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Mesenchymal stromal cells (MSCs) are a heterogeneous population containing
multipotent adult stem cells with a multi-lineage differentiation capacity, which
differentiated into mesodermal derivatives. MSCs are employed for therapeutic
purposes and several investigations have demonstrated that the positive effects of
MSC transplants are due to the capacity of MSCs to modulate tissue homeostasis
and repair via the activity of their secretome. Indeed, theMSC-derived secretomes
are now an alternative strategy to cell transplantation due to their anti-
inflammatory, anti-apoptotic, and regenerative effects. The cellular senescence
is a dynamic process that leads to permanent cell cycle arrest, loss of healthy cells’
physiological functions and acquiring new activities, which are mainly accrued
through the release of many factors, indicated as senescence-associated
secretory phenotype (SASP). The senescence occurring in stem cells, such as
those present in MSCs, may have detrimental effects on health since it can
undermine tissue homeostasis and repair. The analysis of MSC secretome is
important either for the MSC transplants and for the therapeutic use of
secretome. Indeed, the secretome of MSCs, which is the main mechanism of
their therapeutic activity, loses its beneficial functions and acquire negative pro-
inflammatory and pro-aging activities when MSCs become senescent. When
MSCs or their derivatives are planned to be used for therapeutic purposes,
great attention must be paid to these changes. In this review, we analyzed
changes occurring in MSC secretome following the switch from healthy to
senescence status.
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1 Introduction

The process of senescence induces loss of cellular functions and
is associated with permanent cell cycle exit. Senescence may be
induced by the impaired activity of lysosomes andmitochondria, the
accumulation of unrepaired or misrepaired DNA, presence of
nonfunctional/proteins, the oxidation of cellular macromolecules
(Campisi and D’adda Di Fagagna, 2007; Lopez-Otin et al., 2023).
Senescence may have beneficial and negative consequences on
health: it may promote organismal aging through impairment of
tissue renewal and function; it may also have an anti-cancer effect
since it can arrest cancer growth. Moreover, senescence may
promote wound healing (Campisi and D’adda Di Fagagna, 2007;
Kuilman and Peeper, 2009).

The senescence occurring in stem cells, such as those present in
mesenchymal stromal cells, may have detrimental effects on health
since it can undermine tissue homeostasis and repair. This issue
must be carefully evaluated to better understand the physiological
organismal aging and when stem cells are used for therapeutic
purposes.

2 Mesenchymal stromal cells (MSCs)

2.1 What are MSCs?

MSCs are a heterogenous population containing multipotent
adult stem cells with a multi-lineage differentiation capacity, which
are commonly differentiated into mesodermal derivatives such as
adipocytes, chondrocytes, and osteocytes (Muraglia et al., 2000).
MSCs can be derived from various human or animal body tissues
including bone marrow, adipose tissue, amniotic fluid from the mid-
trimester of pregnancy, umbilical cord, human synovial fluid, and
human fetal bone tissue of an early-termination pregnancy (Özcan
et al., 2016; Alessio et al., 2018; Alessio et al., 2019a; Gnani et al.,
2019; Kehl et al., 2019; Alessio et al., 2020; Ratushnyy et al., 2020;
Vassilieva et al., 2020; Grigorieva et al., 2021; Kizilay Mancini et al.,
2021; Kwon et al., 2021; Liao et al., 2021; Wang B. et al., 2022; Miura
et al., 2022). Besides the multipotential differentiation capacity,
MSCs play a key role in tissue homeostasis and regeneration
through the secretion of hundreds of biologically active factors
(cytokines, chemokines, and growth and survival factors), which
have a paracrine and long-range action (Galderisi et al., 2022). MSCs
are, nowadays, employed for therapeutic purposes (Galderisi and
Giordano, 2014).

2.2 Isolation of MSCs and therapeutic
potential

According to the minimal criteria for defining multipotent
mesenchymal stromal cells by the International Society for Cell
and Gene Therapy (ISCT), the isolation and characterization of
MSCs for different clinical purposes must fulfill the following major
benchmarks: they must be able to adhere to plastic well surfaces;
express surface markers of CD90, CD73, and CD105; be unable to
express CD45, CD34, CD14α or CD11b, CD79 or CD19, and HLA-
DR surface molecules; and able to differentiate into adipocytes,

chondroblasts, and osteoblasts (Dominici et al., 2006). Although
these criteria are basically employed in several stem cell laboratories
for the identification and purification of MSCs, non-clonal cultures
of bone marrow stromal cells may contain variable percentages of
multipotent stem cells where committed progenitor and
differentiated cells can also be present (Muraglia et al., 2000;
Galderisi U et al., 2014).

