen with higher tensile strength (Rippa et al., 2019; Wikslund
et al., 2022). Therefore, under the action of fibroblasts and
collagenase, collagen in granulation tissue is constantly degraded
and regenerated to form higher strength type I collagen, thus
providing scar tissue with mechanical strength close to that of
normal skin tissue (Churko and Laird, 2013). At the same time,
the excess capillaries and residual inflammatory cells formed in the
repair process will be gradually eliminated by apoptosis, and
eventually scar tissue will be formed (Kimura and Tsuji, 2021).

2.3 Related factors affecting skin wound
healing

Under physiological conditions, the wound repair process can be
completed in about 2 weeks. The factors affecting wound healing can
be divided into endogenous factors and exogenous factors according
to different sources (Table 1). Common endogenous factors include
age, nutritional status, physical health status, hormone level and
genetic factors (Winter 2006). With the increase of age, the
proliferation activity of keratinocytes and basal cells in the
epidermis of the skin decreases, so it is more prone to damage
under the influence of external injuries (Boismal et al., 2020). At the
same time, the decrease in the activity of macrophages and the
decrease in the release of growth factors and cytokines caused by
aging prolongs the time of proliferation, which leads to the
prolongation of the wound healing process and the increase of
the time required (Bonté et al., 2019).

In addition to the slowing down of tissue renewal caused by
aging, the health status of the body also affects wound healing. Some
chronic diseases such as diabetes can affect the abnormal formation
of micro vessels during wound healing, resulting in delayed skin re-
epithelialization and abnormal extracellular matrix remodeling.
Vitamins, essential fatty acids and other nutrients also play a key
role in wound healing. Lack of these nutrients can lead to prolonged
wound healing and an increased risk of infection (Pullar et al., 2017).
Proper supplements of vitamins and fatty acids such as vitamin A,
vitamin C and n-3 fatty acids can speed up wound healing (Huang
et al., 2018a; VanBuren and Everts, 2022). Hormones also have a
certain impact on the healing of skin wounds. Glucocorticoid can
inhibit the inflammatory response, slow down the aggregation of
neutrophils and macrophages to the wound during the
inflammatory period, and prolong the wound healing time
(Hengge et al., 2006). Estrogen can promote the re-
epithelialization of keratinocytes and angiogenesis of endothelial
cells, and accelerate wound healing (Wilkinson and Hardman,
2017). Insulin controls blood sugar levels to achieve normal
wound healing, avoiding microvascular abnormalities caused by
hyperglycemia and energy supply disorders caused by hypoglycemia
(Hrynyk and Neufeld, 2014; Yu et al., 2019). Finally, wound healing
is also affected by genetic factors. For example, people with

cicatricial constitution may produce excessive scar of wound fiber
due to excessive deposition of collagen, thus forming scar healing
(Amadeu et al., 2004).

In addition to endogenous factors, exogenous factors also have
significant influence on the healing of skin wounds. When the
bacteria in the environment come into contact with the wound,
the bacteria will gather and grow on the wound, release toxins and
cause the necrosis of tissues and cells (Zulkowski, 2013). In the
process of removing bacteria, inflammatory factors will be released
excessively, resulting in the imbalance between growth factors and
inflammatory factors, the inhibition of cell proliferation, and the
delay of wound healing or prolonged wound healing (Scalise et al.,
2015; Malone and Schultz, 2022). Smoking also has an obvious
adverse effect on wound healing. Nicotine and NO in cigarettes can
cause small blood vessel constriction, increase platelet adhesion,
cause small blood vessel occlusion (Ortiz and Grando, 2012).
Alcohol inhibits the body’s immune response while reducing the
level of collagen forming MMPs, which affects the normal healing of
wound (Rosa et al., 2018).

3 Characteristics of wound dressing in
skin wound healing

3.1 Types and main functions of wound
dressings

As a kind of open wound, the external environment has obvious
influence on the healing process of skin wound (Kruse et al., 2015;
Kirchner et al., 2020). Early wound dressing is mainly made of gauze,
cotton and other materials, applied to the wound can quickly stop
bleeding, absorb exudation, help the wound drainage, reduce the
chance of wound infection (Pereira and Bártolo, 2016; Farahani and
Shafiee, 2021). However, these traditional wound dressings can not
effectively maintain the moist wound environment (Aljghami et al.,
2019). At the same time, there are still large pores in these traditional
dressings, which cannot avoid the contact between bacteria in the air
and the wound (Simões et al., 2018; Obagi et al., 2019). With the
development of time, modern dressings represented by hydrogels,
fiber dressings, foam dressings and film dressings are gradually
applied in clinical practice (Walker et al., 2017; Liang et al., 2021a;
Tan et al., 2022). These dressings can create a moist surface
environment for the wound and prevent bacteria from passing
through the dressing and entering the wound while ensuring gas
exchange (Francesko et al., 2018). Fiber dressings such as alginate
fiber dressings also have excellent absorbency and are able to fully

TABLE 1 Factors affecting skin wound healing.

