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As an agricultural waste, crop straw enriched with a variety of nutrients is regarded
as an important fertilizer resource. In the past, crop straw return-to-field played a
key role in the sustainability of agricultural environment, but some problems, such
as ammonia loss in ammoniation, low rate of straw decomposition, and high
carbon footprint, attracted researchers’ attentions. In this paper, we propose three
technical routes, including cyanobacteria-based ammonia assimilation,
microorganisms-based crop straw pretreatment, and microalgae-based carbon
capture, to address the aforementioned problems. Besides, challenges whichmay
hinder the practical application of these technical routes as well as the potential
solutions are discussed in detail. It is expected that this paper could provide new
ideas to the practical application of crop straw return-to-field.
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1 Introduction

As a large country with the highest population in the world, China puts a priority on crop
production, which is accompanied by the yield of a huge amount of crop straws (Yan et al.,
2019; Zhang et al., 2020; Wang et al., 2022). At present, the average annual straw production
in China is higher than 1 billion tons, accounting for about one-third of the global straw
production (He et al., 2022). In the past, crop straw, which was regarded as an agricultural
waste, was often burned, resulting in serious atmospheric pollution and waste of resources
(Singh et al., 2021). Recently, the return of crop straw to field as fertilizer is conceived and
intensively studied as a promising technology to support the sustainable development of
modern agriculture (Yan et al., 2019). Compared to the straw burning, return of crop straw
to field has no detrimental effects on air quality and is able to improve soil fertility, maintain
soil biodiversity, and promote plant growth (Ma et al., 2020a; Wang et al., 2021; Islam et al.,
2022). For instance, after returning straw to fields, with the release of nutritional
compositions in crop straw, soil organic carbon content increased significantly by
13.97% (Wang et al., 2020; Wang et al., 2021), while soil nitrogen (N) content and crop
yield increased by 11% and 7%, respectively (Wang et al., 2015). Fast development of
biotechnologies are promoting the wide application of crop straw return-to-field (Hans et al.,
2019; Zhang B. et al., 2022). Owing to the positive effects of returning crop straw to fields on
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soil fertility, microbial diversity, and plant growth, Chinese
government has made policies to support the return-to-field of
crop straws (Yin et al., 2018).

Although a variety of methods and technologies were developed
to promote the return-to-field of crop straw (Wang et al., 2013; Sun
et al., 2014; Ma et al., 2020b), there are still some serious problems
occurred in the return-to-field of crop straw (Supplementary
Figure S1).

1.1 Waste of nitrogen resource in
ammoniation process

As a process of treating crop straw with anhydrous ammonia,
ammoniation, which has been widely applied before the return-
to-field of crop straw, can improve the N content of straw and the
nutritional values of straw-based fertilizer (Gordon and Chesson,
1983; Li et al., 2022). However, ammoniation of crop straw is
accompanied with the emission of a huge amount of ammonia
(Borhami et al., 1982; Gordon and Chesson, 1983). Gordon and
Chesson (1983) reported that treatment of straw with anhydrous
ammonia (40 kg t−1 straw dry matter) only increased the N
content of straw by 13.9 g kg−1, suggesting that over 65% of
ammonia was wasted in the ammoniation process. Hence, it is
of importance to further improve the N conversion ratio of
ammoniation process.

1.2 Low rate of straw decomposition

Optimization of tillage methods, in some cases, could not
effectively accelerate the decomposition of crop straw (Yin et al.,
2018). Wang et al. (2013) compared the effects of two tillage
methods, including plowing tillage and no-tillage, on soil
property in straw return-to-field experiment, discovering that the
difference between these two methods in the improvement of soil
total organic carbon (TOC) was not significant (Wang et al., 2013).
Similar result was observed in the experiment which compared the
effects of rotary tillage and plowing tillage on soil property (Zhu
et al., 2014). Incomplete decomposition of crop straw can negatively
impact the plant root penetration and the seedling growth (Su et al.,
2016; Su et al., 2020).