The self-renewal, in vitro expandability, multipotent
differentiation capacity, being less prone to senescence, and non-
immunogenic but still immunomodulatory properties of MSCs from
various tissue sources have attracted researchers for their clinical
applications in the field of regenerative diseases (Zhang et al., 2015;
Alessio et al., 2018; Alessio et al., 2019b). MSCs are candidates for
cell-based therapeutic strategies for various disease conditions
including neurodegenerative disorders, where clinical stabilization
of non-option Parkinsonism was observed for at least 6 months,
improvements observed in cardiovascular diseases, perianal fistulas
associated with Crohn’s disease, COVID-19, bone disorders, and
cancers (Giordano et al., 2014; Canesi et al., 2016; Kastrup et al.,
2017; Liu S. et al., 2020; Cheng et al., 2020; Hmadcha et al., 2020;
Wang et al., 2021; Johnson et al., 2022; Shi et al., 2022; Sohrabi et al.,
2022). A clinical trial on the safety and feasibility of adipose-derived
stromal cells also demonstrated a safe and feasible treatment of
ischemic heart diseases and heart failure (Kastrup et al., 2017).

However, several factors including the risk of tumorigenicity
and immunosuppression makes the reputation of stem cell therapies
come into question (Madrid et al., 2021). The other essential
concerns are the biological, legal, and societal issues related to
the use and application of human-derived stem cells (Moradi
et al., 2019). Therapeutic use of MSCs also still needs inclusive
characterization guidelines to accommodate various sources
including bone marrow, adipose tissue, amniotic membrane,
umbilical cord, and others to alleviate the regulatory gaps in stem
cell-based therapies (Wright et al., 2021). Safety related issues related
to cell-based therapies and their products shall be repeatedly tested
before their actual therapeutic application for regenerative disorders
(Lu et al., 2011). Hence, various legal and ethical barriers may hinder
the full exploitation of stem cells in clinical medicine; the laws and
standards may be applied to ensure ethical integrity in the clinical
practices of stem cell therapy (Moradi et al., 2019).

2.3 The secretome of MSCs is the main
player of their therapeutic activity

In recent years, several investigations have demonstrated that
the positive effects of MSC transplants are due to the capacity of
MSCs to modulate tissue homeostasis via the activity of their
secretome (Galderisi et al., 2022). The administration of MSC-
derived conditioned medium, either as direct application of
MSC-derived whole lysates or extracellular vesicles or exosomes,
are now alternative strategies to cell transplantation due to their
anti-inflammatory, anti-apoptotic, and regenerative effects (Gudiño
and Salas, 2021). Moreover, novel vehicles of MSC-derived products
are also currently in consideration for the delivery of miRNAs in
cancer therapy (Sohrabi et al., 2022). The changes occurring in the
secretome composition of MSCs during senescence may have
negative consequences on the body’s health due to the
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importance of healthy MSC secretome in tissue repair and
homeostasis (Caplan and Dennis, 2006; Hsiao et al., 2012). When
MSCs or their derivates have to be used for therapeutic purposes,
great attention must be paid to these changes.

3 MSC cell-based or secretome/
conditioned media-based therapeutics

Stem cell-based therapies can offer the optional potential to cure
various kinds of disorders that are incurable or difficult to treat.
However, the only stem cell-based products approved by the
United States Food and Drug Administration (FDA) for clinical
use consists of hematopoietic stem cells derived from cord blood
(FDA, 2022). The hematopoietic stem cell-based therapy was
approved for limited use in patients with disorders of the
hematopoietic system.

In December 2014, the European Medicines Agency (EMA)
recommended the first stem cell-based therapy trademarked as
Holoclar, containing stem cells, for approval to treat moderate to
severe limbal stem cell deficiency that can result in blindness (EMA,
2014). Later in June 2018, Holoclar, which contains corneal
epithelial stem cells, sponsored by Holostem Terapie Avanzate S.
r.l. Modena, Italy, was also granted an orphan drug designation by
the United States Food and Drug Administration for the treatment
of limb stem cell deficiency (FDA, 2018).

The United States FDA and EMA are still cautious of the
applications of stem cell product therapy, and both warned
against using unapproved and unproven cell-based therapies,
which may not be safe and effective. The EMA raised a crucial
concern in that patients using unproven or unregulated cell-based
therapies have reportedly suffered serious, sometimes fatal, side
effects including infections, unwanted immune reactions, tumor
formation, loss of vision, and bleeding in the brain (EMA, 2014).

A total of 1,179 MSC cell-based clinical trials (CTs) at different
phases (I–III) were registered in the www.ClinicalTrials.gov
database as of 15 November 2022, using a search term of

“mesenchymal stem cell therapy” for the treatment of various
conditions such as diabetic nephropathy, hemorrhagic stroke,
hemophilia A and B, rheumatoid arthritis, bronchopulmonary
dysplasia, autoimmune disorders, ulcerative colitis, acute
myocardial infarction, COVID-19, and many other conditions.
Currently, an increased number of registered clinical trials and
varieties of diseases/conditions were observed compared to the
previous records, where 493 CTs and 767 CTs were registered as
of 15 June 2015 (Squillaro et al., 2016) and January 2020 (Liu J. et al.,
2020), respectively.