Endogenous factors Exogenous factors

Age Drinking

Hormone Infection

Nutrition Smoking

Chronic disease

Heredity
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absorb the wound exudation, keeping the wound relatively dry
(Zhang and Zhao, 2020). Since wound healing is affected by
many internal and external factors, it has become a new
direction for the construction of wound dressings to modify or
add a variety of bioactive substances to the existing matrix materials
and make them have anti-inflammatory, antibacterial, promoting
re-epithelialization and other biological functions (Zhao et al., 2017;
Zhang et al., 2022a; Yao et al., 2023).

3.2 Properties of an ideal wound dressing

Although the properties of dressings is improving, there is
still a certain gap compared with the healing effect of autologous
skin transplantation (Herskovitz et al., 2016). An ideal wound
dressing should be able to meet the needs of all aspects of the
wound healing process and provide the most suitable internal and
external environment for cell and tissue regeneration. Firstly, the
dressing must have good biocompatibility in the selection of raw
materials, and will not cause immune rejection or biological
toxicity (Zhang et al., 2022a); At the same time, it should have
relatively low economic cost, which is convenient for large-scale
production and clinical application (Pagnamenta, 2017). The
wound dressing constructed should be able to simulate the
tissue structure of the skin, have appropriate mechanical
strength, and be able to fit closely with the skin without

adhesion to the wound, so as to avoid the occurrence of
secondary damage (Alizadehgiashi et al., 2021). In addition,
the wound dressing should also have good moisture, air
permeability and water absorption, can fully absorb the wound
exudate, to ensure the gas exchange between the wound and the
outside world (Liang et al., 2021b; Yang et al., 2022a). Finally, the
wound dressing should have a certain antibacterial and
bactericidal ability, to minimize the occurrence of wound
infection; And on this basis, it has the ability to promote cell
proliferation and growth and skin regeneration (Jiang and Loo,
2021; Yuan et al., 2022). Obviously, a single kind of material
cannot meet all the above needs. Therefore, it will be a future
research trend to construct bioactive materials and tissue
engineering dressings by adding bioactive substances or stem
cells to matrix materials through multi-material combination.

4 Properties and preparation of MXene

4.1 Characteristics of MXene

MXene is a general term for a class of two-dimensional metal
carbides, whose structure is generally Mn+1Xn, where M represents
excessive metallic elements and X represents carbon, nitrogen, or a
carbon-nitrogen complex (Naguib et al., 2012). MXene is usually
obtained by etching the A atomic layer in the MAX phase of its

FIGURE 2
General element composition of MAX phase and MXene: M: early transition metal, A: Group A element, X: C and/or N, Tx: surface functional group
(Zamhuri et al., 2021).
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precursor. As shown in Figure 2 and Figure 3, MAX is
communicated as Mn+1AXn, where A represents an element of
the third or fourth main group, usually Al and Si (Zamhuri
et al., 2021). The M-A bond in MAX has the properties of a
metallic bond with a weak force relative to the M-X bond, so the
A phase in MAX can be etched out by a mixture of HF or HCl with
fluorine salts, leaving the M atomic layer and X atomic layer to form
two-dimensional Mn+1Xn. Since MXene prepared by liquid phase
method has functional groups such as -OH, -O and -F, it is often
written as Mn+1XnTx, where T stands for the surface functional
groups in the compound and x indicates the number of such groups
(Naguib et al., 2014).

Since Naguib et al. first discovered and synthesizedMXene in 2012,
dozens of different MXene have been prepared and applied in many
fields, such as catalysis, sensor, energy storage, microwave absorption,
biomedicine and so on (Pang et al., 2019; Soleymaniha et al., 2019;
Huang et al., 2021). The transitionmetals, surface functional groups and
unique two-dimensional lamellar structure of MXene give it a rich
variety of properties. MXene composed of Ti, Ta and Nb in the
transition elements has good stability and biocompatibility in
animals, and does not cause obvious immune response and
pathological changes in the body (Sundaram et al., 2020). Surface
functional groups and electronegative layered structures provide
MXene with good hydrophilicity (Lu et al., 2021). Compared with
two-dimensional materials such as graphene, MXene has better water
dispersion and hydrophilicity, and can be uniformly dispersed in water-
based solvent to construct a hydrophilic composite material with good
cytocompatibility and adhesion (Chen et al., 2017; Lin et al., 2021). The
abundant surface functional groups also provide a large number of
binding sites for MXene, which can be combined with other matrix
materials, proteins, drugs and other biological macromolecules to
achieve material modification and drug delivery, greatly expanding
the application of MXene in the field of biomedicine (Huang et al.,
2020a; Koyappayil et al., 2022). MXene also has an electrical
conductivity close to that of graphene, and can vary between
semiconductors and conductors according to the modification of its
surface groups, meeting different electrical conductivity requirements of
materials (Yin et al., 2021a; Riazi et al., 2021). The mechanical
destruction of bacterial cell membranes by MXene’s two-
dimensional lamellar structure and the redox action of
lipopolysaccharides by strong anions on cell membranes give
MXene excellent antibacterial properties (Begum et al., 2020; Hao