1.3 Invasive emission of CO2

The increase of CO2 emission caused by the return-to-field of
crop straw has not been fully addressed (Li H. et al., 2018; Ren
et al., 2019; Ma et al., 2020a). Straw return-to-field inputs
additional carbon sources to soil and increases microbial
activity in the soil, resulting in significantly higher CO2 and
methane emissions from the soil (Wang et al., 2018). It was
reported that the rate of methane emission from rice fields
increased by 210% due to straw return-to-field (Yan et al.,
2005). In addition, Cui et al. (2017) pointed out that straw
returning to the field has a significantly higher global warming
potential (GWP) than conventional fertilization systems (Cui
et al., 2017). Therefore, contribution of crop straw return-to-field

to global warming has attracted researchers’ attentions (Hong
et al., 2016; Liu et al., 2019; Ma et al., 2019).

Herein, we would like to focus on the recent progresses of
employing algae and microorganisms to solve the
aforementioned problems. In this work, a technical road-map
for the sustainable development of straw return-to-field is
presented and an in-depth discussion of the application of
practically-feasible biotechnology is provided then. It is
expected that this work can spur researchers to focus on the
environmental problems occurred in the straw return-to-field
and provide potential solutions to those problems for the
development of eco-friendly agriculture.

2 Technical roadmap for the
sustainable development of straw
return-to-field

A road-map with three major technical routes is presented in
Figure 1.

Firstly, to improve N conversion ratio of crop straw
ammoniation, emitted NH3 can be collected and dissolved in
water, which is further utilized for cyanobacteria cultivation. In
cyanobacterial cells, assimilated ammonia is converted to algal
protein (Lu et al., 2019). As the harvested algal biomass is added
into soil as fertilizer, ammonia will be released back to soil with the
decomposition of algal protein (Zou et al., 2021).

Secondly, microorganisms, particularly bacteria and fungi, are
employed to pretreat crop straw. Extracellular enzymes secreted by
those microorganisms can promote the decomposition of crops
straw (Ji et al., 2018). With the assistance of enzymes-secreting
microorganisms, the decomposition rate of crop straw can be
improved. Accordingly, nutrients contained in crop straw can be
utilized by plants through an efficient way.

Thirdly, microalgae are spread on soil as a potential strategy to
attenuate the CO2 emission of return-to-field of crop straw.
Microalgae on soil surface can capture CO2 via photosynthesis,
creating a huge carbon sink (Lu et al., 2022; Lu and Xiao, 2022).
With the photosynthesis of microalgae on soil surface, carbon
footprint of crop straw return-to-field can be lowered.

The feasibility of aforementioned strategies is intensively
studied. Firstly, cyanobacteria-based ammonia assimilation is
applied in wastewater remediation to achieve the nitrogen
recovery (Lu et al., 2017; Lu et al., 2019). Besides, cyanobacteria
with high content of nitrogen have been proven to be a good
resource for organic fertilizer (Acea, 2003; Abinandan et al., 2019).
Secondly, mechanisms associated with the bacteria- or fungi-based
crop straw decomposition have been intensively studied,
demonstrating the possibility of using microorganisms to
promote the crop straw return-to-field (Wood et al., 1986; Ji
et al., 2018). Thirdly, microalgae have been intensively
employed to reduce carbon emission of traditional factories. For
example, some microalgal strains perform well in assimilating CO2

in flue gas, contributing to the construction of net-zero carbon
factory (Cheah et al., 2015). Besides, mechanisms of algal
photosynthesis and critical points enhancing the microalgae-
based carbon fixation have been studied (Singh et al., 2016; Lu
et al., 2018a; Petrova et al., 2020).
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3 Integration of cyanobacteria-based
ammonia absorptionwith ammoniation