About 30% of the total registered stem cell-based CTs were
completed while 40 and 18 registered CTs were on terminated and
suspended status, respectively (Figure 1), due to several reasons
including the necessity of major revisions of the protocol,
recruitment difficulties, inclusion defaults, availability of the
vaccine, COVID-19 pandemic, political pressure, updates of NIH
operational issues, low predictive probability of achieving postulated
results, safety and precaution reasons and other unlisted
explanations. The rest of the registered stem cell based CTs were
under recruiting, active but not yet recruiting, unknown status, and
some other status.

MSC secretome or conditioned media-based therapy is also a
recently introduced therapeutic strategy although the number of
registered clinical trials in this category is much less than whole cell-
based stem cell therapy. Only 12 registered MSC secretome/
conditioned media therapy clinical trials were retrieved from the
www.ClinicalTrials.org database, using a search term of “MSC
secretome therapy” at the different statuses of complete 2 (17%),
recruiting 6 (50%), active but not recruiting 3 (25%), and unknown
status 1 (8%) (Figure 2).

The MSC secretome or conditioned medium-based therapy
registered CTs were intended for the treatment of
nasopharyngeal cancer, COVID-19, polycystic ovary syndrome or
infertility, knee osteoarthritis, skin aging, chronic ulcers, ischemic
stroke, corneal defect, and Keloid scars. The MSC secretome or
conditioned medium-based therapy clinical trials are based on the
fact that this alternative strategy may allow the direct application,

FIGURE 1
Current registered clinical trials of MSC based therapy. Data were retrieved from www.ClinicalTrial.org accessed on 15 November 2022.
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easy distribution, and access to tissues of soluble secreted active
molecules of MSCs, though getting a sufficient volume of secretome/
conditioned media in vitro has not yet been resolved (Gudiño and
Salas, 2021; Wang B. et al., 2022).

4 Senescence: Triggers, pathways,
markers, and its implications

Senescence is from the Latin root word “senex” meaning “slowing
old” (Dodig et al., 2019). Cellular senescence is a dynamic process that
leads to permanent cell cycle arrest and the loss of healthy cells’
physiological functions and gaining of new ones, which are mainly
accrued through the release of many factors (Coppé et al., 2010). These
new activities have been collectively indicated as Senescence-Associated
Secretory Phenotype (SASP) (Coppé et al., 2010). Subsequently, the
semantic extension of the term SASP refers to the secretome of
senescent cells. SASP contains many bioactive molecules, such as
growth factors, anti-apoptotic factors, pro-inflammatory cytokines,
chemokines, and modulators of extracellular environment.
Collectively, these factors can promote senescence of normal cells
via paracrine signaling and reinforce the senescence process through
autocrine mechanism (Coppé et al., 2010).

4.1 Triggers of senescence and executive
programs

Anumber of nuclear stressors, as indicated in Figure 3, can promote
the initiation and progression of cellular senescence and SASP in vitro as
well as in vivo experimental models (Parikh et al., 2019; Zlotorynski,
2020; Martini and Passos, 2022; Takasugi et al., 2022).

The occurrence of cellular senescence is primarily, as far as we
know, dependent on the activation of major tumor-suppression
pathways controlled by P53, RB1, and P16-INK4A proteins (Coppé
et al., 2010), which have been recently considered to be biomarkers to
detect andmonitor cellular senescence in culture and ex-vivo specimens
(Figure 3). As the cellular senescence is triggered by various DNA
stressors, the SASP begins to accumulate in the microenvironment of
senescent cells or tissues, where these secreted biomolecules can exert
either beneficial effects (i.e., tumor suppression) (Alessio et al., 2023) or
deleterious effects such as pro-carcinogenic for secondary tumors,
cancer relapse, and cancer chemotherapy-induced side effects
(Demaria et al., 2017). SASP is also involved in the aging
phenomena by promoting secondary senescence in healthy cells
surrounding those directly hit by DNA stressors (paracrine effect of
SASP) (Roger et al., 2021).

Given the paramount role of SASP in senescence and senescence-
related phenomena, currently there are many studies on SASP obtained
from various kinds of cells, including MSCs, fibroblasts, endothelial
cells, liver stellate cells and epithelial cells of several human organs and
murine MSCs, fibroblasts, and other cells of mouse origin as well as
some cancer cells (Fausti et al., 2013; Loaiza and Demaria, 2016;
Nishizawa et al., 2016; Abbadie et al., 2017; Caroti et al., 2017;
Ferreira et al., 2018; Alessio et al., 2019b; Kotla et al., 2019;
Dorronsoro et al., 2021; Kerschbaum et al., 2021; Schwartz et al.,
2021; Zhang et al., 2021; Gerasymchuk et al., 2022; Yamada et al., 2022).