et al., 2022). In addition, MXene has strong light absorption in the
NIR region, which makes MXene also promising in the field of
photothermal therapy and imaging (Yin et al., 2021b; Jiang et al., 2022).

4.2 Preparation methods of MXene

4.2.1 Hydrofluoric acid etching method
Etching the MAX phase using acid is the most commonly used

method for preparing block MXene (Zhang et al., 2022b). Etching
the Max phase using acid is the most commonly used method for
preparing block MXene, and among all candidates, HF was the
earliest one being applied. Based on the difference of bonding force
between M-A bond and M-X bond in MAX, HF targets the M-A
bond in MAX, where high concentration of HF provides fluorine
ions that binds selectively and tightly to A element (He et al., 2021a;
Chen et al., 2021). By adjusting HF concentration and reaction time
to control the degree of reaction, MXene two-dimensional laminates
prepared by different MAX phases and MXene blocks of different
thickness can be obtained. For example, when 40% HF is used for
etching, Ti3AlC2 powder needs to be etched for 24 h to obtain
multilayer Ti3C2 nanosheets (Awasthi et al., 2020), while Nb2C can
be prepared only by treating Nb2AlC powder for 3 h (He et al.,
2021b). However, it should be noted that MXene prepared by
etching MAX phase with HF is mostly accordion-like multilayer
structure. If single-layer two-dimensional MXene sheets need to be
obtained, intercalator such as DMSO should be introduced into the
reaction system or ultrasonic wave should be used for delamination
stripping (Naguib et al., 2015; Rajavel et al., 2018). Due to the strong
corrosion of HF, it is dangerous for operators (Ozcan et al., 2012).
Meanwhile, the use of high concentration HF to treatMAX phase for
a long time increases the defects in the prepared MXene layer and
reduces the transverse size (Ghidiu et al., 2014). Therefore, the use of
HCl to replace part of HF in the reaction system has also become a
feasible preparation method (Wei et al., 2021; Yu et al., 2021).

4.2.2 In situ hydrofluoric acid etching
High safety risks exist in the preparation of MXene using HF,

and additional intercalation agents are required in the preparation of
monolayer two-dimensional MXene, which has led to the search for
new safer and more efficient methods of MXene preparation. The
substitution of M-A layer by the in-situHF formation on the surface

FIGURE 3
Structure of MXene. SEM images of (A) MXene-Ti3C2 and (B) the high-magnification of (A). (Wang et al., 2015).
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of the material by the combination of HCl and fluoride salt has
become the mainstream preparation method (Baraneedharan et al.,
2022; Kumar et al., 2022). In this method, LiF and HCl are usually
used as etching agents. Cations in fluoride salts can also be used as
intercalating agents to enable MXene to be stratified and stripped, so
as to obtain single two-dimensional MXene, eliminating the need to
introduce additional intercalating agents (Ghazaly et al., 2021; Sinha
et al., 2021). Besides LiF, fluoride salts such as NaF, KF and NH4F
exerts similar effects in the etching process (Liu et al., 2017a; Sun
et al., 2023). In addition, given that neither HF nor fluoride brine
solutions can substitute A layer in the preparation of nitride-based
MAX, MAX is mixed with molten fluoride salt mixture in an argon
atmosphere (Urbankowski et al., 2016).

4.2.3 Fluorine-free preparation method
Whether HF is used for direct etching or HF in situ etching,

HF formation is inevitably involved in the reaction process. HF is
very harmful to human body, and a small amount of HF direct
contact can cause the necrosis of cell tissues and even lead to
death (Kaminsky et al., 1990; Miranda et al., 2021). In addition,
the introduction of fluoride ions in the reaction system will
reduce the number of -OH, -O and other functional groups on
the surface of MXene, which is not conducive to the further
modification of MXene in the application of biomedicine (Huang
et al., 2018b). Therefore, the construction of a fluorine-free
MXene preparation method will be more conducive to the
application of MXene in the biomedical field. Yang et al.
designed a method for preparing Ti3C2 nanosheets using
electrochemical etching of NH4Cl and TMAOH (Yang et al.,
2018). Two Ti3AlC2 nanosheets were used as anode and cathode
respectively, during the etching process, chloride ion in the
solution binds tightly to Al, consequently pure Ti3C2 is
collected. Li et al. designed a NaOH-assisted hydrothermal
process to prepare Ti3C2 and obtained a 92% purity Ti3C2

powder (Li et al., 2018). Since no fluoride ion is involved in
the preparation process, the Ti3C2 collected in this way possess
more active functional groups and have more potentiality for
biological modification.

