
Biomass and lipid production by
the native green microalgae
Chlorella sorokiniana in response
to nutrients, light intensity, and
carbon dioxide: experimental and
modeling approach

Carolina Montoya-Vallejo*, Fernando León Guzmán Duque and
Juan Carlos Quintero Díaz

Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia (UdeA), Medellín,
Colombia

Introduction: Microalgae are photosynthetic cells that can produce third-
generation biofuels and other commercial compounds. Microalgal growth is
influenced by two main parameters: light intensity and carbon dioxide
concentration, which represent the energy and carbon source, respectively.
For photosynthesis, the optimum values of abiotic factors vary among species.

Methods: In this study, the microalga Chlorella sorokiniana was isolated from a
freshwater lake. It was identified using molecular analysis of the ribosomal internal
transcribed spacer. A single-factor design of experiments in 250-mL Erlenmeyer flasks
was used to evaluate which concentrations of nitrogen and phosphorus increase the
production of biomass and lipids. The response surface methodology was used with a
32-factorial design (light intensity and CO2 were used to evaluate its effect on biomass,
lipid production, and specific growth rates, in 200-mL tubular photobioreactors (PBRs)).

Results andDiscussion: Low levels of light lead to lipid accumulation, while higher
levels of light lead to the synthesis of cell biomass. The highest biomass and lipid
production were 0.705 ± 0.04 g/L and 55.1% ± 4.1%, respectively. A mathematical
model was proposed in order to describe the main phenomena occurring in the
culture, such as oxygen and CO2mass transfer and the effect of light and nutrients
on the growth of microalgae. The main novelties of this work were molecular
identification of the strain, optimization of culture conditions for the indigenous
microalgae species that were isolated, and formulation of a model that describes
the behavior of the culture.
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1 Introduction

The rapid increase in the world’s population has created immense pressure on the
availability of sustainable energy resources. Achieving a balance between population growth
and finite resources on Earth is currently one of the biggest challenges worldwide. Over the
next 30 years, various issues such as energy shortages, the greenhouse effect, and climate
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change are expected to have a more severe impact on society.
However, these challenges can be addressed by adopting
sustainable and eco-friendly ways to generate energy. Microalgae
hold significant promise in this respect (Khoo et al., 2021; Mat Aron
et al., 2022). Microalgae are simple-structured photosynthetic
organisms that can produce third-generation biofuels and other
commercial compounds (cosmetics, pigments, ω-3 fatty acids,
proteins, etc.). They also can be used as cathodic organisms in
microbial fuel cells and produce hydrogen (Khoo et al., 2021; Wang
et al., 2021). The advantages of microalgae include the following: i)
the capacity to grow in seawater, brackish waters, and wastewaters
using carbon dioxide as a carbon source, thereby mitigating CO2

emissions (Huang and Tan, 2014); removing wastewater pollutants;
and generating value-added products; ii) resistance to a broad range
of environmental conditions; iii) the capacity to be grown on land
that is not appropriate for agriculture; and iv) high biomass
productivity per unit area, high photosynthetic efficiency, and
fast growth (Olguín, 2012; Abu-Ghosh et al., 2014; Collet et al.,
2014; Ramos-Suárez et al., 2014; Park et al., 2015).

The number of lipids that are synthesized by microalgae
depends on the inherent capacity of the species (genotype/
phenotype) and on abiotic factors such as wavelength, light
intensity, and composition of the culture medium (mainly carbon
source, nitrogen, and phosphorus) (Metsoviti et al., 2020). Light
(including its quality, intensity, and light/dark cycle) plays a critical
role in affecting the growth and composition of microalgae biomass,
particularly in regard to fatty acid and pigment profiles (Chia et al.,
2018). Different research has identified that the light intensity
required for proper algal growth is in the range of 40–1,240 μE/
m2-s (Almomani, 2020). However, this could seem contradictory in
terms of the lipid content because the response is strain-specific and
will depend on other culture conditions. Biomass densities have
been shown to increase when cultures of Chlorella sp. and
Nannochloropsis sp. are exposed to light intensities above 117 μE/
m2-s (de Jesus andMaciel Filho, 2017), as adequate lighting is crucial
for the growth of microalgae. On the other hand, increasing light
intensity could cause a decrease in microalgal growth. For example,
increasing the light intensity above 150 μE/m2-s has resulted in a
10–25% and 20% decrease in growth rate and carbon uptake rate,
respectively, because damage to light receptors lowers the efficiency
of capturing solar light (Almomani, 2020). A clear positive
relationship is not observed between light supply and the
synthesis of carbohydrates or lipids in microalgae, although it has
been established that irradiation can stimulate the synthesis of
precursors for the synthesis of starch and sucrose. (de Jesus and
Maciel Filho, 2017). Low light intensities are more favorable for lipid
accumulation (de Jesus and Maciel Filho, 2017).

Nutrients are also very important for biomass growth and
composition (Gouveia et al., 2014; Lee et al., 2015). Carbon is the
main component of biomass (50% w/w approx.), and the supply of
CO2 is important in the autotrophic cultivation of microalgae. The
optimal values for carbon dioxide concentration vary not only
among different microalgae strains but also for the same strain
when grown under slightly different conditions (Aguirre and Bassi,
2013). Increasing CO2 levels increases algal growth in Chlorella
vulgaris (de Jesus and Maciel Filho, 2017). However, if the CO2

supply exceeds the metabolic rate of the microalgae, the pH of the
culture will decrease and become acidic, negatively impacting the

growth of microalgae (Zhu and Huang, 2017). The optimal
concentrations of CO2 for microalgae growth are around 10%,
while higher concentrations (20%) could favor lipid
accumulation. Furthermore, the lipid content of microalgae
cultured under various levels of CO2 feeding is most likely
influenced by differences in the microalgal species (Thawechai
et al., 2016). The effects of N and P on biomass growth, lipid
production, and CO2 uptake rate have been extensively studied
experimentally, both of each single variable and also considering
that the C:N:P ratio is an important factor in microalgae cultures
(Almomani, 2020). Nitrogen and phosphate starvation is the most
widely used strategy to improve lipid accumulation (Singh et al.,
2016). In many microalgae, an increase in the carbon-to-nitrogen
ratio results in lipid accumulation (Tongprawhan et al., 2014).

Microalgal growth can be modeled to describe the fate of the
culture and depends on factors such as nutrient concentration, light
radiation, and pH. The specific growth rate as a function of the
incident light follows the Monod model, or it follows inhibition
models when microalgae are exposed to high levels of light. The
Monod model can also describe the effect of nutrients on growth.
Regarding the gas–liquid transfer, the CO2 balance from the gas
phase to cell biomass must be considered because CO2 is the sole
carbon source in autotrophic cultures (Camacho Rubio et al., 1999;
Yun and Park, 2003). Light and temperature are closely related,
especially in outdoor cultures, and pH and CO2 have an important
influence on microalgal growth and composition. While it would
seem sensible to use multiparametric models, these are difficult to
adjust because of the lack of data required for equal degrees of
freedom (Darvehei et al., 2018).