3.1 Ammonia emission in ammoniation
process

Ammoniation is conducted to generate ammonolysis
reaction in crop straw by using ammonia-containing
chemicals, such as liquid ammonia, urea, and ammonium
bicarbonate (Yu et al., 2015; Doğan and Hayırlı, 2022).
Through ammoniation, ester bonds between lignin and
polysaccharide in crop straw can be damaged, making straw
more decomposable in soil (Datsomor et al., 2022). Up to
now, although key parameters, including temperature,
moisture level, treatment period, and so on, have been
optimized, ammonia emission in ammoniation process is still
a serious challenge (Cloete and Kritzinger, 1984; Ma et al.,
2020c). According to the study of Ma et al. (2020a) that used
5% urea (46% N content) for ammoniation, crude protein
contents in rice straw (350 g) with ammoniation and without
ammoniation were 9.27% and 5.79%, respectively (Ma et al.,
2020c). If the nitrogen-to-protein conversion factor was set as
6.25, the addition of 5% urea (8.05 g N) in 350 g rice straw
(3.24 g N) only increased the total N content of rice straw
from 3.24 g to 5.19 g (Lu et al., 2015). In other words, 6.10 g N
from urea was wasted in the ammoniation process while only
1.95 g N in urea was combined to rice straw (Ma et al., 2020c).

Therefore, in this work, N conversion ratio of ammoniation was
only 24.22% while about 75.78% of nitrogen in urea was wasted
(Supplementary Figure S1).

Ammonia emission may dramatically increase the ammonia
concentration in a closed environment, causing potential
explosion under certain conditions (Li H. et al., 2018).
Besides, ammonia released into atmosphere can be a promoter
of the formation of haze (Ye et al., 2011). Hence, measures must
be taken to attenuate the ammonia emission in ammoniation
process. As shown in Figure 1, to reduce the ammonia emission
in ammoniation process, a potential strategy of recovering the
ammonia released from ammoniation process by growing
cyanobacteria is proposed. In this strategy, ammonia released
from ammoniation is collected to used as a nitrogen source of
culture medium for cyanobacteria production. Then,
cyanobacterial biomass enriched with nitrogen can be used as
organic fertilizer to improve soil fertility.

3.2 Cyanobacteria-based ammonia
absorption

Cyanobacteria are a group of blue-green algae with the great
capacity of assimilating nitrogen for protein synthesis (Lu et al.,
2019). In the metabolisms, nitrate in external environment must be
converted to ammonia by nitrate reductase and nitrite reductase
while ammonia can be directly assimilated by cyanobacterial cells (Li

FIGURE 1
Technical roadmap for the sustainable development of straw return-to-field.
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TABLE 1 Utilization of cyanobacteria as fertilizer to improve soil fertility and enhance plant growth.

Cyanobacteria Fertilization information Soil quality Plant growth References

Anabaena azotica Replacement of chemical nitrogen
fertilizer with nitrogen-fixing
cyanobacteria by 30%, 50%, 70%
and 100%

30% substitution of chemical nitrogen
fertilizer with Anabaena azotica resulted
in monetary savings of around 5.77 USD
ha-1.

Substitution of chemical nitrogen
fertilizer with Anabaena azotica
increased rice gain yield, plant height,
and the numbers of panicles and tillers.

Zhang et al.
(2021)

Nostoc carneum and Nostoc
commune

Addition of 12 g (wet weight)
cyanobacterial biomass in 12 kg soil

— The use of cyanobacteria as fertilizer
improved the amount of spike per
plant, amount of grains per spike, and
total grain weight per spike.

Chittapun et al.
(2017)

Nostoc minutum and
Anabaena spiroides

Replacement of chemical fertilizers
with 100% algae

(1) 100% substitution of chemical
fertilizer with cyanobacteria increased
nitrogen content in soil from
222.85 mg/kg to 305.10 mg/kg;

(1) 100% substitution of chemical
fertilizer with cyanobacteria negatively
impacted the vegetative growth of
broad bean plant;

Al-Sherif et al.
(2015)

(2) 100% substitution of chemical
fertilizer with cyanobacteria resulted in
lower contents of phosphorus and
potassium;

(2) The mixture of cyanobacteria with
organic fertilizer had more positive
effects on plant dry weight and shoot
height than full chemical fertilizer and
cyanobacteria.

