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Inappropriate irrigation could trigger migration of heavy metals into surrounding
environments, causing their accumulation and a serious threat to human central
nervous system. Traditional site remediation technologies are criticized because
they are time-consuming and featuredwith high risk of secondary pollution. In the
past few years, the microbial-induced carbonate precipitation (MICP) is
considered as an alternative to traditional technologies due to its easy
maneuverability. The enzyme-induced carbonate precipitate (EICP) has
attracted attention because bacterial cultivation is not required prior to
catalyzing urea hydrolysis. This study compared the performance of lead (Pb)
and copper (Cu) remediation using MICP and EICP respectively. The effect of the
degree of urea hydrolysis, mass and species of carbonate precipitation, and
chemical and thermodynamic properties of carbonates on the remediation
efficiency was investigated. Results indicated that ammonium ion (NH4

+)
concentration reduced with the increase in lead ion (Pb2+) or copper ion (Cu2+)
concentration, and for a given Pb2+ or Cu2+ concentration, it was much higher
under MICP than EICP. Further, the remediation efficiency against Cu2+ is
approximately zero, which is way below that against Pb2+ (approximately
100%). The Cu2+ toxicity denatured and even inactivated the urease, reducing
the degree of urea hydrolysis and the remediation efficiency. Moreover, the
reduction in the remediation efficiency against Pb2+ and Cu2+ appeared to be
due to the precipitations of cotunnite and atacamite respectively. Their chemical
and thermodynamic properties were not as good as calcite, cerussite, phosgenite,
and malachite. The findings shed light on the underlying mechanism affecting the
remediation efficiency against Pb2+ and Cu2+.
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1 Introduction

Metallurgical processes, smelting activities, and inappropriate irrigation can discharge
heavy metals into surrounding environments, and their accumulation can badly cause
damage to the liver and kidney function of human body (Chen et al., 2022; Bai et al., 2021a;
Chen et al., 2023; Bai et al., 2021b; Wen et al., 2023). Lead (Pb) and copper (Cu) are
considered two often-seen contaminants because of their non-biodegradability and
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bioaccumulation (Bai et al., 2022b; Bai et al., 2022c; Xue et al., 2023;
Xue et al., 2021; Xie et al., 2023; Wang et al., 2022c). Transforming
heavy metals from the solid phase to the solution phase by their
mobility or solubility increases notably their bioavailability. To this
end, immobilising Pb and Cu is deemed crucial in securing the safety
of surrounding environments and human health (Khadim et al.,
2019; Wang et al., 2021; Xue et al., 2022). Soil flushing (Tampouris
et al., 2001; Dermont et al., 2008; Zhu et al., 2021), electrokinetic
remediation (Lockhart, 1983; Mena et al., 2015; Liu et al., 2018;
Wang et al., 2023b), chemical precipitation (Khan et al., 2004; Xia
et al., 2019; Gong et al., 2020), ion exchange (Hamby, 1996; Aparicio
et al., 2021; Odom et al., 2021), and phytoremediation (Jalali and
Khanlari, 2007; Sylvain et al., 2016; Zine et al., 2020) have been
widely applied to tackle the raised issue. Notwithstanding that, their
development and application are impeded because they are usually
time-consuming and can impose risks of secondary pollution
(Bhattacharya et al., 2018; Hu et al., 2021a; Hu et al., 2021b).

Bioprecipitation of calcium carbonate has gained increasing
attention (Jarwar et al., 2022; Omoregie et al., 2022; Yang et al.,
2020). As the name suggests, bioprecipitation introduces
microorganisms, especially bacteria. The pathway of
bioprecipitation mainly includes numerous mechanisms,
including urea hydrolysis, denitrification, iron reduction, and
sulfate reduction. Urea hydrolysis is one of the most efficient,
economic pathways to implement bioprecipitation. During
bioprecipitation, the urea hydrolysis-induced metabolites (e.g.,
carbonate ions) react with metals present in the wastewater or
soils and form metal precipitates. That is to say, it converts the
metals from its aqueous phase into a solid phase, reducing the
potential of migration for metals (Zhu andMaria, 2016; Zhang et al.,
2020; Yuan et al., 2021; Hu et al., 2022).