In this study, autotrophic culture experiments using an isolated
wild strain of Chlorella sorokiniana were conducted in order to
investigate the effects of different nitrogen/phosphorus and carbon
dioxide concentrations and different light intensities on growth and
lipid production, using the response surface methodology (RSM).
Additionally, phenomenological-based models for C. sorokiniana
were constructed to study the lipid and biomass production of the
microalgae.

2 Materials and methods

2.1 Isolation and identification of the
microalgal strain

The microalgae culture of C. sorokiniana was isolated from a
freshwater lake located in Medellín (Colombia). The isolated strain
was made axenic by continuous sub-culturing using a modified Chu
13 medium (Yeesang and Cheirsilp, 2011) on agar plates
supplemented with ampicillin and kanamycin (10 and 50 μg/mL
in the medium, respectively). The culture was identified using
molecular analysis of the ribosomal internal transcribed spacer
(ITS). To achieve this, the Invitrogen PureLink Genomic DNA
kit (Thermo Fisher Scientific, Wilmington, DE, United States)
was used for DNA extraction in accordance with the
manufacturer’s protocol. DNA was quantified using a NanoDrop
2000 instrument (Thermo Fisher Scientific, Wilmington, DE,
United States) at 260 nm. A primer for the ITS gene was selected
from the published studies (Mai and Coleman, 1997; Van Hannen et
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al., 2002) and was used to identify the microalgae (NS7m-F 5′-GGC
AATAACAGGTCTGT-3′ and LR1850-R 5′-CCTCACGGTACT
TGTTC-3′). Amplicons obtained with these primers were
purified using a QIAquick PCR Purification kit (Qiagen, Hilden,
Germany) and sequenced using Sanger sequencing and capillary
electrophoresis (Applied Biosystems SeqStudio, Thermo Fisher
Scientific, Wilmington, DE, United States). Both strands were
read to ensure the reliability of the sequencing. Sequencing data
were assembled using the CAP3 Sequence Assembly Program
(Huang and Madan, 1999), and then sequences were manually
curated using the eBioX program (version 1.5.1) and analyzed
using the BLASTN tool with the nucleotide database (Chen et al.,
2015). Finally, to construct the phylogenetic tree, sequences reported
by Zou et al. (2016) were used. The MEGA X package was employed
using the neighbor-joining method with 1,000 bootstrap values
(Sohpal et al., 2010).

2.2 Biomass and lipid productivity as a
function of nitrate and phosphate
concentration

In order to compare the biomass and lipid content in C.
sorokiniana culture with the nitrogen and phosphorus content,
three levels of KNO3 (0.19; 0.67; 1.5 g/L) and five levels of
KH2PO4 (0.33; 0.43; 0.82; 1.2; 1.6 g/L) were evaluated while
maintaining other nutrients at a constant level and using
NaHCO3 (1 g/L) as a carbon source in the modified Chu
13 medium (Yeesang and Cheirsilp, 2011) comprising
FeCl3·6H2O 0.0073 g L−1 in EDTA 0.00916 g L−1; K2HPO4

0.04 g·L−1; MgSO4·7H2O 0.05 g L−1; CaCl2·2H2O 0.04 g L−1; KNO3

0.1 g L−1; H3BO3 0.002859 mg L−1; Na2MoO4·2H2O 0.05 mg L−1;
ZnSO4 0.1234 mg L−1; CoCl2·2H2O 0.05 mg L−1; MnCl2
1.146 mg L−1; and CuCl2·2H2O 0.054 mg L−1. To maintain the
stock, it was reseeded every 3 months (Lugo-De Ossa et al.,
2022). Experiments were performed in a 250-mL Erlenmeyer
flask containing 120 mL of effective volume and inoculum
consisting of 5% (v/v) seed medium taken at the 72nd h. The
vessel was maintained under 13 μmol/m2-s and a 12:12 photoperiod.

2.3 Biomass concentration and lipid content
as a function of carbon dioxide and light
intensity

The cultures were created in the photobioreactor (PBR) using
the modified Chu 13 medium with the concentrations of nitrogen
and phosphorus obtained in the previous experiment. The PBR
consisted of a vertically mounted glass tubular column. The
dimensions of the PBR were 56.0 cm (height) and 34.0 cm
(diameter), and the effective volume was 0.2 L, with openings at
the top and bottom sides. The thickness of the column wall was
0.34 cm. Mixed gas (air–CO2), with a flow rate of 1 vvm, was fed to
the column through a 30-mm diameter gas distributor ring located
at the bottom of the column. The initial cell density was 0.1 g/L, and
light was provided by 3500 K 9-W cool white fluorescent tubes. In all
cases, a light/dark cycle of 12:12 h was maintained. The light
intensity and CO2 concentrations for biomass production and

lipid content were optimized using the RSM with a 32

experimental design. The two variables were tested at three levels:
light intensity at 13, 39, and 65 μmol/m2-s and carbon dioxide at
0.03, 10, and 20%. According to this design, nine treatments for each
optimization were employed containing three replications. The
relationship between the variables was analyzed using a statistical
model by fitting a second-order polynomial equation to the data
obtained from the 27 runs (Table 1). All the calculations were made
using the data from the last day of the culture (14th day). The
response surface analysis was based on multiple linear regressions
that considered the main, quadratic, and interactive effects, in
accordance with Eq. 1

Y � β0 +∑n
i�1
βiXi +∑n

i< j
βijXiXj +∑n

j�1
βijX

2
j , (1)

where Y represents the response of experimental biomass and lipid
content; i and j are linear and quadratic coefficients, respectively; β is
the regression coefficient; n is the number of variables studied in the
experiments; and the Xs are factors (independent variables). The
goodness of fit of the model was evaluated by the coefficient of
determination (R2) and analysis of variance (ANOVA). The
significance of regression coefficients was determined with a
confidence level of 95%. The statistical analysis and the optimum
values for each response variable were found based on mathematical
models using Statgraphics Centurion XVI software.

2.4 Measurement of variables

2.4.1 Biomass concentration
Dry biomass was measured by absorbance at 437 nm, and the

dry weight was calculated according to a calibration curve. The
calibration curve was constructed as follows: a representative sample
of the culture of known volume was taken and filtered on a pre-
weighed filter paper. The filter paper was then left in the muffle
furnace at 105°C for 24 h, the filter with the dry cells was weighed,
and the biomass weight by difference was calculated (Arredondo
and Voltolina, 2007). At the end of each assay, dry biomass was also
determined by the described method to confirm the value obtained
by the calibration curve.