In addition to MXene obtained by treating MAX phase,
MXene nanosheets can also be prepared by chemical vapor
deposition (Li et al., 2021a; Thirumal et al., 2022). This
method is mainly used to prepare some two-dimensional
MXene that cannot be synthesized by etching or does not
exist stable MAX precursor phase, such as TaC, TaN, etc (Liu
et al., 2021). For example, Geng et al. used a CVD process
catalyzed by molten copper to prepare Mo2C thin layers on
graphene surface in situ (Geng et al., 2017). Wang et al.
heated Cu and Ta with acetylene gas to prepare TaC thin
nanosheets (Wang et al., 2017). In summary, the current
methods of preparing MXene can be roughly divided into two
categories according to whether fluorine ions are involved in the
reaction system. The method of preparing MXene using HF or in-
situ synthesis of HF is relatively simple and easy to prepare and
synthesize in large quantities. However, the biological security
problems brought by fluorine ions need to be carefully applied.
Fluorine-free preparation method has higher biosecurity and is
more environmentally friendly because fluorine ion is not
involved in the reaction system. However, its preparation

process is more complex, and its yield has some disadvantages
compared with traditional methods.

5 Application of MXene and its modified
materials in skin wound healing

5.1 Biocompatibility

As a new material, good cytocompatibility and tissue non-toxicity
are the prerequisite for its further application in the biomedical field. Up
to now, there are dozens of two-dimensional transition metal
compounds in the MXene family, but only Ti, Nb, Ta several
transition elements and their compounds with relatively stable
chemical properties can be applied in the field of biomedicine, and
Ti3C2 is the main application in skin wound healing materials
(Jastrzębska et al., 2017; Liu et al., 2022a). For Ti3C2, its
biocompatibility is affected by many factors, such as concentration,
size, synthesis method and administration route (Scheibe et al., 2019;
Szuplewska et al., 2019). In general, MXene has no obvious toxic and
side effects on most cell lines at low and medium concentration.
However, when the concentration of MXene increases gradually, the
activity of tumor cell lines will be significantly decreased. When the
concentration of MXene reaches 500 mg/L, normal cell lines can still
maintain 70% or even higher cell activity. On the other hand, the
activity of tumor cell lines decreased significantly, and only about 20%
of A549 cell line still had proliferative activity at this concentration
(Jastrzębska et al., 2017). This phenomenon may be due to the fact that
MXene produces reactive oxygen species that exceed the oxidative stress
level of cancer cells, thus leading to apoptosis of cancer cells (Hu et al.,
2010).

The morphology of MXene applied in biomaterials also has
some influence on its biosafety. Zhou et al. found that the safe
concentration of Ti3C2 QDs for human embryonic kidney cell
2,937 and MCF-7 cancer cells could reach 400 mg/L when they
selected Ti3C2 QDS as the intervention material (Zhou et al., 2017).
The oxidized Ti3C2 formed by the oxidation of the functional groups
on the surface of Ti3C2 showed significant cytotoxicity (Jastrzebska
et al., 2020). The size of the prepared MXene also has a certain
influence on its cytocompatibility. Compared with large size Ti3C2

(500 nm) under the same conditions, small size Ti3C2 (1–100 nm)
showed higher activity inhibition on cells, which may be caused by
the ability of small size MXene to enter cells through endocytosis
and induce autophagy dysfunction (Shi et al., 2020). However,
although MXene may have some effects on cell activity in vitro,
none of the results showed any potential organ pathological changes
or toxic effects when MXene was applied in vivo in vitro, indicating
that MXene has no toxic side effects on organisms, which provides a
guarantee for its safe use in vivo (Liu et al., 2017b; Li et al., 2021b).

The process of skin wound healing is mainly realized by
fibroblasts and keratinocytes. Whether MXene has toxic effects on
these 2 cells determines whether it can be used in the modified design
of skin wound dressings. Li et al. constructed an anisotropicMXene@
PVA hydrogel in which NIH3T3 cell lines grown in the hydrogel had
a cell survival rate of over 90%, in addition, NIH3T3 cells in the
hydrogel showed higher cellular activity compared to the control
group (Li et al., 2022a). Wang et al. constructed a SF-coated MXene
membrane and showed that human skin fibroblasts HSAS1 cells were
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able to grow normally on the surface of the membrane and still
showed 99% cellular activity after 6 days (Wang et al., 2020). These
results indicated that MXene had good biosafety for fibroblasts, and
did not affect the activity of fibroblasts. Li et al. inoculated HaCaT
keratinocyte into MXene-containing chitin composite sponges, and
Figure 4 showed that HaCaT keratinocyte migration was significantly
enhanced in MXene-containing materials, with good cell survival (Li
et al., 2022b). These results indicate that MXene has good
cytocompatibility with the two key cells in skin injury and
regeneration, and can promote fibroblast migration and wound
healing to a certain extent.