Biologically controlled mineralization and biologically induced
mineralization are the most common methods of biomineralization.
The microbial-induced carbonate precipitation (MICP) (Castanier
et al., 1993; Gollapudi et al., 1995; Phillips et al., 2016; Torres-
Aravena et al., 2018) and the enzyme-induced carbonate
precipitation (EICP) (Maubois, 1984; Larsen et al., 2008; Ashkan
et al., 2019; Moghal et al., 2020) belong to the latter. Sporosarcina
pasteurii due to its extremely high activity has extensively been used
as ureolytic bacteria for catalysing urea hydrolysis. Jiang et al. (2019)
declared that bacterial concentration and calcium source can impact
the remediation efficiency which is defined as the ratio of the
removed heavy metal concentration to the initial concentration.
There are three inherent mechanisms that play a major part in the
biomineralization process, including abiotic precipitation,
biosorption, and biotic precipitation. It is well acknowledged that
the abiotic precipitation could badly degrade the remediation
efficiency because of its low thermodynamic stability. Further, the
higher the degree of urea hydrolysis, the more the carbonate ions
precipitated with heavy metals, and the higher the remediation
efficiency (Achal et al., 2012; Xue et al., 2022). However, Duarte-
Nass et al. (2020) found that a low remediation efficiency against Cu
also appears when subjected to higher degrees of urea hydrolysis.
Moreover, considering calcium ion (Ca2+) forms competitive
adsorption with heavy metal ions, the ureolytic bacteria bind
preferentially themselves with Ca2+, indicating an enhancement
of the resistance against heavy metal ions. An inappropriate
calcium source could lead to a change in surrounding

pH towards affecting the remediation of heavy metals (Wen
et al., 2019; Wang et al., 2022b). Under CaO, its reaction with
H2O forms Ca(OH)2 and then notably elevates the surrounding pH.
Such high pH badly depresses the urease activity, reducing the
ammonium ion (NH4

+) concentration (Wang et al., 2022a). The
pH is measured as the lowest under Ca(CH3COO)2, causing the
degradation of carbonate precipitation (Wang et al., 2022a). There
are other microbial methods available in recent years. A phosphate-
solubilizing strain of Pseudomonas sp. was isolated from a phosphate
mining wasteland and applied to solubilize phosphate rock and
immobilize Pb (Wang et al., 2020; Xiao et al., 2021; Li et al., 2022).
Results showed that a number of functional groups on the phosphate
rock surface and Pseudomonas sp. was amended, and Pseudomonas
sp. could form hydroxyapatite and pyrophosphate with Pb ions.

Further, enzymes are more environmentally adaptive when
compared to microorganisms that require appropriate
environments for living and supply of oxygen and nutrients.
Moreover, nanometer-sized enzymes are much smaller than
micrometer-sized microorganisms, and therefore, they can
penetrate into the deeper grounds with no difficulty when
applied to ‘in-situ’ conditions. Li et al. (2022) explored the
inherent mechanisms affecting the retention of cadmium ion
(Cd2+). Cd2+ were immobilised with otavite (CdCO3), calcite co-
precipitation (CaCO3-Cd), and vaterite/aragonite chemisorption
(CaMg(CO3)2). Despite that, the above analysis reveals several
gaps and shortcomings that remain to be addressed in the future.
Comparison between MICP and EICP has not been conducted
yet concerning multiple perspectives such as the degree of urea
hydrolysis, the precipitation mass, and species of carbonate
precipitation. Furthermore, carbonate precipitation of low
chemical and thermodynamic properties may dissolve or
degrade when subjected to harsh conditions. This part is
neglected in a large body of research and is worthy of
investigation. The above may apply to explore the inherent
mechanism affecting the removal of Pb and Cu. The main
objectives of this study are: 1) to conduct a comparison of the
degree of urea hydrolysis, and mass and species of carbonate
precipitation between MICP and EICP, 2) to investigate the
chemical and thermodynamic properties of carbonates, and 3)
to reveal the inherent mechanisms affecting the removal of Pb
and Cu.

2 Materials and methods

2.1 MICP: Bacteria and cultivation

The use of Sporosarcina pasteurii in a freeze-dried form aimed to
catalyse urea hydrolysis. The bacterial strain was brought back to
room temperature in the first place. The strain of 0.1 mL was
transferred to a 100 mL liquid medium composed of NH4Cl
(Chengdu Chron Chemicals Co., Ltd., China) of 10 g/L, urea
(Damao Chemical Reagent Factory, China) of 20 g/L, yeast
extract (Oxoid Ltd., United Kingdom) of 10 g/L, MnSO4·H2O
(Shanghai Aladdin Biochemical Technology Co., Ltd., China) of
10 mg/L, and NiCl·6H2O (Tianli Chemical Reagent Co., Ltd., China)
of 24 mg/L for their cultivation at 30°C and at 180 rpm for 24 h
toward reactivating the bacterial strain. The chemicals are
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analytically pure. Furthermore, pH of the bacteria resuscitation
environment being 8.8 was measured using a benchtop pH meter
(HI 2003; HANNA Instruments Inc., Italy). The bacterial solution
was mixed with glycerol using a 7:3 ratio and stored at −20°C for
future use.