2.4.2 Nitrate and phosphate concentration
The nitrate concentration was measured using the salicylic acid

method reported by Palomino (1997) using a Synergy microplate
reader at 410 nm. The calibration curve was constructed from a
concentrated solution of KNO3. The phosphate concentration was
determined by the ascorbic acid method reported by the Standard
Methods for the Examination ofWater andWastewater (Health and
APHA, 2015) (Baird et al., 2017) using a Synergy microplate reader
at 880 nm. The calibration curve was constructed from a
concentrated solution of K2HPO4.

2.4.3 Determination of total lipid content
The lipid content was determined using the gravimetric

methodology, by modifying the method of Bligh and Dyer (1959)
and breaking the cells by sonication (Bligh EG and Dyer W J, 1959;
Hosseini et al., 2018; Lugo-De Ossa et al., 2022). About 15 mL of the
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culture medium was taken, and the biomass of the culture medium
was separated by centrifugation at 15,000 rpm/10 min. The medium
was resuspended in 1 mL of chloroform: methanol solution (2:
1 ratio) and was subjected to ultrasound for 2 h at 30 Hz. It was
later centrifuged at 15,000 rpm/10 min to separate the biomass from
the solvent. The solvent phase was recovered with the oils in a
previously weighed Eppendorf tube. Extraction was repeated in
triplicate, and the solvent layers collected were combined. The
Eppendorf tube containing the solvents was placed in an oven
for evaporation at 80°C until a constant weight was reached. The
mass of the lipid fraction was used to measure the lipid content of
the algal cells (g lipids/g dry biomass*100).

2.4.4 Gases and dissolved gases
The carbon dioxide concentration in the water was determined

by measuring the alkalinity (Pérez and Restrepo, 2008), and the
concentration of dissolved oxygen was determined using a portable
oximeter (SI Analytics). Carbon dioxide and oxygen in the gas phase
were determined using a multi-gas analyzer (SKY2000-M4).

2.5 Development of the mathematical
model

This section presents the kinetic growth model of C.
sorokiniana in a bubble column PBR. The model includes 1)
dynamic equations for biomass, phosphate, nitrogen, carbon
dioxide, and oxygen; 2) kinetic expressions; and 3) mass transfer
models. Dynamic equations are based on mass balances
assuming a well-stirred PBR. In this sense, the gas supply has
two purposes: first to provide the carbon source for cell growth,
and second to provide pneumatic agitation via bubbles that run
through the system after having passed through a sprinkler. The
kinetic model for microalgae growth was developed using a
Monod-type model for multi-nutrient limitations (Eze et al.,
2018). Components of the microalgae growth kinetic model
include the rate of use of the inorganic carbon, nitrate, and
phosphate sources; oxygen production; and pH variations. Mass
transfer dynamics are presented for CO2 and O2. The

concentration of bulk aqueous phase oxygen increases due to
net oxygen excretion by algae cells and net oxygen mass transfer
to the bulk gas phase and decreases due to consumption by
microalgal respiration. The concentration of bulk aqueous phase
carbon dioxide decreases due to consumption by algal cells
during photosynthesis and increases due to excretion by algae
cells during respiration and net carbon dioxide mass transfer to
the bulk gas phase (Shriwastav et al., 2018). For the model, it is
assumed that light intensity and temperature are fixed and there
is no water evaporation from the culture. The effect of light
intensity on specific cell growth, reduction of light intensity due
to biomass concentration, and the material of the bioreactor´s
wall were included in the model.

Microalgal biomass is produced through photosynthesis Eq. 2
for autotrophic metabolism (Eriksen et al., 2007; Picardo et al.,
2013). The carbon source is carbon dioxide dissolved in the medium,
and the energy source is the light supplied by the lamps, in the
presence of nutrients, oxygen, carbohydrates, and lipids (as
fundamental components of biomass).

CO2 + 0.93H2O + 0.15NO−
3 + 0.002P → CH1.71O0.4N0.15P0.002

+ 1.42O2 + 0.15OH−

(2)
The kinetic model of cell growth is represented as a function

of nitrogen (nitrate), phosphorus (phosphate), and CO2 (C)
sources and as a function of the incident light (I) falling on
the biomass due to photoinhibition (Eq. 3). On the other hand,
the light coming from the lamps (IO) is attenuated by biomass
(including both absorption and scattering) and by the reactor
and its liquid content (Eq. 4). This can lead to light limitation,
making it difficult for the light to penetrate into the depths of the
culture (Krichen et al., 2021). Material balances by component
were carried out for the five most important elements present in
the system. This involved obtaining five differential equations
that represented the dynamics of biomass (X), nitrate (N), and
phosphate (P) as substrates and dissolved CO2 (C) and dissolved
O2 (O2) (Eq. 5-9). It is known that the relationship between
pH and dissolved CO2 is derived from chemical equilibrium

TABLE 1 Biomass concentration and lipid content obtained from experimental design with Chlorella sorokiniana after 14 days of culture.

Treatment Light intensity (μmol/m2-s) Carbon dioxide (%) Biomass g/L (measured) Lipid content % (measured)

T1 13 0.03 0.44 ± 0.14 37.1 ± 3.5

T2 39 0.03 2.81 ± 0.16 15.8 ± 1.5

T3 65 0.03 3.45 ± 0.20 13.5 ± 4.1

T4 13 10 2.21 ± 0.16 31.4 ± 13.5

T5 39 10 2.02 ± 0.91 15.4 ± 4.4

T6 65 10 2.93 ± 0.30 17.2 ± 1.1

T7 13 20 1.08 ± 0.52 49.1 ± 0.5

T8 39 20 2.28 ± 0.39 22.3 ± 5.1

T9 65 20 1.72 ± 0.29 38.9 ± 1.8
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theory (James et al., 2013). As the culture grows, a decrease in
carbon source concentration will cause an increase in pH in the
culture broth. For simplicity, it is reasonable to assume that the
increase in pH is proportional to the decrease in carbon dioxide
concentrations (Eq. 10) (Zhang et al., 1999; Bekirogullari et al.,
2017).

μ � μ max
N

KN +N
( ) P

KP + P
( ) C

KC + C
( ) I

KI + I
( ), (3)

I � I0 1 − α 1 + X

KIX +X
( )[ ], (4)

dX

dt
� μX − μdX, (5)

dP

dt
� −YPXμX − μmP

P, (6)
dN

dt
� −YNXμX − μmN

N, (7)
dC

dt
� −YCXμX + kcla CLC* − C( ) − μmCC, (8)

dO2

dt
� YO2XμX + kO2

la CLO2* − O2( ) − μmO2
O2, (9)

dpH

dt
� K

dC

dt
. (10)

The algebraic differential equations were solved using the
MATLAB ode15s routine. In order to determine parameter
values for the best fit with the experimental data, the MATLAB
fmincon routine was used. This algorithm utilizes the simplex search
algorithm (Packer et al., 2011). The objective function to be
minimized (Eq. 11) was defined as the sum of the square
difference between the experimental and predicted values (yi) of
the six variables in the model during the culture time. Pearson’s
correlation coefficient R2 was used to evaluate the degree of fit of the
model with the experimental data.