4.2 Markers to identify a senescent
phenotype

The intrinsic dynamic nature of senescence and its variability,
depending on cell type, cell status, and animal species, makes it

FIGURE 2
Current registered clinical trials of MSC secretome or conditioned media-based therapy. Data were retrieved from www.ClinicalTrial.org accessed
on 15 November 2022.
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difficult to establish a universal indicator to demonstrate the
occurrence and progression of the senescence status. Currently,
optimized and combined algorithms of different senescence-
related biomarkers are the better option for the identification and
isolation of senescent cells within a cell population. The main
parameters used to identify senescent cells are: i) cell
morphology; ii) evaluation of the expression of cell cycle
regulators, such as P53, P21-CIP1, P16-INK4A, P38-MAPK, P14-
ARF, at their transcriptional and translational levels; iii) detection of
the expression of retinoblastoma gene family (RB1, RB2/P130,
P107); iv) determination of senescence associated lysosomal β-
galactosidase activity (SA-β-gal); v) identification of critical
shorting of telomere DNA sequence length; and vi) lipofuscin
detection using GL13 staining (Dimri et al., 1995; Debacq-
Chainiaux et al., 2009; Georgakopoulou et al., 2013; Alessio et al.,
2017; Evangelou et al., 2017; Salmonowicz and Passos, 2017; Son
et al., 2019; Jannone et al., 2020; Chen et al., 2021; Ogrodnik, 2021;
Guan et al., 2022; Wagner and Wagner, 2022; Weng et al., 2022).
There are also website tools that may help in the identification of
senescent cells. For instance, the Tumor Cellular Senescence

Estimation Resource (TCSER, http://tcser.bmicc.org) can produce
a cellular senescence score for quantification of senescence level and
senescence related genes (Wang X. et al., 2022).

The SASP content and senescence–associated extracellular
vesicles can also be major components of combined biomarkers
for identifying senescent cells (Jeon et al., 2019; Basisty et al., 2020).

5 Senescence, aging, and aging related
disorders

In youth many physiological functions have a spare capacity to
better cope changes in environmental cues. With the age this spare
capacity is lost due to the progressive impairment of manymolecular
mechanisms and physiological functions. These events lead to
progressive loss of muscle mass, accumulation of adipose tissue
and can contribute to onset of aging-related diseases (Al-Azab et al.,
2022; Lu et al., 2022). A wide range of aging-related disorders are
now reported from different corners of the world including
osteoarthritis or cartilage degenerative diseases (Liu et al., 2022),
reduced muscle regenerative processes (Lu et al., 2022),
neurodegenerative diseases, cardiovascular diseases, cancer,
immune dysfunction (Li et al., 2021), dementia, cataract, chronic
obstructive pulmonary diseases (COPD), diabetes mellitus
(Lancaster et al., 2018), and depression (Verhoeven et al., 2014).

As previously described, during aging, several biological and
physical changes take place in mammalian organisms: immune
aging (changes in number of T cells, loss of ability to respond to
antigen, low grade inflammation) and cellular senescence are among
the most important ones, though the biological aging or cellular
senescence may not necessarily correlate with chronological age and
are not used as typical hallmarks to monitor aging. However, since
cellular senescence is associated with many types of aging related
disorders, eliminating senescent cells and attenuation of their SASP
components are currently attractive therapeutic strategies (Childs
et al., 2015; Dodig et al., 2019; Lee et al., 2022).

In vitro experiments of MSC aging, the self-renewal, differentiation
capacity, and stemness properties are always compromised with age,
while the expression of P53, P21-CIP1, and P16-INK4A genes and the
levels of reactive oxygen species (ROS) increase with chronological age
(Kapetanos et al., 2021). The increased expression of the
aforementioned cell cycle regulator genes may be directly associated
with different spot DNA damages or accumulated reactive oxygen
species that promote the process of cellular senescence. Progressive
erosion of telomere length of proliferating cells in vitro triggers theDNA
damage response (DDR) where the damage sensor ATM (ataxia
telangiectasia mutated) kinase stabilizes the tumor suppressor
protein (P53) and upregulates a cyclin-dependent kinase inhibitor
(P21-CIP1), which in turn prevents cyclin-dependent kinase 2
(CDK2) mediated inactivation of RB1 and the subsequent entry of
cells into the S-phase of the cell cycle (Childs et al., 2015; Mijit et al.,
2020; Kumari and Jat, 2021). The ATM-P53-P21-CIP1 axis has also
been implicated in other DNA damaging stresses including UV or
gamma irradiation, chemotherapeutics, and RAS activations (Childs
et al., 2015).