The biomass (OD600) and urease activity (UA) were measured
for a 172-h period through the activated ureolytic bacteria
(i.e., Sporosarcina pasteurii) when subjected to pH values of 6, 8,
8.8, and 10 respectively. OD600 was measured by a visible light
spectrophotometer (721 G; Inesa Analytical Instrument Co., LTD.,
China). For the sake of brevity, the biomass and the optimal ratio of
the culture medium are not presented here and can refer to the
authors’ published work (Xue et al., 2022). The measurement of UA
was on a basis of the ureolysis rate and referred to the method
recommended by Whiffin et al. (2007); 2 mL bacterial culture or
plant enzyme is mixed with 18 mL 1.11 M urea and the electrical
conductivity (EC) is measured at 0 and 5 min by a benchtop
conductivity meter (HI2314; HANNA Instruments Inc., Italy).
Eqs. 1, 2 show the equation applied to UA and specific urease
activity (SUA) evaluation. UA under MICP is measured being
18.83 mM urea hydrolyzed min-1. OD600 is measured as 1.8–2.1.
SUA is calculated as 8.97–10.46 mM urea hydrolyzed min-1 OD600

−1.

UA � EC5 − EC0

5
× 10 × 1.11 mMurea hydrolyzedmin−1( ) (1)

SUA � UA

OD600
mMurea hydrolyzedmin−1 OD600

−1( ) (2)

where EC0 and EC5 are the electrical conductivity at 0 and 5 min
respectively. A higher UA represents a higher resistance against heavy
metal stress and is likely to achieve a higher remediation efficiency.

2.2 MICP: Test tube experiments

In the present work, MICP was attained through a series of test
tube experiments and applied to the removal of Pb and Cu. The
OD600 curve determined how long did the cultivation take the
ureolytic bacteria to achieve their highest activity. The blank
OD600 was measured to be 0.045 prior to the use of the bacterial
solution. As recommended by Duarte-Nass et al. (2020), 0.33 M is
considered as the minimum urea concentration that is required to
promote Sporosarcina pasteurii to grow and reproduce. 0.5 M urea
concentration was, therefore, adopted herein. The concentration of
calcium source was set to a value five times higher than the
contaminant concentration (Fang et al., 2021). A significant body
of research takes the concentration of heavy metals in aqueous
solution below 5 mM and those in soils below 400 mg/kg into
account (He et al., 2019; Fang et al., 2021; Liu et al., 2021). A
5–50 mM range of lead ion (Pb2+) or copper ion (Cu2+)
concentration is applied to the present work and aims to
investigate not only the variation of the degree of urea hydrolysis
with Pb2+ or Cu2+ concentration but the change in the species of
carbonate precipitation. Given a maximum of 50 mM applied to
Pb2+ or Cu2+ concentration, the concentration of calcium source was
thus set to 0.25 M. Upon the completion of bacterial cultivation, the
bacterial solution with OD600 values falling within a 1.8–2.1 range
was inoculated (10% (v/v)) into the liquid medium containing
Pb(NO3)2 or Cu(NO3)2 at concentrations varying in a 0–50 mM

range, 0.5 M urea, 0.25 M CaCl2, and 2 g/L yeast extract. In the
present work, three replicates were considered for each test set. The
results were expressed as arithmetic means with standard deviations.
The data means were compared using Fisher’s least significant
difference (LSD) method, and the significant difference was set at
0.05. EC, pH, and UA measurements were carried out at 0, 4, 12, 24,
48 h respectively. Each measurement used a 2 mL sample. While
OD600 was measured at 12, 24, 48 h respectively. Although NH4

+

was one of the harmful by-products produced in the
biomineralization process, they represented the degree of urea
hydrolysis. To this end, NH4

+ were measured using Nessler’s
reagent colorimetric method (Whiffin et al., 2007). In addition to
NH4

+, the precipitation mass tended to be introduced as well for
assessing the activity of the urease. Furthermore, Pb2+ or Cu2+

concentration was measured through an atomic
spectrophotometer (Beijing Purkinje General Instrument TAS-
990). The remediation efficiency can be evaluated via the
equation below:

Remediation ef f iciency � C0 − C1

C0
× 100% (3)

where C0 and C1 are Pb2+ or Cu2+ concentration before and after
remediation respectively. Figure 1 shows the flowchart of the test
tube experiments applied to the removal of Pb or Cu using theMICP
technology. Table 1 summarizes the scheme applied to the test tube
experiments.

2.3 EICP: Urease extraction

The use of Canavalia ensiformis mainly aimed to extract urease
enzyme in the present work. The extractionmethodwas consistent with
that reported by Wang et al., 2022a; Wang et al., 2022b. Canavalia
ensiformis was ground in the first place and sieved using a sieve with
150 μm opening. A solution composed of grounded C. ensiformis and
ethanol was centrifuged at 8,000 r/h for a 0.5-h period and then stored at
4°C for 4 h. The supernatant extracted from the solution was
centrifuged again at 4,000 r/h for a 1-h period and the precipitate
was stored at −20°C. The precipitate is the urease extraction. Nessler’s
reagent colorimetric method was applied to measure NH4

+

concentration (Bzura and Koncki, 2019). Prior to the measurement,
a calibration line was set up. The absorbance measured using a
spectrophotometer was substituted into the calibration line to
determine NH4

+ concentration. The urease activity being measured
as 342.7 U/g was categorised as low activity. In addition, the urease
activity founded on the method recommended by Whiffin et al. (2007)
was also calculated as 5.06 mM urea hydrolyzed min-1.