∑6
i�1
∑n
t�1

yi
exp t( ) − ypred

i t( )( )2. (11)

3 Results

3.1 Isolation and identification of the
microalgal strain

In this study, morphological characteristics were initially used to
identify the isolate CQ01 strain as genus Chlorella sp. The cells were
solitary, non-motile, and spherical (Figure 1), with a prominent cup-
shaped chloroplast. The phylogeny of the CQ-01 strain based on the
ITS gene is presented in Figure 2. Based on these data, the strain was
identified as C. sorokiniana. Analysis was conducted using the
MEGAX software (Sohpal et al., 2010) with the neighbor-joining
method. Parachlorella kessleri and Dicloster acuatus were used as
outgroups.

3.2 Biomass and lipid productivity as a
function of nitrate and phosphate
concentration

The effects of nitrate and phosphate sources on the production
of biomass and lipid content are presented in Figures 3, 4,
respectively. ANOVA shows that both factors had a significant
effect on biomass concentration. The LSD test evaluated
significant differences between the treatments and determined the
best concentration to be 0.67 g KNO3/L and 0.8 g K2HPO4/L (p <
0.05). In terms of the lipid percentage, the trend clearly shows a
higher lipid content with intermediate concentrations of
phosphorus and low concentrations of nitrogen. There are no

FIGURE 1
Micrograph of the microalga Chlorella sp 1000x.
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FIGURE 2
Phylogenetic tree based on 18S rDNA gene sequences.

FIGURE 3
Effect of nitrogen concentration on biomass (blue) and lipids (orange) for an autotrophic culture of Chlorella sorokiniana.

FIGURE 4
Effect of phosphorus concentration source on biomass (blue) and lipids (orange) for an autotrophic culture of C. sorokiniana.
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FIGURE 5
C. sorokiniana growth rates under different CO2 concentrations and light intensities.

TABLE 2 Kinetic parameters estimated in the microalgae model.

Parameter Estimated value Units Physical meaning

μ max 2.19 d−1 Maximum specific growth rate

μd 0.0004 d−1 Rate of maintenance

KP 42 mg/L Half-saturation constant for phosphate

KN 31.5 mg/L Half-saturation constant for nitrate

KC 0.0120 mg/L Half-saturation constant for carbon dioxide

KI 67.34 µmol/m2.s Half-saturation constant for carbon dioxide

μmP
0.0162 d−1 Rate of phosphate uptake for maintenance

μmN
0.4042 d−1 Rate of nitrate uptake for maintenance

μmC 0.0013 d−1 Rate of carbon uptake for maintenance

μmO2
0.0019 d−1 Rate of oxygen uptake for maintenance

YPX 0.116 mg/mg Phosphate—biomass yield

YNX 0.0315 mg/mg Nitrate—biomass yield

YCX 0.00095 mg/mg Carbon dioxide—biomass yield

YO2X 0.0019 mg/mg Oxygen—biomass yield

kcla 3.45 d−1 Volumetric gas–liquid mass transfer coefficient for carbon dioxide

CLC*a 0.81 mg/L Liquid phase equilibrium concentration of carbon dioxide

kO2
la

3.87 d−1 Volumetric gas–liquid mass transfer coefficient for oxygen

CLO2*
a 6.00 mg/L Liquid phase equilibrium concentration of oxygen

KpH 6.11 L/mg pH rate constant

α 0.263 (%) Percentage of the maximum effective light available for the growth

Kix 0.0252 mg/L Half- saturation constant of the biomass concentration

aThese parameters were not identified in the optimization.
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statistically significant differences in lipid content between the
treatments (p > 0.05). The best concentrations found for biomass
were selected for further experiments considering that total lipid
productivity increases with an increase in biomass.

3.3 Biomass concentration and lipid content
as a function of carbon dioxide and light
intensity

The comparison of biomass and lipid content data is shown
in Table 1, and the comparison of growth rates is presented in
Figure 5. High growth rates were reached at 10% of CO2 and
65 μmol/m2-s. However, a clear trend cannot be inferred from
these results. The worst growth was obtained at a low CO2

concentration (0.03%) and low light intensity (13 μmol/m2-s).
The effect of the interactions must be considered. For all
treatments, there was an adaptation phase from days 0–4, an
exponential phase from days 4–8, and a stationary phase, related

to the depletion of nitrogen and phosphorus (Almomani, 2020),
after 8 days. Biomass production correlates with the cell growth
rate (Figure 5). Conditions of high light intensity and low levels
of CO2 allow higher growth rates.

Growth curves for the lower carbon dioxide concentrations (air)
showed that under lower light intensities of 13 and 39 μmol/m2-s, C.
sorokiniana exhibited slow growth and low biomass content.
Growth and biomass content increased to 65 μmol/m2-s,
indicating that the light regime is an important factor controlling
biomass in C. sorokiniana. As described by other authors (Khoeyi
et al., 2012), biomass production in many microalgae increases
under high light intensity conditions. Therefore, light intensity
causes an increase in reproduction until a saturation point is
reached, after which photoinhibition occurs. In this study,
photoinhibition was not observed. According to the results, the
65 μmol/m2-s light intensity mostly favored the growth rate (3 and
1.5 times greater than 13 and 39 μmol/m2-s, respectively). The
patterns observed agree with those found by other authors using
PBRs, with a similar configuration to this work. In all cases, a specific

TABLE 3 ANOVA for the response surface quadratic model of biomass concentration.

Source Sum of squares DF Mean square F-value Prob > F

A: CO2 1.30008 1 1.30008 4.76 0.0419

B: light intensity 10.037 1 10.037 36.73 0.0000

AA 0.863873 1 0.863873 3.16 0.0914

AB 4.20206 1 4.20206 15.38 0.0009

BB 1.48127 1 1.48127 5.42 0.0311

Total error 5.19205 19 0.273266

Total (corr.) 23.2575 24

FIGURE 6
3D surface plots of biomass concentration vs. CO2 concentration and light intensity.
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growth rate was favored at high light intensities (Krzemińska et al.,
2015; Metsoviti et al., 2020). However, the fact that photoinhibition
was observed at 39 μmol/m2-s for high CO2 concentrations indicates
an interaction between carbon dioxide and light intensity.

Table 1 shows a notable decrease in the total lipid content in the
microalgae when irradiance increased for all carbon dioxide
concentrations.

Considering the relevance of the interaction between light
intensity and carbon dioxide concentration, it is important to
analyze the two variables together. This was performed by
statistical analysis of the response surface. The response functions
in the factor used to predict biomass production and lipid content
are given in Eqs 12, 13, respectively.