Despite the roles of senescence in maintaining normal tissue
development, angiogenesis, tissue hemostasis, wound healing, and
tumor inhibition, it is also implicated as one of the major causes of

FIGURE 3
The figure depicts the several classes of stressors that can induce
senescence: oxidative and oncogenic stresses; DNA damage;
proliferative exhaustion; impairment of cellular function, such as
mitochondrial and lysosomal activities. The activation of P53, RB,
P21, and P16 pathways promote the onset of senescence. The
senescent cells secrete SASP that can act in autocrine way to reinforce
senescence and in paracrine way to induce secondary senescence in
cells that were not directly hit by stressors. Figure was created with
Biorender tools (https://www.biorender.com/) whose licence belongs
to UG.
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aging-associated disorders (McHugh and Gil, 2018). Hence,
senescent cells are currently considered an interesting target for
synthetic, natural, and biological therapeutic agents (Childs et al.,
2015), which can be either senolytic (selectively targets and
eliminates senescent cells) or senomorphic (inhibits the
physiologic activities of senescent cells) (Martel et al., 2020). On
the other hand, restoring senescence through tumor suppressing
signaling or oncogene activation may cause cancer cells to respond
to various chemotherapies (Childs et al., 2015), while persistent
senescence induction may cause unexpected damage of the
surrounding tissues through their secreted proteins, SASP (Childs
et al., 2015; Watanabe et al., 2017).

6 Senescence profoundly affects the
secretome composition of MSCs

During senescence, the MSC secretome, which contains factors
that promote tissue repair and homeostasis, undergoes striking
modifications in its composition and becomes SASP. When
MSCs or their derivatives have to be used for therapeutic
purposes, great attention must be paid to these changes.

We performed a concise literature review and compared the
composition of SASP released by senescent MSCs (Table 1;
Supplementary Files S1, S3) and secretome of healthy MSC
populations (Table 2; Supplementary Files S2, S3).

This comparisonmay be of interest for the reasons we previously
discussed, but it has its own intrinsic limits.

1) MSCs from different sources and animal species may differ in
their healthy secretome and SASP composition;

2) Senescence induced by different stressors may produce distinct
SASPs;

3) Senescence is a dynamic process, SASP composition of early
senescent cells differs from that of late senescent cells;

4) Cited studies did not utilize the same methods to identify the
factors present in secretome. Some studies performed the
western blot analysis, others used dot blots for cytokine
detection, and others performed liquid chromatography and
mass spectrometry (LC-MS/MS). In some cases, researchers
also detected the transcripts that are associated with factors
present in SASP.

The most common sources of senescent MSCs were human
and mouse bone marrow and adipose tissue, human umbilical
cord, and human desquamated endometrium tissue, in which
cellular senescence was induced using various genotoxic agents.
Whereas healthy or non-senescent MSCs were originated from
human bone marrow, adipose tissue, and umbilical cords
(Wharton’s Jelly).

The literature included in the review employed several
senescence-inducing agents such as H2O2, x-ray, and gamma-
ray irradiations, extensive cultivation, exogenous factors: IGF-I,
IGF-II, and IGFBP-4 (insulin-like growth factor I, insulin-like
growth factor II, insulin-like growth factor binding protein 4),
advanced glycation end products (AGE), WNT3A, MSC-derived
exosomes, and Doxorubicin treatment (Supplementary File S1).

TABLE 1 List of SASP factors identified in senescent mesenchymal stromal cells.

Immunomodulators (pro-
and anti- inflammatory)

Cell cycle
regulators

Metabolism
(Catabolism/
Anabolism)

ECM modulators Growth and
survival
factors

Cell signaling Others

CXCL10, CXCL12,
MCP-1 (CCL2), MCP-3, IL-6,
IL-8 (CXCL8), IL-23, IL-1β, IL-
1A, IL-7, IL-4, IL-15, CCL4,
CCL20, CCL26, TLR2, TLR5,
CXCR2, EGFR, GROβ(CXCL2),
GRO(CXCL1), MIF, CD40ligand,
CDKN2D, PSME1, PF4, GMCSF,
RANTES(CCL5), IFNA2,
Calreticulin

P53, P21, P16,
P27KIP1, pP38,
P65, pP53, P107,
P230, RB1, RB2/
P130, TUBA1C,
TUBB, Septin-2,
Septin-9, RALA,
ANG1, MDC

IDO-1, PTGS-2,
PSMA1, PSMA3,
PSMA5, PSMA6,
PSMD2, NME1,
UBE2V1, AK1, AK3

TIMP1, TIMP2, TIMP3,
MMP1, MMP2, MMP3,
MMP8, MMP10,
MMP13, MMP14,
SERPINEB2, FN1,
SERPINE1(PAI-1),
CTSB, ICAM1, PLAT,
ICAM3, A2M, ACTN1,
ACTN4, ACTR2, VCL,
EZR,MSN,MYH9, TLN1,
COL1A1, COL1A2,
COL3A1, COL4A2,
COL8A1, COL6A1,
COL6A2, COL6A3,
COL12A1, CTSD, FBLN1,
uPA, DPPIV, ADAMTS1,
ADAMTS13, THBS1, EL3
(SPTB1), LUM, COMP,
ACAN, FNDC1, CST3,
ITM2B, LOXL1, AHNAK,
SRGN, ABI3BP, TNC,
BGN, FBN1, POSTN,
FLNA