5.2 Antibacterial activity

Wound infection is an important factor that leads to wound
deterioration or delayed healing. For a wound healing dressing, it
has certain antibacterial and even bactericidal properties to
significantly reduce the chance of infection on the wound surface
and promote the healing of the wound, especially the infected
wound (Liu et al., 2022a; Li et al., 2022c; Yu et al., 2022).
Traditional wound care methods for infected wounds usually use
antibiotics to solve the problem of wound infection, but a wide
variety of bacterial species and complex environment on the wound

FIGURE 4
Biocompatibility of MXene-modified sponges in vivo and vitro (A) Representative images and (B) migration scratch assay of L292 and HaCaT at
48 and 0 h after scratching and treatment with 0.5 mg/ml of each sample. In vivo assessment of the sponges for wound healing (C) Photographic
snapshots of temporal development of healing wounds for the different sponges in 0, 3, 7, and 9 days, respectively. (D) Wound closure rate of different
sponges at different healing times (E)H&E staining and Masson staining images of the wound section at the 13th day for each group, respectively (Li
et al., 2022b).
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FIGURE 5
Antibacterial ability of MXene-modified MXene@PVA hydrogel (A) Photograph of bacterial colonies of Escherichia coli and Staphylococcus aureus
treated with different concentrations of MXene. (C) Photograph of bacterial colonies formed by Escherichia coli and Staphylococcus aureus treated with
the PVA hydrogel, the PVA hydrogel + NIR, MXene@PVA hydrogel (1 mg/ml MXene) and the MXene@PVA hydrogel (1 mg/ml MXene) + NIR. The power
density was 1.5 W/cm2, and the operation time was 10 min (B); (D) corresponding survival rates for Escherichia coli and Staphylococcus aureus (Li
et al., 2022a).
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surface make it difficult for a single antibiotic to cover all bacterial
species, and long-term use of broad-spectrum antibiotics is easy to lead
to the colonization and growth of multi-drug-resistant bacteria such as
MRSA, further increasing the difficulty of wound healing (Deurenberg
and Stobberingh, 2008; Li et al., 2022c). MXene has a lamellar structure
similar to graphene and more abundant surface groups, so the
researchers hypothesized that MXene should also have some
antibacterial properties. Rasool et al. investigated the antibacterial
properties of MXene in 2016, and found that Ti3C2 had higher
antibacterial efficiency against Gram-negative Escherichia coli and
Gram-positive Bacillus subtilis compared to GO (Rasool et al., 2016).
At the same time, Ti3C2 showed obvious dose-dependent bactericidal
effect, and it was found that Ti3C2 could achieve 98% bactericidal killing
rate at 200 μg/ml. TEMand SEM results showed that the cellmembrane
was destroyed under the action of Ti3C2, resulting in the release of
cytoplasm from the bacteria. The authors speculate that this strong
antibacterial activity may be caused by bacterial oxidative stress caused
by electron transfer and the direct mechanical damage of MXene
lamellar structure to the cell membrane (Mashtalir et al., 2014; Tian
et al., 2014).

MXene can avoid the emergence of bacterial resistance through
the mechanism of bacterial death caused by mechanical damage and
oxidative stress, and can also maintain a good killing effect against
multi-drug resistant bacteria, which makes more researchers apply
MXene in the modification and construction of wound dressings
(Figure 5). Mayerberger, E. A. et al. constructed a chitosan nanofiber
loaded with MXene. When E. coli and Staphylococcus aureus were
inoculated on the fibers, they showed a 95% and 62% reduction in the
number of colonies formed, respectively, 4 hours after culture
(Mayerberger et al., 2018). Rozmysłowska-Wojciechowska et al.
constructed a MXene modified chitosan-hyaluronic acid hydrogel
and demonstrated up to 90% growth inhibition against E. coli and S.
aureus in hydrogels supplemented with only 1% MXene
(Rozmysłowska-Wojciechowska et al., 2020). In addition to the
antibacterial effect of MXene itself, the abundant functional groups
on the surface of MXene give it great potential for modification, which
can be combined with proteins, growth factors, nanoparticles and
other molecules to play more roles. Zhang et al. fixed lysozyme onto
the surface of MXene nanosheets. This composite demonstrated
excellent MRSA killing ability and significantly promoted the
healing of infected wound (Zhang et al., 2023).