Biomass g.L−1( ) � −0.645 + 0.145A + 0.113B − 0.0022AB

− 0.00077B2, (12)
Lipids %( ) � 58.75 − 1.21A − 1.84B + 0.0745A2 + 0.018B2, (13)

where the independent variable A is CO2 content (%) and B is light
intensity (μmol/m2-s). A and B are the main effort linear terms while

AB is the interaction term, and A2 and B2 are the quadratic terms
involved in the process. The statistical significance of the model
equation was analyzed by the F-test for analysis of variance
(ANOVA) to the fitted model (Tables 2, 3). The determination
coefficient (R2) was 0.776 for biomass production and 0.838 for lipid
content. This indicated that up to 77.6 and 83.8% of the variations in
responses can be explained by themodel. The regression of the linear
term of light intensity (B) is the most significant factor for biomass
production (p-value <0.0001), followed by the interaction term
(p-value of 0.0009) and the quadratic term of light intensity
(p-value of 0.0311). The quadratic term of CO2 does not have a
significant effect and was omitted in the model. To understand the
effect on lipid content, the regression of linear and quadratic terms
of light intensity was the most significant factor, followed by linear
and quadratic terms of CO2 content. As the interaction term does
not have a significant effect, it was omitted from the model.

The biomass equation from the response surface adjustment
indicates that the coefficients of the linear terms, CO2 and light
intensity, have a positive effect on increasing biomass
concentration. However, the quadratic terms have a negative

FIGURE 7
3D surface plots of lipid content vs. CO2 concentration and light intensity.

TABLE 4 ANOVA for the response surface quadratic model of lipid content.

Source Sum of squares DF Mean square F-value Prob > F

A: CO2 639.147 1 639.147 19.34 0.0004

B: light intensity 1,102.9 1 1,102.9 33.37 0.0000

AA 262.257 1 262.257 7.93 0.0124

AB 63.9982 1 63.9982 1.94 0.1831

BB 712.514 1 712.514 21.56 0.0003

Error total 528.822 16 33.0514

Total (corr.) 3,256.24 21
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effect. The lipid percentage equation from the response surface
adjustment indicates that the linear terms of CO2 and light
intensity have a negative effect by decreasing the lipid
percentage. However, the quadratic and interaction terms
have positive effects.

Figure 6 shows the response surface and contour plot for
biomass concentration. This figure indicates that a low carbon
dioxide concentration and the highest light intensity in this study
lead to a high biomass concentration. Photoinhibition was not
observed for the conditions of light intensity studied. Figure 7
shows the response surface for the lipid percentage. This figure
shows that a low light intensity leads to a high lipid percentage,
which could be related to lipid accumulation under stress
conditions.

3.3.1 Optimization and validation of the statistical
model

It is important to simultaneously optimize both lipid percentage
and biomass concentration to achieve good lipid productivity.
However, each of these response variables is optimized in
different light and CO2 conditions. The desirability function
allows several responses to be optimized simultaneously. In the
present study, the optimum value of the desirability function
requires a CO2 concentration of 20% and a light intensity of
29.9 μmol/m2-s for the best lipid and biomass production. The
predicted and optimum values for the response variables are
shown in Table 4. Experimental validation of the models was
performed under the conditions of the model, leading to optimal
results. Independent experiments were carried out, and the accuracy
of the model was validated using triplicate experiments.

3.4 Mathematical model

Growth, nutrient uptake, dissolved oxygen, and pH variations for the
culture and modeling fits of C. sorokiniana under optimized conditions
(29.9 μmol/m2-s–20% CO2 in air) are presented in Figure 8. Nitrogen
source consumption in autotrophic conditions was accelerated,
indicating that nitrogen is a limiting nutrient for C. sorokiniana
growth. This source was completely depleted on the 9th day of
culture. Likewise, in the case of the P-source, there was a significant
decrease in the phosphorus concentration without it being completely
consumed within 9 days of culture, indicating an excess of the nutrient.
Limited capacity for the removal of total phosphorus in this species has
been reported. A very good fit was observed for biomass (0.974),
phosphate (0.934), nitrate (0.997), carbon dioxide (0.918), oxygen
(0.979), and pH (0.898).

Maximum specific growth rate is one of the most recurrent
parameters modeled for microalgae, and a range of
0.077–5.28 days−1 is reported in the literature. In the present study,
the value of this optimized parameter was 0.61 days−1 (Table 5),
indicating that a microalgal cell of C. sorokiniana requires 1.1 days
to duplicate. The rate of maintenance represents the activities carried
out by living cells in the absence of growth and is lower than that
obtained for Desmodesmus sp. (Eze et al., 2018). However, the rates of
nitrate uptake for maintenance are very high compared with other
maintenance parameters, indicating that nitrogen acts as a limiting
substrate. The half-saturation constant or substrate constant is an
intrinsic parameter of the cell substrate systems and represents the
relative affinity for the substrate. The level of growth-limiting substrates
in culture media is normally much greater than half the saturation
constant. As a result, growth can be approximated using zero-order

FIGURE 8
Fitting of the mathematical model for the representative variables of the C. sorokiniana culture with the operational factors optimized by the
statistical model (29.9 μmol/m2-s and 20% CO2). Simulation (lines) to experimental data (symbols).
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kinetics, with the growth rate independent of substrate concentration
until it reaches very low values. This can be observed in the case of
nitrate concentration after 4 days of culture. Substrate biomass yields
are dependent on the stoichiometry of the reaction but are significantly
affected by the culture conditions. In the case of themodel, the observed
yields were used. All yields observed in the present study were very low
compared with those in the literature. However, the modeled yields are
very similar to the experimental ones for phosphate and carbon dioxide
(the Ypx experimental yield is 0.2 mg KH2PO4/mg biomass, and the
Ycx experimental yield is 0.0006 mg/mg biomass). The YNX

experimental yield is 0.3 mg KNO3/mg biomass, which is above the
predicted value. This could be related to the rate of nitrogen used in the
maintenance. According to the model, most of the nitrogen is used for
maintenance.

Themass–transfer coefficient kLa is a rate constant that relates to
the mass transfer rate, mass transfer area, and concentration change
as a driving force. It can be measured or calculated using the
published correlations. In the present study, the mass transfer
coefficients for oxygen and carbon dioxide were parameters
estimated in the model adjustment, and the values were in
agreement with those reported by other authors (Eze et al., 2018;
Shriwastav et al., 2018). According to the CO2 profile, the speed of
transfer of CO2 is lower than that of its consumption, which limits
the mass transfer of this component. It is necessary to increase the
Kla to values higher than 3.446 days−1 to avoid this limitation. The
behavior of dissolved oxygen in the microalgal culture fluctuates
according to the photoperiod. In the present study, data on dissolved
oxygen were recorded once a day in the light phase. Therefore, where
oxygen was produced, the typical oscillation was not observed.