2.4 EICP: Test tube experiments

The test tube experiments were composed of four main phases:
1) adding urea, 2) adding Pb(NO3)2 or Cu(NO3)2, 3) adding calcium
source, and 4) adding urease enzyme. Figure 2 shows the flowchart
of the test tube experiments applied to the removal of Pb or Cu using
the EICP technology. Measurements undertaken in the test tube
experiments included pH, EC, UA, NH4

+ concentration, and
precipitation mass. Their frequency of measurement is
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summarized also in the same figure. Table 2 summarizes the scheme
applied to the test tube experiments.

2.5 Biomineralization simulation

The species and sequence of carbonate precipitation was not
revealed by the test tube experiments but by the numerical

simulation using the Visual MINTEQ software. The urea
hydrolysis was reproduced in accordance with the ratio of NH4

+

to CO3
2- being 2:1 (Gat et al., 2017) despite the omittance of bacterial

cultivation and inoculation. In case CO3
2- does not play part in the

biomineralization process, such a carbonate precipitation is classed
as ‘abiotic’ precipitation (e.g., PbCl2). In contrast, it is classified as
‘biotic’ precipitation (e.g., PbCO3). It is well acknowledged that
abiotic precipitation has a thermodynamic stability much lower than

FIGURE 1
Flowchart of the test tube experiments applied to Pb or Cu remediation using the microbial-induced carbonate precipitation.

TABLE 1 Testing scheme applied to Pb and Cu remediation using MICP.

Contamination
concentration (mM)

CaCl2 concentration (mM) Urea concentration (mM) OD600 values Yeast extract (g/L)

Pb 5, 10, 30, 40, 50 250 500 1.8–2.1 2

— 500 1.8–2.1 2

Cu 5, 10, 30, 40, 50 250 500 1.8–2.1 2

— 500 1.8–2.1 2
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FIGURE 2
Flowchart of the test tube experiments applied to Pb or Cu remediation using the enzymatic-induced carbonate precipitation.

TABLE 2 Testing scheme applied to Pb and Cu remediation using EICP.

Contamination
concentration (mM)

CaCl2 concentration (mM) Urea concentration (mM) Urease concentration (g/L)

Pb 5, 10, 30, 40, 50 250 500 3

— 500 3

Cu 5, 10, 30, 40, 50 250 500 3

— 500 3

TABLE 3 Summary of the input parameters applied to the numerical simulations.

Contamination
concentration (mM)

NH4
+

concentration (mM)
CO3

2-

concentration (mM)
CaCl2

concentration (mM)
NH4Cl

concentration (mM)

Pb 5, 10, 20, 30, 40, 50, 60, 70, 80,
90, 100

10, 30, 50, 70, 90, 110, 200 5, 15, 25, 35, 45, 55, 100 250 18.7

10, 30, 50, 70, 90, 110, 200 5, 15, 25, 35, 45, 55, 100 — 18.7

Cu 5, 10, 20, 30, 40, 50, 60, 70, 80,
90, 100

10, 30, 50, 70, 90, 110, 200 5, 15, 25, 35, 45, 55, 100 250 18.7

10, 30, 50, 70, 90, 110, 200 5, 15, 25, 35, 45, 55, 100 — 18.7

Note: NH4Cl addition was only considered in the numerical simulations under MICP.
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biotic precipitation, meaning that the remediation efficiency could
degrade when exposed to, for example, extreme pH conditions.
Considering NH4

+ and CO3
2- were crucial in determining the degree

of urea hydrolysis and whether the degree of urea hydrolysis is high
enough to produce biotic precipitation, their concentrations were
extracted upon the completion of urea hydrolysis as input
parameters in the proposed numerical simulation (see Table 3).
The results aimed to deepen our understanding of the sequence and
species of carbonate precipitation and could be applied to explore
the inherent mechanisms affecting the remediation efficiency.