TGFβ-1, TGFβ-
3, IGFBP7,
IGFBP6,
IGFBP5,
IGFBP4,
IGFBP3,
IGFBP2, HGF,
PGF, PFG,
PDGFRB,
VEGFA,
VEGFB,
VEGFC,
VEGFD, FGF7,
FGF2, IGF1,
GDF15, NGF,
EGF, ANG,
AREG, KITLG,
NRG1, EREG

PIGF, EGFR,
TNFRSF1A,
TNFRSF11B,
TNFRSF10C,
HSP90AA1,
HSP90AB1,
HSP90B1, HSPA4,
HSPA5, HSPA8,
HSPB1, HSPD1,
HSPE1, PGE2,
IRAK4, TAK1,
IKKβ, GNAI2,
GNB1, Activin A/
INHBA

STC1, PLAU,
PLAUR, ILGST,
PFN1, PFN2,
IQGAP1, CFL1,
RDX, ARPC1B,
ARPC3,
FASCIN, RPL5,
RPL12, RPLP0,
RPS12, RPS21,
RPS3, RPS15A,
FAS, BAX,
ARHGDIA,
GRP94, PPIB,
PPIA, VIM

The list of secreted SASP factors listed in Table 1 is according to the following literatures (Severino et al., 2013; Özcan et al., 2015; O’Hagan-Wong et al., 2016; Özcan et al., 2016;Alessio et al.,

2019a; Gnani et al., 2019; Alessio et al., 2020; Ratushnyy et al., 2020; Vassilieva et al., 2020; Kizilay Mancini et al., 2021; Kwon et al., 2021; Liao et al., 2021; Lehmann et al., 2022).

Note: In general, secreted factors from senescentMSCs were more abundant in number and various in type compared to its corresponding secretome from young/healthyMSCs. There are some

common secreted factors secreted: those depicted in red bold font are either more expressed or secreted in senescent cultures compared with controls, while those in green bold font are either

less expressed or secreted by senescent MSCs compared to the young/healthy MSC population.
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In the literature we reviewed, the secretory phenotypes (which
will be discussed in detail below) of senescent and healthy MSCs
were detected using qRT-PCR, Western Blot, high resolution MS,
LC-MS/MS, proteome profiler assay, immunoassay,
inflammatory cytokine array, ELISA, and whole transcriptomic
analysis (Supplementary Files S1, S2).

Large fractions of secreted proteins were observed in various
functional groups of proteins of senescent MSCs (Table 1). In
particular, secreted proteins in the panels of extracellular matrix
(ECM) modulators, immunomodulators (pro- and anti-
inflammatory), and cytoskeleton groups of SASPs from the
senescent MSCs were more abundant relative to the
corresponding proteins in secretome of healthy MSCs
(Table 2). On the other hand, growth factors and cell cycle,
and signaling proteins were elevated in the secretome of healthy
MSCs compared to other groups of proteins of the same cell
population (Table 2) while these secreted proteins remained
unchanged in the counterparts of senescent MSCs. For the
sake of clarity, the components identified in healthy MSC
secretomes and in the SASP of senescent MSCs were grouped
into 7 classes. This classification, even if it is arbitrary, may help
in identifying factors that are exclusively present either in healthy
or in aged cells.

In detail, healthy MSCs release factors involved in many
biological processes, which have roles in preserving the
tissue’s healthiness. Some released proteins are regulators of
chondrogenesis, osteogenesis, adipogenesis, and angiogenesis
(Özcan et al., 2016; Ayaz-Guner et al., 2020; Acar et al., 2021).
Of note, bone marrow derived MSC secretome contains factors
promoting the growth and the differentiation of glia and neurons.
Other factors have immunomodulation activities and are also
implicated in chemotaxis and migration of immune cells. Other
secretome components play a key role in neutralizing toxic
substances and drugs (detoxification activity) as well as
counteracting reactive oxygen species (ROS) through many
factors involved in oxidation-reduction reactions. Many
factors released by MSCs play roles in the remodeling of ECM
through the reshaping of glycosaminoglycans and other ECM
components. The MSCs also release regulators of key cellular
activities, such as synthesis and degradation of proteins and
nucleic acids, regulators of metabolism, and modulators of

endoplasmic reticulum stress (Özcan et al., 2016; Ayaz-Guner
et al., 2020; Acar et al., 2021).