4 Discussion

Indigenous strains of microalgae are generally preferred because
of their expected stable growth, high adaptability for survival, and
productivity. For these reasons, it is crucial to select strains that have
a high concentration of proteins and lipids, as they are key
components for commercial applications (Duong et al., 2015).
The results in the present study show that the isolated microalga
belongs to the class Chlorophyceae found in freshwater lakes in
Colombia (Aguirre and Bassi, 2013).

Nitrogen and phosphorus are very important nutrients in
microalgal growth, meaning that their concentrations need to be
optimized for each species and condition. Nucleic acids, proteins,
and ATP synthesis require nitrogen. Various coenzymes, key
enzymes, and energy substances in the biosynthesis of fatty acids
in microalgae are composed of nitrogen (Tongprawhan et al., 2014).
Cells first convert nitrate to nitrite using NADH-nitrate reductase

and then further metabolize it to ammonia using ferredoxin-nitrite
reductase. The ammonia is then converted to glutamate and
ultimately to succinate through the action of glutamate
decarboxylase. When nitrogen levels are low, lipid production
can be promoted as the lack of nitrogen causes the accumulation
of carbon precursors in the form of acetyl-CoA, which is a building
block for lipid synthesis (Tan and Lee, 2016; Zhu and Huang, 2017).
However, nitrogen is required for growth and in high
concentrations, such as above 1.5 g/L, can act as an inhibitory
substrate (Figure 3). Phosphorus is a crucial macronutrient that
plays a role in many metabolic processes, including energy
generation, photosynthesis, and signaling pathways. When
microalgae are grown under phosphate-limited conditions, they
tend to accumulate neutral lipids (Singh et al., 2016). In the
present study, higher lipid contents were obtained in
intermediate concentrations of phosphate, and also act as an
inhibitory substrate at the highest concentrations evaluated of
1.2 g/L (Figure 4). Other authors have found that the optimal
concentrations of KNO3 and K2HPO4 to produce lipids in the
marine Chlorella sp were 0.80 and 0.06 g/L, respectively
(Tongprawhan et al., 2014). The optimum nitrogen content was
very similar to the value found in the present study, but the
phosphate content was very low, indicating how important it is
to optimize parameters for each species and strain. Taking into
account that the optimum concentrations of C, N, and P are very
strain-specific, the C:N:P ratio is widely used to analyze nutrient
requirements in microalgae. For example, for Chlorella vulgaris, the
C:N:P ratio was found to be 2.86:2.71:1 (Almomani, 2020); for the
growth of mixed indigenous cultures, the C:N:P ratio was 4.4:1:1.5
(Woertz et al., 2009); and for C. sorokiniana under heterotrophic
conditions, the C:N:P ratio had little effect on biomass yields and
triggered the accumulation of carbohydrates (Lacroux et al., 2021).
Taking into account that there is no consensus in terms of a suitable
C:N:P ratio for microalgae, it is important to study this ratio for each
species and condition. In the present study, the optimumC:N:P ratio
was 2.6:1.4:1, which indicates an excess of phosphorus that promotes
growth in the native microalgae C. sorokiniana.

Light intensity and carbon dioxide concentration are the most
studied parameters in microalgal growth and lipid production. In
the present study, a decrease in the total lipid content in the
microalgae was observed when irradiance increased. Similar
results were obtained when Chlorella protothecoides microalgae
was grown under autotrophic conditions. In this case, there was
a decrease in the amount of polyunsaturated fatty acids (PUFAs)
and an increase in the intensity of the light used (Krzemińska et al.,
2015). For C. sorokiniana, it has been reported that in the stationary
phase of growth, a decrease in the proportion of these PUFAs was
observed (Belkoura et al., 2000). In Chlorella sp., the productivity of
lipids increased as the light intensity increased, but this trend
reversed sharply when the light intensity surpassed 4,500 lux
(58.5 μmol/m2-s), leading to a decrease in lipid productivity
(Tongprawhan et al., 2014). There is currently no consensus on
how light intensity affects the lipid content of microalgae. However,
it is known that when microalgae are exposed to high intensity of
light, the excess light energy absorbed by the photosynthetic
apparatus is stored in the form of lipids, specifically
triacylglycerol (TAG). The production of TAG requires large
amounts of ATP and NAD(P)H, which are generated by

TABLE 5 Values optimized by the model and experimental validation results
for biomass and lipid production. (Model-optimized factors: Light intensity
29.9 μmol/m2-s and CO2 20%.)

Optimized Validated % error

Biomass (g/L) 2.01 1.66 ± 0.09 17

% lipids 30.9 32.8 ± 5.9 6

Lipids (g/L) 0.62 0.54 ± 0.09 13
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photosynthesis. Therefore, lipid accumulation can help dissipate
excess light energy and prevent photochemical damage to the algal
cells. The impact of light intensity on lipid content is dependent on
the ability of individual species of microalgae to capture carbon at
high light levels (Binnal and Babu, 2017).

In the present study, the low luminosity studied leads to lipid
accumulation, while higher luminosity leads to cellular biomass
synthesis. This can be explained by the fact that under stress
conditions, many microalgae alter their lipid biosynthetic
pathways to produce and accumulate lipids in order to withstand
these adverse conditions. Apparently, the increase in light intensity
decreases the intracellular accumulation of lipids (low biomass
concentrations coincide with high levels of lipid accumulation).
This may be due to the fact that the cells are in the active growth
phase, which prevents accumulation. When increasing the intensity
at different CO2 concentrations, the percentage of lipids increases,
possibly due to the greater availability of the carbon source.

When performing validation of multiple optimizations through
the desirability function, there is a significant error percentage in the
biomass obtained (17%). However, in the percentage of lipids, the
error is 6%, and in the case of lipid content, the 13% error is due to
the fact that the concentration of total lipids depends on biomass.
This variability with respect to the statistical model can be attributed
to the variability due to the strain. However, it is considered that the
statistical model based on the response surface generates an
acceptable approximation for the optimization of light and CO2

conditions in the native C. sorokiniana strain. Multiple
optimizations were used to find the conditions that best optimize
the percentage of lipids and biomass content, bearing in mind that
there is an interaction between the factors. A wider range of these
two conditions should be evaluated in order to find the inhibitory
light intensity and CO2 concentration that best analyze the strain’s
behavior.

The desirability function and RSM have been used by other
authors in order to optimize culture conditions in microalgae.
Supplementary Table S1 presents a compilation of studies on the
topic. Differences in optimized conditions indicate that there is no
consensus on the best conditions for microalgae growth and lipid
production, and for each study, it is necessary to obtain the
optimized conditions. However, the RSM is widely applied and
useful. Optimized values of CO2 concentration in the present study
are in agreement with those of other authors (Almomani, 2020), as
are the light intensity values (Imamoglu et al., 2014; Tongprawhan
et al., 2014; Thawechai et al., 2016) and biomass and lipid content
(Thawechai et al., 2016; de Jesus and Maciel Filho, 2017). In the
present study, a lipid productivity of 45 mgL−1 d−1 was obtained,
which is in the range reported for other Chlorella strains
(Tongprawhan et al., 2014).

