AUTHOR=Salis Francesca , Bertuletti Stefano , Bonci Tecla , Caruso Marco , Scott Kirsty , Alcock Lisa , Buckley Ellen , Gazit Eran , Hansen Clint , Schwickert Lars , Aminian Kamiar , Becker Clemens , Brown Philip , Carsin Anne-Elie , Caulfield Brian , Chiari Lorenzo , D’Ascanio Ilaria , Del Din Silvia , Eskofier Bjoern M. , Garcia-Aymerich Judith , Hausdorff Jeffrey M. , Hume Emily C. , Kirk Cameron , Kluge Felix , Koch Sarah , Kuederle Arne , Maetzler Walter , Micó-Amigo Encarna M. , Mueller Arne , Neatrour Isabel , Paraschiv-Ionescu Anisoara , Palmerini Luca , Yarnall Alison J. , Rochester Lynn , Sharrack Basil , Singleton David , Vereijken Beatrix , Vogiatzis Ioannis , Della Croce Ugo , Mazzà Claudia , Cereatti Andrea , for the Mobilise-D consortium TITLE=A multi-sensor wearable system for the assessment of diseased gait in real-world conditions JOURNAL=Frontiers in Bioengineering and Biotechnology VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2023.1143248 DOI=10.3389/fbioe.2023.1143248 ISSN=2296-4185 ABSTRACT=

Introduction: Accurately assessing people’s gait, especially in real-world conditions and in case of impaired mobility, is still a challenge due to intrinsic and extrinsic factors resulting in gait complexity. To improve the estimation of gait-related digital mobility outcomes (DMOs) in real-world scenarios, this study presents a wearable multi-sensor system (INDIP), integrating complementary sensing approaches (two plantar pressure insoles, three inertial units and two distance sensors).

Methods: The INDIP technical validity was assessed against stereophotogrammetry during a laboratory experimental protocol comprising structured tests (including continuous curvilinear and rectilinear walking and steps) and a simulation of daily-life activities (including intermittent gait and short walking bouts). To evaluate its performance on various gait patterns, data were collected on 128 participants from seven cohorts: healthy young and older adults, patients with Parkinson’s disease, multiple sclerosis, chronic obstructive pulmonary disease, congestive heart failure, and proximal femur fracture. Moreover, INDIP usability was evaluated by recording 2.5-h of real-world unsupervised activity.

Results and discussion: Excellent absolute agreement (ICC >0.95) and very limited mean absolute errors were observed for all cohorts and digital mobility outcomes (cadence ≤0.61 steps/min, stride length ≤0.02 m, walking speed ≤0.02 m/s) in the structured tests. Larger, but limited, errors were observed during the daily-life simulation (cadence 2.72–4.87 steps/min, stride length 0.04–0.06 m, walking speed 0.03–0.05 m/s). Neither major technical nor usability issues were declared during the 2.5-h acquisitions. Therefore, the INDIP system can be considered a valid and feasible solution to collect reference data for analyzing gait in real-world conditions.