(3) 100% substitution of chemical
fertilizer with cyanobacteria dramatically
reduced the contents of heavy metals,
such as Pb, Cd, and Ni, in soil.

Anabaena azotica Addition of cyanobacteria: 150 kg/
ha and 300 kg/ha

(1) Compared to the control with no
nitrogen supply, addition of
cyanobacteria increased the contents of
total nitrogen, total phosphorus, and
organic carbon in soil;

Compared to the control with no
nitrogen supply, addition of
cyanobacteria in soil improved rice
yield to around 4,000 kg/ha.

Xuening Song
et al. (2021)

(2) Compared with the addition of urea,
the fertilization with cyanobacteria
reduced the average nitrogen (nitrate,
ammonia, total dissolved nitrogen, and
dissolved organic nitrogen) leaching loss.

Oscillatoria, Nostoc and
Scytonema

1×105 and 2×105 cyanobacteria g-1

soil
(1) Inoculation of cyanobacteria and
mixed cyanobacteria increased nitrogen
content in lime soil from 1.3 g/kg to
51.2–108.0 g/kg;

— Acea (2003)

(2) Inoculation of cyanobacteria in soil
improved the contents of Ca2+, Mg2+, Na+,
and K+.

Microcoleus vaginatus,
Scytonema javanicum, etc.

— (1) Cyanobacterial inoculation treatment
increased organic carbon content in soil
from 0.33 to 0.49 g/kg to 2.67–2.71 g/kg;

— Wang et al.
(2009)

(2) Cyanobacterial inoculation treatment
increased total nitrogen content in soil
from 0.18 to 0.19 g/kg to 0.43–0.45 g/kg

(3) Cyanobacterial inoculation treatment
increased the ratio of C/N from 1.85 to
2.55 to 5.97–6.35.

Nostoc — (1) Cyanobacteria inoculated on soil
improved soil aggregate stability;

— Malam Issa et al.
(2006)

(2) Cyanobacteria inoculated on soil
improved water filtration.

Aphanothece sp. and
Gloeotrichia sp.

— Cyanobacteria inoculation increased
acetylene reduction activity, contributing
to the improvement of nitrogenase
activity in soil.

(1) Compared to no cyanobacteria
inoculation, Gloetrichia inoculation
and Aphanothece inoculation increased
rice yield from 5.20 g/pot to 7.02 g/pot
and from 5.20 g/pot to 5.49 g/pot,
respectively;

Dash et al.
(2016)

(Continued on following page)
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et al., 2016). Since ammonia in external environment can be
efficiently used by cyanobacteria as a nitrogen source,
cyanobacteria can be employed for ammonia removal. Previous
studies have intensively cultured various species of cyanobacteria for
ammonia recovery in different types of wastewater or culture media
(Lu et al., 2019; Srimongkol et al., 2019). Cyanobacteria can survive
in an ammonia-rich environment and perform well in ammonia
removal (Supplementary Table S1). For example, in a synthetic
wastewater containing about 206 mg/L ammonia, Spirulina platensis
removed 80%–84% nitrogen. In water environment with low
ammonia concentration, cyanobacteria could also efficiently fix
ammonia (Wuang et al., 2016; Álvarez and Otero, 2020).
Therefore, it is a practically-feasible method to use cyanobacteria
for ammonia recovery.

Through glutamine synthetase-glutamine oxoglutarate
aminotransferase (GS-GOGAT) pathway, absorbed ammonia
can be converted to amino acids and protein by cyanobacteria
(Lu et al., 2018a). Protein content in Spirulina sp., a typical
species of cyanobacteria, could reach 59%–69% (Lu et al., 2019).
If the nitrogen-to-protein conversion factor is set as 6.25, 1 kg
cyanobacterial biomass (590–690 g protein) contains
94.4–110.4 g nitrogen, which is equal to 114.6–134.1 g
ammonia. Accordingly, the cultivation of cyanobacteria can be
regarded as an important process of the bio-conversion of
ammonia to protein.