The best conditions of growth and lipid production in
microalgae are spread over a wide range and depend on the
species and strains being studied. The best conditions for
achieving the highest biomass and lipid content in
Nannochloropsis sp. were 10% CO2 content, 107 cells/mL initial
cell concentration, and 0.46 vvm gas flow rate, giving a predicted
biomass production of 1.29 g/L and lipid content of 40.3%. With
these conditions, the maximum lipid production obtained was
0.52 g/L. The experimental validation of the data was in
agreement with the predicted values (Thawechai et al., 2016),

which are also within the range of results obtained in the present
work. However, feeding a small amount of CO2 at a high gas flow
rate yielded the maximum biomass content and low lipid content
(Thawechai et al., 2016), which was quite different from the trend
observed in the present study.

The present study was conducted to characterize a new strain of
C. sorokiniana. Simultaneous optimization yielded an optimum
carbon dioxide concentration of 20%. This could be considered
high for a large-scale cultivation system since most industrial
exhaust (or flue) gases usually contain between 5 and 15% of
carbon dioxide (Lizzul et al., 2014). C. sorokiniana has been
reported to fix carbon dioxide in a range of 0.03–30%, with an
optimum concentration of 15% and fixation rates of 1.56–3.07 g/L
(Kong et al., 2021). An optimum concentration of CO2 of 15% was
also found by other authors, who suggest the use of sequential PBRs
as a scaling-up methodology. By using 15-5LPBR, the fixation
efficiency was increased to 82.64% (Cam Van et al., 2020). The
carbon dioxide concentration was studied for scaling up C.
sorokiniana cultures in flat panel PBRs, yielding an optimal
concentration at a laboratory scale (5 L) of 1.5% with a flow rate
of 0.2 vvm. At a pilot scale (18 L), Gabrielyan et al. (2022) found that
when keeping the volumetric flow rate of CO2 constant, the increase
in the rate of aeration noticeably enhanced the growth and biomass
yield. They also found that the direct transfer of specific cultivation
parameters from a small to a large scale does not ensure a
proportional increase in biomass yield (Gabrielyan et al., 2022).
To enhance the technology used to capture carbon through
microalgae, improvements are required that implement
environmentally friendly methods for growing microalgae, such
as using flue gas and wastewater treatment technologies. The
economic benefits should be maximized by utilizing high-value
products obtained from microalgae, and each specific case should
be scaled-up and studied (Li et al., 2023).

The effects of carbon dioxide concentration, light intensity, and
inoculum size were studied inNannochloropsis gaditana using RMS.
Interaction among factors was significant for a fixed inoculum size at
a given CO2 concentration, and the final dry weight was
independent of light intensity. On the other hand, the final dry
weight was quite sensitive to CO2 concentration, with an optimum
value of around 5%. The relative lipid content increased with
increasing CO2 concentration and was inversely related to
inoculum size. The light intensity had virtually no effect on lipid
content when analyzing lipid productivity. Biomass had a greater
influence than lipid concentration (Hallenbeck et al., 2015). The
same conclusions could be drawn from the present study, where
variations in lipid content were not as significant as those in biomass
concentration. For the marine Chlorella sp., lipid productivity
increased with increasing light intensity until 4,500 lux
(58.5 μmol/m2-s). Insufficient light intensity can lead to poor
utilization of CO2 by microalgae and may even result in the
consumption of stored lipids. On the other hand, when light
intensity exceeds the saturation limit, photoinhibition can occur.
This means that the photosystem becomes overloaded, pigments
become bleached, and photosystems are destroyed. Therefore, it is
important to find the optimal light intensity that provides enough
energy for lipid synthesis without causing photoinhibition
(Tongprawhan et al., 2014). While photoinhibition of growth was
not observed in the present study at 65 μmol/m2-s, optimized
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conditions for lipid production were far below the photoinhibition
light intensity.

For Chlorella vulgaris, increasing light incidence, CO2

concentration, and impeller speed significantly increased cell
concentration because there was no photoinhibition or an excess
of oxygen in the medium that could cause cell damage. However,
increasing CO2 concentration and rotational speed did not favor
cellular lipid and carbohydrate production. CO2 concentration
within a medium range was the most important parameter for
lipid and carbohydrate accumulation (de Jesus and Maciel Filho,
2017). Numerous researchers suggest that increasing CO2

concentration can promote microalgae growth by providing a
better carbon source for photosynthesis and inducing the
synthesis of relevant compounds. However, in some species of
microalgae, an increase in CO2 concentration can lead to a
decrease in carbohydrate and lipid content or no significant
changes in their content (de Jesus and Maciel Filho, 2017). For
C. sorokiniana, CY1 biomass and lipid production was optimized by
designing a lighting system with a submerged LED light and using
seawater at a proportion of 50%, a biomass of 2.8 g/L, and a lipid
content of 57%. This resulted in a lipid productivity of 153.7 ±
11.3 mg/L/d (Chen and Chang, 2016).

Microalgal growth models describe microbial kinetics as a
function of parameters such as fluid dynamics, light radiation,
photoperiod, and nutrient concentration. The response variable
can be cell or metabolite concentration, photosynthetic activity,
or productivity. The specific growth rate as a function of light follows
hyperbolic or exponential kinetics, taking into account
photoinhibition. For gas–liquid transfer, the CO2 balance,
carbonate, and the gas–liquid transfer must be considered. One
of the approaches employed to model microalgal growth is the use of
kinetic equations, such as the logistic, Gompertz, Richards, or
Shunute equations. These equations offer a very good adjustment
but do not take into account other culture conditions. Therefore,
they do not significantly contribute to the understanding of the
phenomena; they simply make a description in time. However, the
parameters obtained during different experiments can be used as a
response variable for statistical analysis or as a comparison to
measure the effect of other factors (Aslan and Kapdan, 2006;
Çelekli et al., 2009; Montoya-Vallejo and Acosta-cárdenas, 2021).
One of the most studied parameters when modeling the growth of
microalgae is light intensity. Several authors present models of the
specific growth rate as a function of light intensity. They useMonod-
type models and exponential and hyperbolic functions with
inhibition, among others. The Monod-type model with inhibition
is one of the models most widely used by various authors (Camacho
Rubio et al., 1999; Concas et al., 2017). Other studies address the
effect of light intensity, taking into account that not all incident
radiation is used by microalgae, and then define the
photosynthetically active radiation (PAR) and photon flux
density (PFD) according to the geometry of the system and the
composition and concentration of microalgae, among other
variables (Yun and Park, 2003; Solimeno et al., 2017; Darvehei
et al., 2018). Models in the microalgal culture could also consider
temperature, salinity, pH, nutrient concentration, and gas diffusion.
The main nutrients modeled in microalgal growth are nitrogen and
phosphorus. Monod-type kinetics with inhibition andmultiplicative
models for several nutrients has been widely used (Çelekli et al.,