Senescence almost completely abolishes the release of these
“protective factors” involved in tissue repair and homeostasis.
The SASP of senescent MSCs still contains factors involved in
ECM remodeling, regulation of metabolic processes, ox-redox-
and immuno-modulators, regulators of synthesis and degradation
of proteins and nucleic acids. Nevertheless, these factors are
committed to the acquisition of the typical features of senescent
cells and the loss of MSC original functions (Özcan et al., 2016;
Ayaz-Guner et al., 2020; Acar et al., 2021).

Gene families of P53, RB, CDK inhibitors, growth factors,
IGFBPs (insulin-like growth binding factors), prostaglandins,
pro-inflammatory cytokines, chemokines, proteases, receptor
proteins, cytoskeletal proteins, heat shock proteins, ribosomal
proteins, proteasome activators, proangiogenic and angiogenesis
related proteins, ECM proteins, fibronectin, collagens, actin
binding proteins, SERPIN, and trans-Golgi network (TGN)
proteins were identified from SASPs of senescence induced MSC
cells (Table 1). The P53, RB, and CDK inhibitors, such as P16-
INK4A, P27, and P21-CIP1, are primary genes that are activated
under the cellular pathways responding to several DNA damaging
stressors. Hence, promotors of these genes endorse their
transcription and translation of effector proteins that can change
the molecular functions of the cells themselves (autocrine effect) and
overall tissue microenvironment (paracrine effect), propagating the
stress responses from the senescent cells to the neighboring cells
(Figure 3).

Upregulated expressions of these genes and detection of their
downstream products in conditioned media of senescent cell
populations usually correlated with the alteration of cell cycles,
growth arrest, and occurrence of senescent cells in the
heterogeneous population of MSC cells (Mijit et al., 2020;
Kumari and Jat, 2021). The presence of increased levels of
CDK inhibitors (P16-INK4A and P21-CIP1) in response to
DNA damaging stresses maintain the de-phosphorylation of
RB family proteins. This arrests cell cycle (Ohtani, 2022;
Takasugi et al., 2022) and consequently leads to cellular
senescence.

The senescence-associated secretory phenotype (SASP) is
comprised of pro-inflammatory cytokines, growth factors, and

TABLE 2 List of factors identified in healthy mesenchymal stromal cells (Secretome).

Immunomodulators
(pro- and anti-
inflammatory)

Cell cycle
regulators

Metabolism
(Catabolism/
Anabolism)

ECM modulators Growth and
survival factors

Cell signaling Others

IL-6, CXCL8 (IL-8), IL-1β, CCL2
(MCP-1), CXCL10, CXCL12

CCNA2, CDC20,
CCNB2, CDCA5,
KIAA0101, TOP2A,
TYMS, AURKA,
AURKB, NUSAP1,
P16INK4a, P21waf1/
CiP1, P53

HMOX1, PLCD1 THBS2, FN1,
SERPINE1(PAI-1),
NRCAM, NDNF,
TMSB4X, SPON2,
MMP1, MMP2,
MMP3, MMP19

VEGF, HGF, TGFβ-
1, IGFBP7, AAMP,
MTDH, PDGFD,
PDGFRL, LIF, ABI1,
ANGPT1, CCBE1,
ESM1, FGF2, FGF7,
NAA15, PTN,
VEGFA, TGF-β2,
PDGF-BB,

TNFRSF12A, SFRP4,
RIC8A, SFRP1,
NOTCH3, RASA1,
CRIM1, ENG, GDF15,
JAG1, EFNB2,
NRxN3, YWHAG,
YWHAH, SFN,
HSPH1, HSPD1,
HSPA8, NEDD4,
TSG101

PLAU,
PLAUR,
OG1,
ELMO2,
ADD1,
STC1,
KAT6A,
AKT1,
TMED2,

According to the literatures: (Infante and Rodríguez, 2018; Kehl et al., 2019; Grigorieva et al., 2021; Voskamp et al., 2021; Wang et al., 2022a).
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their binding proteins; ECM components and enzymes may
establish inflammatory, immunosuppressive, and catabolic
microenvironment of the extracellular matrix of the tissues
that lead to deleterious effects such as pro-carcinogenesis,
tumorigenesis, and metastasis of the already established
tumors (Basisty et al., 2020; Mavrogonatou et al., 2020) or to
beneficial effects, such as alarming signals and activation of the
tissue repairing machineries (Coppé et al., 2010).

Among the pro-inflammatory cytokines, interleukin-6 (IL-
6) has been shown to be correlated with the senescence of
different cell types including MSCs, keratinocytes,
melanocytes, monocytes, fibroblasts, and epithelial cells,
which appears to be secreted by persistent DNA-damaging
signaling pathways. It directly affects the neighboring cells in
the given tissues where it can adhere to GP80 and GP130 IL-6
receptors of epithelial and endothelial cells of experimental
models (Coppé et al., 2010). As a consequence, JAK (Janus
tyrosin kinase)/STAT (signal transducers and activators of
transcription) and other signaling pathways can be activated
inducing a self- and cross-reinforced senescence and
strengthening tumorigenic capabilities of some cancer cell
lines (Kojima et al., 2013; Ortiz-Montero et al., 2017; Taher
et al., 2018; Li et al., 2020).