3.3 Utilization of cyanobacterial biomass as
organic fertilizer

Protein-rich cyanobacterial biomass can be utilized as organic
fertilizer, which can slowly release nutrients, including nitrogen,
phosphorus, and organic carbon, to improve soil fertility (Malam

Issa et al., 2006; Kumar et al., 2013). Compared to the direct use of
ammonia solution as fertilizer, the use of cyanobacterial biomass as
fertilizer has some advantages. Firstly, cyanobacteria-based fertilizer
can release ammonia slowly with the gradual decomposition of
cyanobacterial protein. Compared to chemical fertilizer,
cyanobacteria-based fertilizer could release ammonia via a slow-
release process (Lu and Xiao, 2022). The slow-releasing process of
ammonia has not detrimental effects on crops but can continuously
support the crop growth (Singh et al., 2019). Secondly, ammonia,
which is slowly and continuously released from cyanobacterial
biomass, can be assimilated by crops immediately. Under this
situation, the loss of nitrogen resource caused by ammonia
evaporation in fertilization process can be attenuated (Jhala et al.,
2017; Lu et al., 2022).

As shown in Table 1, in the agricultural practice, with the
addition of cyanobacteria in soil, soil fertility can be improved
and the growth of plants can be enhanced (Abinandan et al.,
2019). Firstly, due to the high content of protein in cyanobacteria,
nitrogen content in soil can be improved after cyanobacteria
inoculation (Acea, 2003). Besides, some cyanobacteria are able to
fix atmospheric nitrogen during the fertilization process, further
improving the nitrogen content in soil (Harding et al., 2018). The
fixation of atmospheric nitrogen by cyanobacteria is another factor
that contributes to the increase of nitrogen content in soil (Lu et al.,
2022). Secondly, after cyanobacteria inoculation, microbial biomass
carbon in soil can increase, contributing to the improvement of soil
fertility (Karthikeyan et al., 2007; Song X. et al., 2021). Thirdly,
cyanobacteria with filamentous cell structure and water retention
ability can increase soil aggregate stability (Malam Issa et al., 2006).
Previous studies have demonstrated the positive effects of
cyanobacteria inoculation in soil on the growth of crops and
vegetables (Karthikeyan et al., 2007; Kumar et al., 2013; Dash
et al., 2016).

TABLE 1 (Continued) Utilization of cyanobacteria as fertilizer to improve soil fertility and enhance plant growth.

Cyanobacteria Fertilization information Soil quality Plant growth References

(2) Compared to no cyanobacteria
inoculation, Gloetrichia inoculation
and Aphanothece inoculation increased
the number of rice panicles from
5.66 pot-1 to 8.97 pot-1 and from
5.66 pot-1 to 6.99 pot-1, respectively.

Calothrix ghosei,
Hapalosiphon intricatus and
Nostoc sp.

— In glasshouse condition, cyanobacteria
inoculation increased microbial biomass
carbon in soil from 106.3 mg kg-1 soil to
159.0–227.0 mg kg-1 soil.

(1) In phytotron facility, cyanobacteria
increased plant dry weight of wheat
from 16.130 g pot-1 to 17.660–21.544 g
pot-1.

Karthikeyan
et al. (2007)

(2) Cyanobacteria increased plant
height and grain yield of wheat.

Anabaena laxa and
Calothrix elenkinii

1.6 μg chl g soil-1 — (1) After cyanobacteria inoculation,
plant fresh weight of coriander
increased, reaching around 300 mg.

Kumar et al.
(2013)

(2) Cyanobacteria inoculation
increased plant shoot length and plant
root length.