2009; James et al., 2013; Darvehei et al., 2018). Carbon source and
pH are closely related in microalgal growth, and if the pH is kept
constant, a nutrient-type equation for carbon is usually used.
Furthermore, carbon is considered in excess and is not modeled
in most studies (Darvehei et al., 2018). Another important aspect in
the models is the behavior of gases, especially oxygen (product of
photosynthesis) and carbon dioxide, depending on the type of
reactor. Generally, tubular and airlift bioreactors are studied
(Acién Fernández et al., 1999; Camacho Rubio et al., 1999; Eze
et al., 2018). The model proposed in the present study considers a
Monod-type effect of nutrients CO2, nitrogen, and phosphorus on
the specific growth rate, as well as the effect of light intensity, which
considers the increase in opacity of the bioreactor material generated
by the adherence of particles to the inner surface and the turbidity
caused by the growth of biomass. On the other hand, considering
that the experiment carried out under optimal culture conditions
was performed where both nitrogen and phosphorus do not present
inhibition of cell growth (based on the results presented in Figures 3,
4), this effect was not included in the proposed mathematical model.

Supplementary Table S2 presents the kinetic parameters of the
model and compares them to the reference values from the
literature. Supplementary Table S2 shows that the values
determined from the parameter adjustment algorithm are
consistent with those in the literature. While any differences may
be related to variations in species and culture conditions, they are in
agreement with the experimental values of the cultures studied here.
For example, the Yxc value identified with the model was 9.50 ×
10−4 mg/mg, while the experimental yield was 4.1 × 10−4 mg/mg. On
the other hand, the saturation constant values for phosphorus,
nitrogen, and CO2 indicated that nitrogen and phosphorus are
the substrates that have the greatest effect on growth, considering
that their values are an order of magnitude higher than that for CO2,
and therefore, limiting concentrations occur at relatively high values.
The α value of 0.263 found in the model shows that the effective light
intensity significantly reduces by about 75% due to the increase in
opacity in the reactor. An increase in light intensity to compensate
for this effect may be considered for future experiments.

A growth model for Chlorella vulgaris that considers the combined
influence of light intensity and total inorganic carbon using a Monod-
type multiplicative model was developed by Filali et al. (2011). In this
model, the total inorganic carbon consists of carbon dioxide and
bicarbonate and carbonate ions. A specific growth rate of 0.08 h-1

was obtained, along with a half-saturation constant for a light
intensity of 0.14 µE/s109 cells, and a limitation constant for the total
inorganic carbon of 1.28e-5 mol/109 cell YX/[TIC] from the
stoichiometric equation of biomass (Filali et al., 2011).

A culture of Chlamydomonas sp. and Chlorella sp. was
modeled in a gas-tight PBR. The photosynthetic quotient, taken
as the relationship between the oxygen uptake rate and carbon
dioxide uptake rate, was used as an independent variable. The
model was based on stoichiometric equations, taking into account
the nitrogen source and maintaining a constant pH by titration of
the gases. The photosynthetic quotient was close to 1 and increased
due to oxidative processes when no organic products were secreted
from the cells. All CO2 taken up was incorporated into the biomass,
and the PQ was equal to the oxygen biomass yield (Eriksen et al.,
2007). A simple and robust microalgae kinetic model was
developed to predict and control Desmodesmus sp and
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Scenedesmus obliquus cultivation in wastewater. The effect of
nitrogen source and concentration, phosphorus concentration,
pH, and carbon source was modeled using a Monod-type model
limited by several substrates. Under autotrophic metabolism, the
pH increases due to the removal of bicarbonate ions; under
heterotrophic metabolism, the pH decreases due to the use of
organic carbon sources; and under mixotrophic metabolism, the
pH remains stable (Eze et al., 2018). In general, pH values can play
a significant role in enhancing algae production by increasing the
content of algae, while simultaneously decreasing the presence of
invading organisms (Chia et al., 2018).

Batch experiments were conducted to examine how the initial
concentrations of nitrogen and phosphorus impact the ability of
Chlorella vulgaris to remove nutrients. Additionally, biokinetic
coefficients, such as the reaction rate constant (k), the half-
saturation constant (Km), and the yield coefficient (Y), were
calculated using the Michaelis–Menten rate expression, with the
chlorophyll content serving as a measure of microalgal growth
(Aslan and Kapdan, 2006). A comprehensive mechanistic model
to simulate 37 state variables in a PBR was developed to describe
algal–bacterial growth dynamics (Shriwastav et al., 2018).

In the present work, an axenic culture was used to study a
wild isolated strain of microalgae. However, taking into account
natural symbiotic relationships that occur in ecosystems, the
effect of the co-culture of microalgae with bacteria should be
investigated, especially for the remediation of organic matter; for
example, C. sorokiniana has been used in co-culture with
Pseudomonas sp, employing palm oil mill effluent in a newly
designed PBR, yielded 5.7 g/L of biomass with a 14.4% of lipid
content (Cheah et al., 2020).

5 Conclusion

The microalgae C. sorokiniana was isolated from a freshwater
lake and identified using molecular analysis of the ribosomal ITS.
Microalgae can efficiently modify their metabolism in response to
changes in environmental conditions. Under optimal growth
conditions, substantial amounts of biomass were produced but
with relatively low lipid contents. In contrast, under stress
conditions, the microalgae altered their lipid biosynthetic
pathways toward lipid production and accumulation. According
to the results, low luminosity leads to lipid accumulation, while the
highest luminosity applied in the present study leads to cellular
biomass synthesis. Biomass production correlates with cell growth
rate. The highest cell growth rate was found for conditions of high
light intensity and low levels of CO2. Optimal conditions to
maximize lipid content and biomass concentration were obtained
using 20% CO2 and a light intensity of 29.9 μmol/m2-s, with a
theoretical biomass concentration of 2 g/L and 31% of lipids.
Validation tests of these conditions achieved a biomass
concentration of 1.66 ± 0.09 g/L and lipid content of 32.8% ±
5.9%. The results show that stress conditions correspond to low
luminosity and high CO2 concentration. A multi-parametric model
was developed in this study to predict the dynamic behavior of six

system variables. A total of 18 kinetic and mass transfer parameters
were identified, which were important to understand and model the
system. It was found that the nitrogen and phosphorus sources have
the greatest effect on growth. The proper fit of the model including
the effect of light intensity shows the importance of this variable
within the system. It is recommended that a light control should be
used that increases the light intensity as the opacity in the system
increases.
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