3 Results and discussion

3.1 Effect of degree of urea hydrolysis

Figure 3 depicts the relationships of NH4
+ concentration versus

Pb2+ or Cu2+ concentration under MICP and EICP respectively.
NH4

+ concentration decreases with the increasing Pb2+ or Cu2+

concentration, meaning that the more significant the effect of
Pb2+ or Cu2+ toxicity, the lower the urease activity, and the lower
the degree of urea hydrolysis. Furthermore, for a given Pb2+ or Cu2+

concentration, NH4
+ concentration under MICP is much higher

than that under EICP, most likely because of UA underMICP higher
than that under EICP. In this study, SUA under MICP is calculated
as 8.97–10.46 mM urea hydrolyzed min-1 OD600

−1, which is about
two times higher than UA under EICP (i.e. 5.06 mM urea
hydrolyzed min-1). These results give testimony supporting the
above argument. Moreover, NH4

+ concentration applied to Pb
remediation is much higher than that applied to Cu remediation
given their same concentration. Compared to Pb2+, Cu2+ can
denature the urease, causing urease inactivation and reduction in
NH4

+ concentration. Given the ratio of NH4
+ to CO3

2- being 2:1 (Gat
et al., 2017), 100 mM NH4

+ corresponding to 50 mM CO3
2- is

deemed necessary to precipitate 50 mM Pb2+ or Cu2+ forming
PbCO3 or CuCO3. A remediation efficiency as high as 100%
could be attained in case 50 mM Pb2+ or Cu2+ is precipitated.

NH4
+ concentration under EICP is way below 100 mM when

even subjected to 5 mM Pb2+ or Cu2+ concentration (the lowest
in this work). In contrast, NH4

+ concentration under MICP is in
great excess of 100 mM when even subjected to 50 mM Pb2+ or Cu2+

concentration (the highest in this work). The higher NH4
+

concentration under MICP is most likely due to the higher
urease activity. Notwithstanding that, the remediation efficiency
depends upon not only the degree of urea hydrolysis but also other
influencing factors, such as species of carbonate precipitation. This
would be discussed later in this paper. On the whole, NH4

+

concentration decreases with the increasing Pb2+ or Cu2+

concentration. NH4
+ concentration is much higher under MICP.

Compared to the effect of Pb2+ toxicity, the effect Cu2+ toxicity more
significantly depresses the urease activity.

3.2 Pb or Cu remediation

The relationships of precipitation mass versus Pb2+ or Cu2+

concentration under MICP and EICP respectively are depicted in
Figure 4. The precipitation mass goes up with the increase in Pb2+

concentration. In contrast, the precipitation mass goes down with
the increasing Cu2+ concentration. In addition, the precipitation
mass is higher under MICP than under EICP given a same Pb2+ or
Cu2+ concentration. Also, the precipitation mass is higher in Pb
remediation than in Cu remediation. The relationships of
remediation efficiency and remaining ion concentration versus
Pb2+ or Cu2+ concentration are shown in Figure 5. Under MICP,
the remediation efficiency of 100% is attained by the precipitation
mass of above 0.25 g when Pb2+ concentration falls within a
5–50 mM range. Although the precipitation mass is way below
0.25 g, the remediation efficiency of 100% is also attained under
EICP when Pb2+ concentration falls within a 5–50 mM range. On the
other hand, under MICP, the remediation efficiency of below 10% is
attained by the precipitation mass of way above 1.0 g when Cu2+

concentration falls within a 5–30 mM range. It increases to 77%
when subjected to Cu2+ concentration at 40 mM and further to 84%

FIGURE 3
Relationships of NH4

+ concentration versus Pb2+ or Cu2+

concentration under MICP and EICP respectively.

FIGURE 4
Relationships of precipitation mass versus Pb2+ or Cu2+

concentration under MICP and EICP respectively.
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when subjected to Cu2+ concentration at 50 mM, in which the
precipitation mass remains at about 0.5 g. Under EICP, the
remediation efficiency of higher than 50% is attained by the
precipitation mass of below 0.25 g when Cu2+ concentration falls
within a range of 5–10 mM. The remediation efficiency reduces to
approximately 20% when subjected to Cu2+ concentration falling
within a range of 30–50 mM. On the whole, MICP performs
similarly to EICP in terms of Pb remediation. Despite that, there
is a significant discrepancy in Cu remediation between MICP and
EICP. The remediation efficiency against Cu2+ is not as high as that
against Pb2+, and such low remediation efficiency appears to present
in some ranges of NH4

+ and Cu2+ concentration. Also, the higher
precipitation mass does not necessarily correspond to the higher
remediation efficiency, although some researchers gain opposite
results (Jiang et al., 2019; Wang et al., 2022). In light of this,
further exploration to shed light on the impact of the species of
carbonate precipitation is deemed of great necessity towards
revealing the inherent mechanisms causing the reduction in the
remediation efficiency against Cu2+.