(3) Cyanobacteria inoculation
increased peroxidase activity in shoot
and root.
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4 Application of microorganisms based
fermentation to pretreat crop straw

4.1 Decomposition process of crop straw

Zhang et al. (2014) analyzed 784 crop straw samples, including
cotton stalk samples, wheat straw, rape stalk, rice straw, and corn
stover, collected from different regions of China, discovering that
crop straw contains some essential elements, including carbon,
nitrogen, sulfur, phosphorus, and potassium (Zhang et al., 2014;
Wang et al., 2020). It was observed that in nature, crop straw can be
decomposed gradually by bacteria, fungi, and other microbes with
the assistance of hemicellulase, cellulase and ligninase (Henriksen
and Breland, 2002; Jin et al., 2022). For example, Ji et al. (2018)
reported that Methanosarcina and Methanothrix as well as
hydrogentrophic Methanocella could be regarded as the
important archaeal taxa involved in rice straw degradation (Ji
et al., 2018).

Decomposition of crop straw by microorganisms-based
fermentation can be divided into two major steps (Guo et al.,
2018; Gao et al., 2016). Firstly, microorganisms secret
extracellular enzymes, particularly cellulase and ligninase, which
can break the chemical structure of crop straw, converting high-
molecular-weight organics to low-molecular-weight organics (Xiong
et al., 2014; Harindintwali et al., 2020). Secondly, after the enzymes-
driven crop straw decomposition, nutrients of crop straw could be
assimilated by microorganisms (Zhao et al., 2019). In this step, some
microbial strains may secret organic acids with low-molecular-
weight. Both two steps could play a key role in the improvement
of soil fertility. On one hand, extracellular enzymes secreted by
microorganisms could promote the decomposition of crop straw
and accelerate crop straw return-to-field. On the other hand, organic
acids secreted by some microbial strains could increase the organic
carbon content in soil (Zhang Y. et al., 2022).

4.2 Microorganisms-based fermentation for
crop straw pretreatment

Baige Zhang et al. (2022) cultivated Trichoderma reesei to
pretreat corn straw before return-to-field, discovering that the
humic acid carbon content in fungi-treated corn straw was much
higher than that in untreated corn straw (Zhang Y. et al., 2022).
Fermented corn straw treated with T. reesei is more conducive to
increasing the content of easily oxidizable organic carbon in soil
than direct application of corn straw. In addition, some conditions,
such as temperature, O2 concentration, and air humidity, which can
determine the fermentation process, could be optimized to enhance
the performance of crop straw pretreatment (Yu et al., 2019; Mengqi
et al., 2021). Last but not the least, some studies focused on the
emission of greenhouse gases (GHG) during the decomposition of
crop straw in soil (Devêvre and Horwáth, 2000). In the real-world
application, it is also important to take measures to reduce the GHG
emission during the microorganisms-based crop straw
pretreatment.

At present, although the research directly related to bacteria- or
fungi-based crop straw pretreatment is very limited, there are some
studies focusing on microorganisms screening and major

components of crop straw. Firstly, in the past decades, various
microbial strains, including Bacillus subtilis, Neocallimastix
frontalis, N. frontalis, Pleurotus sp., T. reesei, and so on, with the
ability of secreting extracellular cellulase and ligninase were
discovered and isolated (Wood et al., 1986; Singh et al., 2013; de
Paula et al., 2019; Rathnan and John, 2021). In the practical
application, to enhance the performance of crop straw
pretreatment, a mixture of microbial strains with different
extracellular enzymes could be applied. Secondly, major
components of crop straw have been intensively studied,
providing guidelines for the screening of microorganisms
(Tamaki and Mazza, 2010). For example, to promote the
decomposition of crop straw with high contents of cellulose,
microbial strains secreting extracellular cellulase should be
selected for the pretreatment.