5.3 Photothermal effect

Photothermal effect refers to the phenomenon of increasing
temperature caused by the interaction between photon energy and
lattice vibration after the material is irradiated by light, among which
the photothermal effect caused by near-infrared radiation is the most
obvious (Huang et al., 2020b;Meng et al., 2022). It is found thatMXene
has high photothermal conversion efficiency, and can achieve obvious
temperature increase under the condition of low powerNIR irradiation
(Xu et al., 2020; Safaei and Shishehbore, 2021). Jin et al. found that for
the constructed nanofiber hydrogel loaded with MXene, 0.5 W NIR
irradiated for 5min could increase the material temperature from 23°C
to 41°C, and the material temperature further rose to 61°C after 5 min
irradiated with 1WNIR (Jin et al., 2021). Such excellent photothermal
effect provides a new design and application idea for the application of

MXene in the design of skin wound dressing. On the one hand,MXene
can make the material temperature rise to a higher temperature
through the photothermal effect, at 40°C or higher temperature can
significantly inhibit the growth activity of bacteria, and further enhance
the antibacterial and bactericidal effect of thematerial together with the
mechanical damage effect of MXene on bacteria. Wang et al.
constructed a chitosan-MXene suspension and loaded it on PVDF
membrane to form a multifunctional membrane. The antibacterial
experiment results showed that the antibacterial ability of the
multifunctional membrane combined with NIR was close to 100%,
which was significantly improved compared with the simple material
group without NIR irradiation (Wang et al., 2022). The results of
animal experiments showed that on the 14th day of treatment, the
healing rate of the infected wound reached 95% in the MXene
combined with NIR irradiation group, which was higher than that
in the material group without NIR irradiation. These results indicated
that the photothermal effect of MXene could further enhance the
antibacterial properties of MXene and promote the healing effect of
MXene on infected wounds.

On the other hand, the photothermal effect of MXene can be used
to regulate the properties of the materials, so as to realize the on-
demand release and precise regulation of growth factors or other
active substances in the materials. Yang et al. constructed a multi-
stimulus response MXene@AgNPs hydrogel (Figure 6), which
achieved precise controlled release of AgNPs through photo
response and magnetic response, and avoided the cytotoxicity
caused by high concentration of AgNPs in a short time while
guaranteeing the bactericidal effect (Yang et al., 2022b). The results
of animal experiments showed that the elevation of local temperature
after NIR irradiation further enhanced the action depth of AgNPs and
improved the therapeutic effect of the material on deep chronic
infected wounds. Xu et al. constructed a multi-mode antibacterial
platform based on MXene, which utilized the photothermal effect of
MXene to achieve continuous and stable release of amoxicillin, and
achieved better long-term antibacterial effect under the condition of
low drug loading (Xu et al., 2021). Jin et al. constructed a temperature-
responsive MXene nanoribbon loaded with vitamin E. The surface
temperature of the material was raised by NIR irradiation to realize
the dissolution and release of vitamin E, which effectively improved
the wound healing function of the material (Jin et al., 2021).

5.4 Hemostatic ability

Blood vessels rupture after skin injury occurs, and rapid
hemostasis in the early stage of injury to form clots is conducive to
wound healing and reduce the risk of infection (Guo and Dipietro,
2010; Rodriguez-Merchan, 2012).MXene has a rich surface charge that
promotes blood cell aggregation, activates platelet activation and clot
formation (Liu et al., 2018; Wu et al., 2021). Li et al. constructed a
MXene@PDA decorated chitosan nanofiber wound dressing, which
was shown to have safe blood compatibility and induce higher blood
cell and platelet adhesion in vivo and in vitro (Figure 7). The authors
speculate that this is mainly due to the large number of hydroxyl
groups in MXene@PDA, which can adhere to blood cells and platelets
and induce blood cell aggregation, platelet activation, and clot
formation through interaction with plasma fibrin (Li et al., 2022d).
Zhou et al. constructed a conductive antibacterial hemostatic
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FIGURE 6
Schematic illustration of the preparation and application of NIR-responsive MXene-based hydrogel system. (A) The formation and drug release
process of the MXene-based hydrogel system. (B) Deep chronic infected wound treated with NIR responsive AgNPs-loaded MXene-based hydrogel
system. (Yang et al., 2022b).