The growth factors and their inhibiting binding proteins are also
components of senescence-associated secretory phenotypes (SASP)
in the reviewed literature, where their altered representations were
correlated to the occurrence of replicative or acute cellular
senescence (Table 1).

For instance, VEGFB (vascular endothelial growth factor B) is
among the growth factors that was upregulated in WNT3A
induced MSC senescence. This factor may facilitate cancer
development through promoting vascular angiogenesis of
growing tumors (Coppé et al., 2006). The secretory profile of
other growth factors like EGF (epidermal growth factor), HGF
(hepatic growth factor), FGF (fibroblast growth factor), NGF
(neural growth factors), and growth factor inhibitors: IGFBP-2,
3, 4, 5, 6, and 7 (Box 1), also contributed to the autocrine/
paracrine effects of senescent cells exerted on their
microenvironment of different senescent endothelial,
epithelial, and fibroblast cells (Coppé et al., 2010; Zhao et al.,
2020).

The extracellular roles of IGFBP-3, IGFBP-4, IGFBP-5, and
IGFBP-7 have previously shown autocrine/paracrine senescence
effects on i) human endometrial MSCs, ii) human umbilical
endothelial cells, iii) BRAF-positive human primary
fibroblasts, and iv) melanocytes, respectively. Increased levels
of IGFBPs have been detected in the bloodstream of both
irradiated mice and humans, and this may correlate with the
release of these factors from senescent MSCs and other cell types.
Unlike the other IGF binding protein species, IGFBP-6
overexpression leads to increased cellular life span and proved
to be a negative regulator of cellular senescence in human
fibroblasts (Kim et al., 2007; Wajapeyee et al., 2008;
Micutkova et al., 2011; Severino et al., 2013; Alessio et al.,
2020; Vassilieva et al., 2020).

The matrix metalloproteinase (MMP) enzymes are among the
SASP components of senescence-induced MSCs (Table 1). These

are the most important families of Zinc-dependent proteases
involved in the functions and control of ECM, whose alterations
can contribute to cellular senescence, the aging process, and
aging-related disorders (Freitas-Rodríguez et al., 2017). Aging,
replicative, or stress induced cellular senescence of MSCs or other
stem cells alters the expressions and functions of MMPs that may
affect the self-renewal capacity of stem cells, i. e, stemness
characteristics, irreversibly degrade the ECM components, and
shed cell surface receptors (Freitas-Rodríguez et al., 2017; Levi
et al., 2020).

In addition to the degradation of ECM components, collagens
in particular, MMPs can signal via cleavage and activation of
different proteinase activated receptors (PARs), which triggers
the establishment of pro-inflammatory conditions in Lithium-
induced senescent endothelial cells (Struewing et al., 2009). In
combination with TGF-β1, the MMP family can be sufficient to
induce fibroblast senescence and consequent cancer promotion
(Gabasa et al., 2021). Consistent upregulation of MMPs secreted
by senescent fibroblast cells regulates soluble factors in the SASP,
including CXCL/CCL family members of cytokines originating
from surrounding neighboring cells, such as leukocytes, tumor
cells, endothelial cells, and other cells (Coppé et al., 2010), that
make it more complicated to understand the molecular
signatures and functions of SASP in the extracellular
microenvironment.

7 Conclusion

The analysis of MSC secretome is important either for the MSC
transplants and for the therapeutic use of secretome. Indeed, the
secretome of MSCs, which is the main mechanism of their
therapeutic activity, loses its beneficial functions and acquire
negative pro-inflammatory and pro-aging activities when MSCs
become senescent.

Secreted molecules of senescence-induced MSCs including
pro-inflammatory cytokines, chemokines, growth factors,
insulin-like growth factor binding proteins, serine proteinase
inhibitors, matrix metalloproteinases, proteasomes, and
extracellular matrix proteins were the most frequently
reported secretome components. These factors could be used
as biomarkers of senescence-induced conditions in aging-related
or chronic diseases and they may be also useful for preliminary
evaluation of MSC samples and their derivatives (extracellular
vesicles, secretomes) that have to be used in cell therapy. Indeed,
inter-donor variability, ex vivo proliferation, in vitro
cryopreservation (Galipeau, 2013), stem cell quantity and
quality such as the percentage of stem/progenitor cells, surface
marker expression, clonal expansion, multi-differentiating
capacity, and the presence of senescent cells may also
contribute to the unsuccessful MSC clinical trials.
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