5 Reduction of the carbon footprint of
straw return-to-field by microalgae

5.1 Carbon footprint of straw return-to-field

Due to the high content of lignin, cellulose, and hemicellulose in
crop straw, the decomposition of straw in soil could release a large
amount of carbon (Supplementary Table S2). Gan et al. (2011)
reported that straw and root decomposition could emit 120 kg CO2-
eq ha−1, suggesting that straw in soil can be a source of carbon
emission (Gan et al., 2011). Wu et al. (2022) reported that carbon
footprint of wheat cultivation supplied with straw and chemical
fertilizer reached 1978.72 kg CO2-eq ha−1 and carbon efficiency was
only 11.87% (Wu et al., 2022). In addition to carbon footprint of
single crop production, carbon footprint of crops rotation could be
improved by the utilization of straw-based fertilizer. Shi-hao Li et al.
(2020) found that in rice-wheat rotation, annual CH4 emission
increased by 5.4%–72.2% with the straw return-to-field and
carbon emission (4,275–4,989 kg CO2-eq ha−1) also increased
with increasing straw returning amounts (Li S. H. et al., 2020).
Similar result confirming the positive correlation between straw and
soil carbon footprint was also discovered by Xuening Song et al.
(2021) that assessed the effects of straw retention and straw removal
on carbon footprint of continuous corn cropping and corn-soybean
rotation (Song Q. et al., 2021). Hence, straw return-to-field usually
gives rise to GHG emissions from the soil and increase carbon
footprint of agricultural activity (Dhaliwal et al., 2019).

5.2 Microalgae-based carbon assimilation in
soil

Microalgae, which can efficiently assimilate atmospheric CO2

and organic carbon, are widely spread in the river, desert, lake, and
ocean. It was reported that carbon content in Chlorella pyrenoidosa
fell in a range of 47.00%–56.02% (Huang et al., 2015). If CO2 is the
sole carbon source of microalgae, the accumulation of 1 kg
microalgae biomass means that 1.477–1.761 kg CO2 has been
assimilated. According to the study of Lu et al. (2018a), the
maximum O2 productivity of 8 g microalgae on biofilm (200 cm2)
could reach 249.44 mg h−1 (Lu et al., 2018b). In other words, 1 kg
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microalgae could assimilate CO2 at a maximum rate of 42.87 g h−1.
Hence, microalgae culture can be regarded as an efficient way for
carbon capture. Since microalgae perform well in carbon fixation
and can be easily obtained, it may be a practically-feasible way to use
microalgae to reduce carbon footprint in agricultural activity.

The reduction of carbon footprint of soil by living microalgae
might be attributed to two mechanisms (Figure 1). Firstly, living
microalgae on the surface of soil can capture atmospheric CO2

through photosynthesis. If the environmental factors, such as
temperature, sunlight, and moisture, are suitable to the algal
photosynthesis, microalgae on the surface of soil can be regarded
as a carbon sink, which continuously convert atmospheric CO2 to
biomass (Abinandan et al., 2019). In this case, microalgae could
reduce the total carbon emission of soil by creating a carbon-
negative micro-environment on the surface of soil. Secondly,
microalgae could establish synergistic relations with soil bacteria
and fungi for carbon utilization. Soil microorganisms, including
microalgae, bacteria, and fungi, can form consortia, in which
microbial cells not only interact physically, but also exchange
nutrients (Perera et al., 2018). For example, CO2 released by soil
bacteria and fungi can be immediately captured by microalgae in the
consortia. In this way, carbon emission from the heterotrophic
metabolisms of soil bacteria and fungi can be reduced to some
extent.

In the practical application, some important issues merit the
researchers’ attentions. Firstly, although the effects of alien
microalgal species on soil environment have not been fully
studied yet, potential threats of biological invasion caused by the
use of alien microalgal species should be avoided (Korneva, 2014).
Hence, native microalgal species, instead of alien microalgal species,
should be isolated and cultured for carbon footprint reduction.
Secondly, to improve the survival ratio of microalgae added in soil,
soil properties, such as salinity, temperature fluctuation, moisture
and so on, must be taken into consideration. For example, to reduce
the carbon footprint of saline-alkali land, microalgal species with
high tolerance to salt should be screened and then inoculated in soil
(Qiao et al., 2015). Thirdly, to support microalgae growth in soil and
promote carbon fixation, microalgae growth-promoting bacteria can
be co-inoculated with microalgae in soil. It was discovered that some
bacteria could promote the growth of microalgae by producing and
secreting indole acetic acid (Dao et al., 2018). With the faster
reproduction of microalgae in soil, a larger carbon sink can be
created for carbon reduction.