3.3 Species of carbonate precipitation

The thermodynamic stability of carbonate precipitation is
deemed crucial in improving remediation efficiency. The higher
the thermodynamic stability, the lower the possibility of dissolution
or degradation when exposed to, for example, extreme
pH conditions, and the higher the remediation efficiency. The
below content presents the simulated results concerning how the
remediation efficiency varies with the degree of urea hydrolysis and
the species of carbonate precipitation. The variations of remediation
efficiency versus hydrolyzed urea concentration and Pb2+ or Cu2+

concentration underMICP are depicted in Figure 6. When subjected
to 5 mM Pb(NO3)2 and 200 mM NH4

+, 100 mM CO3
2- can

precipitate 100 mM Pb2+ (PbCO3) much higher than 5 mM Pb2+,
indicating a remediation efficiency of 100% (see Figure 6A). There
are four species of carbonate precipitation, including Pb2Cl2CO3,
Pb(OH)Cl, Pb3(CO3)2(OH)2, and PbCl2, when CO3

2- concentration
is not high enough to precipitate Pb2+. The Raman peak at 150 cm-1

and 1,056 cm-1 corresponds to the stretching vibration of CO3
2-

when it binds to Pb2+ (see ‘red’ line in Figure 8A. Three tensile
vibrations at 60 cm-1, 150 cm-1, and 1,056 cm-1 are the footprint of
their show up (i.e., PbCl2 and Pb2Cl2CO3). Also, one tensile
vibration is recorded by Raman spectra at 106 cm-1,
corresponding to the presence of Pb(OH)Cl and Pb3(CO3)(OH)2.
5 mM CO3

2- can only precipitate 10 mM Pb2+ (Pb2Cl2CO3) when
subjected to 50 mM Pb(NO3)2 and 10 mM NH4

+, leaving
40 mM Pb2+ behind. The remaining 40 mM Pb2+ can only be
precipitated with Cl− toward reducing the remediation efficiency
by 9%. Also, the reduction in CO3

2- concentration causes a difficulty
in securing the remediation efficiency because Cu remediation is not
attained through biotic precipitation but through abiotic
precipitation. For example, when NH4

+ concentration is reduced
sharply from 200 mM to 10 mM and Cu(NO3)2 concentration is
notably elevated from 10 mM to 100 mM, Cu2CO3(OH)2 is
transformed to Cu2(OH)3Cl, causing a reduction of the
remediation efficiency by 93.3% (see Figure 6B). Despite that, the
other two species of precipitation (Cu3(CO3)2(OH)2 and
Cu2(OH)2CO3) are present when CO3

2- concentration is high
enough. The adsorption band at 1,437–1,548 cm-1 range is mainly
attributed to the formation of Cu3(CO3)2(OH)2 (see ‘red’ line in
Figure 8B). The Raman peak at 1,008 cm-1, 1,437 cm-1, and 3,356 cm-

1 is responsible for the precipitation of Cu3(CO3)2(OH)2. Also, the
adsorption band at 77–509 cm-1 range and 3,356–3,441 cm-1 range
presents strong correspondence with the presence of Cu2(OH)3Cl.
Cu2(OH)2CO3 is precipitated when subjected to 10 mM Cu(NO3)2
and 200 mM NH4

+.100 mM CO3
2- can precipitate 200 mM Cu2+

much higher than 10 mM Cu2+, indicating a remediation efficiency
of 100%.

The variations of remediation efficiency versus hydrolyzed urea
concentration and Pb2+ or Cu2+ concentration under EICP are
illustrated in Figure 7 When subjected to 5 mM Pb(NO3)2 and
200 mM NH4

+, 100 mM CO3
2- can precipitate 100 mM Pb2+

(PbCO3) much higher than 5 mM Pb2+, corresponding to a
remediation efficiency of 100% (see Figure 7A). PbCl2, Pb(OH)
Cl, Pb2Cl2CO3, and Pb3(OH)2(CO3)2 are precipitated when CO3

2-

concentration is not high enough. The Raman peaks under EICP are
comparable with those under MICP, and to prevent repetition, their
interpretation is neglected here (see ‘black’ line in Figure 8A).
PbCO3, when subjected to 100 mM Pb(NO3)2 and 10 mM NH4

+,
is transformed to PbCl2 and Pb2Cl2CO3 because 5 mM CO3

2- can
only precipitate 10 mM Pb2+ (Pb2Cl2CO3), leaving 90 mM Pb2+ to be
precipitated with Cl−. The formation of PbCl2 reduces the
remediation efficiency by about 8%. As to Cu remediation,
Cu2(OH)2CO3 could be transformed to Cu3(CO3)2(OH)2 and
Cu2(OH)3Cl when the degree of urea hydrolysis is not as high as
expected. The Raman peaks under EICP are generally in line with
those under MICP (see ‘black’ line in Figure 8B). Given 100 mM
Cu(NO3)2 and 10 mM NH4

+, the formation of Cu2(OH)3Cl leads to
a substantial reduction in the remediation efficiency by 93.3% (see
Figure 7B). In contrast, 100 mMCO3