FIGURE 7
Hemostatic ability of MXene modified material M-CNF (A, B) Hemolysis image and hemolysis ratios of the M-CNF-x extracts. (C) SEM images of
blood cells and platelets adhesion on the CNF, M-CNF-15 and M-CNF-20 surface (Li et al., 2022d).
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multifunctional scaffold based on MXene nanosheets to promote
wound healing in multidrug-resistant bacterial infections. The
results showed that the MXene modified HPEM scaffold could
significantly reduce the amount of wound bleeding, shorten the
coagulation time, and demonstrate excellent hemostasis and
coagulation ability. At the same time, the HPEM scaffold
significantly accelerated the wound healing of MRSA-infected by
effective anti-inflammatory effects, promoting cell proliferation and
angiogenesis, stimulating granulation tissue formation, collagen
deposition, vascular endothelial differentiation and angiogenesis
(Zhou et al., 2021). Yang et al. designed a PCL-based MX@AgP
bio-HJs antibacterial fiber membrane, which can realize
sterilization, hemostasis, promote re-epithelialization and collagen
deposition with the aid of NIR, providing a good regeneration
microenvironment for wounds and promoting the healing of
infected wounds (Yang et al., 2022c).

5.5 Electrical conductivity

Healthy skin can form a kind of "skin battery” function (Foulds
and Barker, 1983; McCaig et al., 2005). When the skin is damaged to

form a wound, the normal epithelial potential is immediately short-
circuited, and the current flows out from the center of the wound to
form a relatively stable current circuit at the edge of the wound, which
is called the damaging endogenous electric field (Luo et al., 2021). A
large number of studies have proved that the injurious endogenous
electric field plays a vital role in the healing of skin injury (Isseroff and
Dahle, 2012; Ashrafi et al., 2017; Verdes et al., 2022). As an exogenous
electric field, bioelectrical stimulation can stimulate macrophages,
lymphocytes and neutrophils to migrate to the wound in the early
stage of skin wound healing (Demir et al., 2004), reduce the number of
immune cells and cytokines in the late stage of healing (Weiss et al.,
1989), increase the local tissue blood flow (Taşkan et al., 1997), reduce
edema reaction (Gürgen et al., 2014), promote the migration and
proliferation of fibroblasts and epithelial cells (Asadi et al., 2013), and
accelerate the wound healing process (Franklin et al., 2016). Tang et al.
constructed a chitosan-fibroin protein scaffold containing GO, which
has good electrical conductivity. The experimental results showed that
this scaffold combined with electrical stimulation could significantly
improve the migration and proliferation of fibroblasts, and promote
the healing of skin wounds (Tang et al., 2019).

As a two-dimensional nanosheet with similar structure to GO,
MXene is endowed with good electrical conductivity by a large number

FIGURE 8
Schematic illustration of the fabrication of MXene-modified PMP hydrogels and their application in skin wound healing (Liu et al., 2022b).
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of delocalized electrons. Mao et al. constructed a bacterial cellulose
composite hydrogel containing MXene, which had good electrical and
mechanical properties. The results of in vitro and in vivo experiments
showed that the combination of hydrogel and electrical stimulation
could significantly enhance the proliferation activity of NIH3T3 cells
and accelerate the wound healing process compared with the group
without electrical stimulation (Mao et al., 2020). Zhu et al. constructed
an electroactive oxidized alginate/gelatin/MXene composite hydrogel.
Compared with alginate/gelatin hydrogel alone, this composite material
showed better mechanical properties and electroactivity. Meanwhile, it
had good cytocompatibility to NIH3T3 cells and could promote the
attachment and migration of fibroblasts (Zhu et al., 2022). Zheng et al.
developed an injectable multifunctional hydrogel scaffold based on

MXene@CeO2 nanocomposite material, which has good electrical
conductivity, antioxidant capacity, antibacterial properties and
mechanical properties. The multifunctional hydrogel can
significantly promote the proliferation and migration of fibroblasts
under the intervention of electrical stimulation. Animal experimental
results showed that the composite significantly acceleratedMDRwound
healing by promoting granulation tissue formation, collagen deposition
and re-epithelialization (Zheng et al., 2021). Liu et al. constructed a
high-strength, conductive and antibacterial PVA hydrogel containing
MXene and polyaniline (Figure 8). MXene in the hydrogel irradiated by
NIR provided good antibacterial properties, while MXene and PANI
endowed the material with excellent electrical conductivity. Applying
electrical stimulation to the fibroblasts in the hydrogel can significantly

FIGURE 9
Schematic illustration of MXene@PDA Nanosheets. (A) Synthesis Diagram of MXene@PDA Nanosheets. (B) Schematic Illustrations of Injectable HA-
DA/MXene@PDA Hydrogel Preparation. (C) Infected Diabetic Wound Healing Mechanism of HA-DA/MXene@PDA Hydrogel through Supplying O2,
Scavenging ROS, Eradicating Bacteria, and Inhibiting Inflammation. (Li et al., 2022f).
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promote their proliferation and migration. Animal experiments have
shown that this multifunctional hydrogel can significantly accelerate
skin wound healing by promoting angiogenesis and collagen deposition
(Liu et al., 2022b).