6 Challenges and prospects

In practice, some challenges to these strategies are discussed and
potential solutions are provided as well.

Firstly, it is not easy to improve ammonia assimilation ratio
during cyanobacteria cultivation. Theoretically, cyanobacteria could
efficiently assimilate dissolved ammonia in media. However,
cyanobacteria growth could continuously increase the pH of
media, disturbing the equilibrium of H+ and OH−. The pH of
media with Spirulina cultivation could reach over 11, creating an
alkaline environment (Pagels et al., 2019; Li H. et al., 2020). As a
result, a high portion of ionized ammonium will be converted to
unionized ammonia, causing ammonia emission. In the view of the

present authors, to improve the ammonia assimilation ratio during
cyanobacteria growth, pH of culture media should be strictly
controlled to prevent the continuous increase of pH. For
example, buffer can be added in culture media to attenuate the
conversion of ionized ammonium to unionized ammonia during
cyanobacteria growth. In addition, crop straw ammoniation and
cyanobacteria cultivation can be performed simultaneously to
ensure that ammonia released from ammoniation process can be
immediately assimilated by cyanobacteria.

Secondly, in agricultural practice, due to the harsh environment,
such as temperature fluctuation between day and night,
microorganisms-based fermentation may be hindered. In
addition, if microbial strains could not be preserved properly,
their bio-activity may be negatively impacted. Therefore,
measures must be taken to enhance the microorganisms-based
crop straw pretreatment. Firstly, microbial strains should be
preserved properly to prevent the decrease of microbial bio-
activity and the degradation of microorganisms. Secondly, the
optimal environment should be identified according to the
biological characteristics of microorganisms. Then, the
pretreatment of crop straw should be conducted under the
optimal conditions to ensure that a higher ratio of nutrients in
crop straw can be converted to low-molecular-weight nutrients.
Thirdly, physical pretreatment or chemical pretreatment can be
integrated with microorganisms-based crop straw pretreatment. For
example, physical crushing could increase the total surface area of
crop straw and enhance the interaction between microorganisms
and crop straw.

Thirdly, production cost of microalgae must be further reduced
to lower the total cost of the reduction of carbon footprint of crop
straw return-to-field. Due to the high cost of culture media, artificial
illumination, and biomass harvesting, the utilization of microalgae is
seriously hindered in many sectors of agriculture and industry.
Acien et al. (2012) reported that the unit production cost of
microalgae biomass (dry weight) could reach 96 €/kg and the
simplification of technology could reduce the unit production
cost of microalgae biomass to 12.6 €/kg (Acien et al., 2012). In
our view, some measures can be taken to lower the production cost
of microalgae. Firstly, wastewater enriched with nutrients can be
employed to cultivate microalgae (Xu et al., 2020; Zhong et al., 2021).
Compared to artificial culture media, wastewater can be obtained at
much lower cost, reducing the production cost of microalgae.
Secondly, advanced technologies or equipment can be adopted to
simplify the microalgae harvesting process. For example, compared
to centrifugation, immobilized microalgae attached on biofilm can
be harvested by using scrappers with much lower energy
consumption and cost (Hu et al., 2021). Thirdly, photovoltaic
technology can be employed to reduce the energy consumption
caused by illumination. With the adoption of photovoltaic
technology, solar energy can be stored in the form of electrical
energy to provide illumination for microalgae growth at night
(Zahedi, 2011). Thus, the energy consumption and cost of
microalgae production can be reduced.
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