2- can precipitate 200 mMCu2+

(Cu2(OH)2CO3) when subjected to 5 mM Cu(NO3)2 and 200 mM

FIGURE 5
Relationships of remediation efficiency and remaining Pb2+ or
Cu2+ concentration versus Pb2+ or Cu2+ concentration under MICP
and EICP respectively.
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NH4
+, meaning that a majority of Cu2+ is precipitated with a

remediation efficiency of 100%. The initially formed abiotic
precipitates improve the resistance to Pb or Cu toxicity and helps
the conversion into biotic precipitates which form the outer layer
and encapsulate the initial abiotic precipitates (Jiang et al., 2019).
Similar precipitate conversions can also be seen in the work done by
Achal et al. (2012). These results lead us to summarize that the
remediation efficiency against Pb2+ or Cu2+ could not only be
influenced by the degree of urea hydrolysis but by the species of
carbonate precipitation. The low degree of urea hydrolysis leads to

low CO3
2- concentration, promoting the formation of abiotic

precipitation, such as PbCl2 and Cu2(OH)3Cl. They degrade
notably the remediation efficiency.

3.4 Chemical and thermodynamic
properties of carbonates

Chemical stability for carbonate precipitations under harsh
pH conditions is deemed crucial in securing remediation

FIGURE 6
(A) Variations of remediation efficiency against hydrolyzed urea concentration and Pb2+ concentration under MICP and (B) variations of remediation
efficiency against hydrolyzed urea concentration and Cu2+ concentration under MICP.

FIGURE 7
(A) Variations of remediation efficiency against hydrolyzed urea concentration and Pb2+ concentration under EICP and (B) variations of remediation
efficiency against hydrolyzed urea concentration and Cu2+ concentration under EICP.
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efficiency. The variation of pH against Pb2+ and Cu2+ under
MICP and EICP considering the hydrolysed urea
concentrations varying in a 10–200 mM range is depicted in
Figures 9, 10 respectively. pH, while remedying Pb2+ using MICP,
reduces from 7 to 5 (see Figure 9A). Higher NH4

+ concentrations
delay such reduction in pH when Pb2+ concentration goes
up. pH remains at some 7 when NH4

+ concentration reaches
200 mM. pH, while remedying Cu2+ using MICP, reduces from
6 to 4 (see Figure 9B). Similarly, higher NH4

+ concentrations put
off such reduction in pH as Cu2+ concentration goes up. While
remedying Cu2+, pH being approximately 6 is attained as NH4

+

concentration reaches 200 mM. When subjected to such harsh
pH conditions, carbonate precipitation of low chemical stability,
induced by MICP, may dissolve or degrade. Lower degrees of urea
hydrolysis could aggravate the dissolution or degradation of
carbonate precipitation. On the other hand, while remedying
Pb2+ using EICP, pH decreases from 7 to 5 (see Figure 10A).
Further, pH decreases from 6 to 4 while remedying Cu2+ using
EICP (see Figure 10B). It can also be seen that higher NH4

+

concentrations retard such reduction in pH when Pb2+ or Cu2+

concentration is lifted up. The simulated results show that under
either MICP or EICP, the lower degrees of urea hydrolysis
correspond to cotunnite and atacamite precipitations and also
to a reduction in the remediation efficiency (see Figures 6, 7).
Under some circumstances, the remediation efficiency
corresponding to atacamite precipitation could be as low as
below 10%. In light of this, cotunnite and atacamite’s chemical
stability are considered lower compared to calcite, cerussite,
phosgenite, and malachite.

Given a biochemical system undergoing a reversible reaction, a
thermodynamic equilibrium constant, K, is defined to be the value of
the reaction quotient when forwards and reverse reactions take place
at the same time. The higher the K value, the higher the
transformation potential of carbonate precipitation to another
phase, and the lower the thermodynamic stability. If the
composition of a chemical precipitation at equilibrium is
changed by addition of some chemical reagent, a new
equilibrium will be attained, given enough time. K is related to
the composition of the carbonate precipitation at equilibrium by
Eqs. 4 and 5.

FIGURE 8
Raman spectra of samples taken under EICP and MICP: (A) Pb remediation and (B) Cu remediation.

FIGURE 9
(A) Variations of pH surrounding against Pb2+ concentration under MICP and (B) variations of pH surrounding against Cu2+ concentration under
MICP.
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K � R{ }ρ S{ }σ . . .
A{ }α B{ }β . . . �

R[ ]ρ S[ ]σ . . .
A[ ]α B[ ]β . . . × Γ (4)

Γ � γρRγ
σ
S . . .

γαAγ
β
B . . .

(5)

where {X} represents the thermodynamic activity of reagent X at
equilibrium, [X] the numerical value of the corresponding
concentration in moles per litre, Γ the quotient of activity
coefficient, and γ the corresponding activity coefficient. Assuming
the value of Γ is constant over a range of experimental conditions,
such as pH, an equilibrium constant can be derived as a quotient of
concentrations (see Eq. 6).

Kc � K
Γ � R[ ]ρ S[ ]σ . . .

A[ ]α B[ ]β . . . (6)

As K is linked to the standard Gibbs free energy change of
reaction ΔG, their relationship can be expressed by Eq. 7.