5.6 Regulation of reactive oxygen species
and inflammatory responses

In the process of skin wound healing, the local inflammatory
response of the injury is in a dynamic balance. After injury, the local
inflammatory response formed in the early stage of injury and the
release of cytokines are conducive to the migration of macrophages,
neutrophils and lymphocytes to the injured area, and accelerate the
removal of wound cell debris and foreign substances (Golebiewska and
Poole, 2015). When entering the proliferative and remodeling stages, a
large number of inflammatory cells gathered in the injured area are
gradually replaced by transplanted fibroblasts and epithelial cells, while
the level of cytokines gradually decreases and various growth factors
gradually increase, resulting in the formation of granulation tissue in
the wound area, and the final healing is realized through remodeling
(Dunnill et al., 2017; Deng et al., 2021). However, many factors such as
diabetes, bacterial infection and other factors can interfere this immune
response balance, which is characterized by excessive production of
reactive oxygen species, pro-inflammatory cytokines and protease
(Huang et al., 2020c; Tu et al., 2022). Excess ROS can cause
oxidative damage to cells and tissues, inhibiting angiogenesis,
granulation tissue formation, and wound healing (Wang et al.,
2023). The use of wound dressings with reactive oxygen scavenging
ability can reduce the inflammatory response of the wound and
accelerate wound healing (Li et al., 2021c; Li et al., 2022e). MXene
contains a large number of delocalized electrons, which can realize
rapid conduction and delivery of electrons (Iravani et al., 2022).
Meanwhile, the rich functional groups on the surface of MXene
can also react with reactive oxygen species, so it has an excellent
application prospect in reactive oxygen species scavenging (Iravani and
Varma, 2022). AddingMXene to skin wound dressing can improve the
overall scavenging ability of the material on reactive oxygen species.

Chen et al. constructed a temperature-sensitive Nb2C hydrogel
with antioxidant and antibacterial activities. The Nb2C in this
hydrogel can effectively remove reactive oxygen species and
reduce oxidative damage of cells. Meanwhile, the hydrogel under
NIR irradiation also has good antibacterial properties and can
promote diabetic wound healing (Chen et al., 2022). Wei et al.
constructed a new PAAM-based spongy macroporous hydrogel, in
whichMXene added to the hydrogel provided excellent antibacterial
properties and active oxygen scavenging ability. The reactive oxygen
scavenging rate of hydrogels containing MXene was up to 96% at
2 h. The authors speculated that this was mainly due to the removal
of ROS by antioxidant phenol quinone groups in the MADA chain
through redox reaction, and the removal effect was further enhanced
by the electron transport capacity of MXene (Wei et al., 2022). Li
et al. developed an injectable hydrogel based on HA-DA (Figure 9).
MXene in the hydrogel showed excellent scavenging ability of
reactive oxygen species and active nitrogen species, which could
effectively reduce cellular inflammatory response and release of
inflammatory factors, and promote the healing of diabetic
infected wound (Li et al., 2022f).

6 Conclusion and perspectives

Skin wound healing is a continuous and complex dynamic
process, which requires the joint action of a variety of cells,
factors and appropriate microenvironment to achieve rapid and
satisfactory healing. In order to give wound dressing a more
comprehensive performance, as far as possible to meet the
various needs of wound healing, the use of a variety of matrix
materials combined with or add other materials to the matrix
material for modification has become the main direction of
wound dressing design. The rich physical and biological
properties of MXene provide a good prospect for its application
in the design and manufacture of wound dressing.

MXene represented by Ti3C2 has good biocompatibility. Adding
MXene to the material can improve the overall mechanical
properties and hemostatic ability of the material. The unique
two-dimensional lamellar structure and abundant functional
groups on the surface of MXene also give it excellent
antibacterial properties, electrical conductivity and reactive
oxygen scavenging ability, which can be further enhanced under
the action of NIR. The rich functional groups on the surface of
MXene also provide the potential for further modification, which
further broadens the prospect of application in the design of
materials for skin wound healing. The addition of MXene to
wound dressings can significantly improve the overall
performance of the material, giving the dressings antibacterial
ability, electrical conductivity and reactive oxygen scavenging
ability, and other properties conducive to skin wound healing

However, althoughMXene has many advantages in the application
of skin wound healing and repair, there are still some shortcomings that
need to be solved or improved. The existing preparation methods of
MXene need to introduce hydrofluoric acid or its salt compounds,
which has certain biosafety risks. When preparing MXene on a large
scale, how to effectively ensure the homogeneity of the product for
large-scale production and use is also a problem to be solved in the
future. Although there are some potential problems in the large-scale
preparation of MXene and the maintenance of the homogeneity of
lamellar structure, we believe that with the continuous development of
research, these problems will be able to find effective solutions, making
MXene an ideal modified material for skin wound repair.
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