ΔG � −RTlnK (7)
where R represents the universal gas constant, T the absolute
temperature (in Kelvins), and ln the natural logarithm. Given ΔG
and R known (Benson and Teague, 1980; Robie and Hemingway,
1995; Blanc, 2017), the relationships of log10K versus T (in
Celsius) for the six carbonate precipitations in the simulated
results are depicted in Figure 11. Amongst the six carbonate
precipitations, cotunnite (PbCl2) and atacamite (Cu2(OH)3Cl)
are categorized as the abiotic precipitation, while calcite
(CaCO3), cerussite (PbCO3), phosgenite (Pb2Cl2CO3), and
malachite (Cu2(OH)2CO3) are classed as the biotic
precipitation. Log10K for atacamite decreases from
17.16 to −0.10 when the temperature is increased from 0 to
300 deg. Further, for a given T, log10K for atacamite is the highest
amongst the six carbonate precipitations. Moreover, the
solubility product Ksp being about 7.391 for atacamite is also
the highest amongst the six carbonate precipitations. The higher
the Ksp, the more difficult the formation of carbonate
precipitation. These results indicate that atacamite has the
highest potential of transforming to another phase when

subjected to a change in temperature, thus indicating a
reduction in the thermodynamic stability (the lowest in the
present work). On the other hand, cotunnite has the second
highest Ksp, although for a given temperature, its log10K is the
second last. Also, log10K for cotunnite does not show substantial
change as the temperature is increased from 0 to 300 deg.
Notwithstanding that, cotunnite is still considered to be
unstable when such high Ksp promotes the potential of
transforming to another phase during biochemical processes.
The thermodynamic properties of calcite are also dominated by
the competition between calcite and aragonite structures in the
crystalline state (Radha and Navrotsky, 2013; Xu et al., 2020).
Such a mineralogical analysis will be discussed in another paper.
It is worth noting that for the test tube experiments, more than
400 mM NH4

+ are hydrolysed when subjected to Cu2+

concentration falling in a 5–30 mM range, but such high NH4
+

concentration corresponds to a remediation efficiency close to
zero (see Figure 3; Figure 5). Although NH4

+ concentration
higher than 400 mM is not within the scope of the numerical
simulation, the remediation efficiency close to zero is most likely
due to the fact that NH4

+ concentration higher than 400 mM
raises pH to above 9, and such strongly alkaline environments

FIGURE 10
(A) Variations of pH surrounding against Pb2+ concentration under EICP and (B) variations of pH surrounding against Cu2+ concentration under EICP.

FIGURE 11
Relationships of log10K (thermodynamic equilibrium constant)
versus temperature (in Celsius) against different carbonate
precipitations applied to Pb and Cu remediation.
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promote the formation of copper-ammonia complex with a
chemical formula of [Cu(NH3)4(H2O)2]

2+ (Duarte-Nass et al.,
2020; Wang et al., 2023a). The copper-ammonia complex turns
Cu2+ into a free state degrading the remediation efficiency. These
results lead us to conclude that a reduction in the remediation
efficiency could be either due to lower degrees of urea hydrolysis
or to carbonate precipitation with low chemical and
thermodynamic properties. Apart from that, a reduction, while
remedying Cu2+, could also be present due to the formation of the
copper-ammonia complex.

4 Conclusions

This paper presented the results concerning the immobilization of
Pb and Cu in aqueous solution using MICP and EICP respectively,
highlighting their relative merits. Based on the results and discussion,
some main conclusions can be drawn as follows.

(1) During the biomineralization process, NH4
+ concentration

decreases with the increasing Pb2+ or Cu2+ concentration,
and for a given Pb2+ or Cu2+ concentration, it is much higher
under MICP. The remediation efficiency against Pb2+ using
MICP performs similarly to that using EICP. However, a
discrepancy in the remediation efficiency against Cu2+

between MICP and EICP is observed. Further, the
remediation efficiency against Cu2+ is way below that
against Pb2+.

(2) The immobilization of Pb or Cu is attained through biotic
precipitation when CO3

2- concentration is high enough to
precipitate the majority of Pb2+ or Cu2+. In case CO3

2-

concentration is not high enough, it is attained via abiotic
and biotic precipitations, corresponding to a reduction in the
remediation efficiency. Further, high precipitation mass does
not necessarily correspond to high remediation efficiency.

(3) The reduction in the remediation efficiency appears to relate to
the chemical and thermodynamic properties of the carbonate
precipitations. Results indicate that the reduction in the
remediation efficiency is ascribed to two precipitates
(i.e., cotunnite and atacamite). Their degradation may take
place when subjected to harsh pH conditions or a substantial
change in temperature, thus reducing the remediation
efficiency. In addition, the reduction in the remediation
efficiency may also attribute to the formation of copper-

ammonia complex when higher NH4
+ concentrations raise

pH to above 9.
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